
Tutorial on Programming GPUs

Viktor K. Decyk
UCLA

Abstract
The new NVIDIA Fermi GPU architecture has hardware for cache and fast native atomic
operations. These features allow one to obtain decent performance with less programming
effort than before. A short tutorial on programming GPUs will be presented, making use of
simple examples. We will discuss the important concepts of data coalescence, warp divergence,
and tiling. Examples will be presented in both Cuda Fortran and Cuda C. If time permits, we
will illustrate how these ideas were applied to a Particle-in-Cell code.

Wednesday, May 27, 2015

Outline of Presentation

• Abstraction of future computer hardware
• Vector copy example (segmenting problem, data coalescence)
• Transpose example (tiling with shared memory)
• Sum reduction example (device functions)

All examples are in the file GPUTutorial.tar.gz
README file describes contents
There are 3 versions of each example in this file:
• Cuda C, with Fortran 2003 main program
• Cuda C, with C main program
• Cuda Fortran

Cuda Fortran will be used in this presentation

Wednesday, May 27, 2015

Simple abstraction of future hardware

• SIMD (vector) unit has multiple cores, each executing the same instruction
• Cores work in lockstep with fast shared memory and local synchronization
• Multiple SIMD units coupled via “slow” shared memory and global synchronization

Each compute node is a powerful computer by itself
• A supercomputer is a hierarchy of such powerful computers

This abstraction applies to both GPUs as well as upcoming multi-core Intel processors
• Programming languages generally differ, however

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

Wednesday, May 27, 2015

GPUs are graphical processing units which consist of:
• 12-30 SIMD multiprocessors, each with small (16-48KB), fast (4 clocks) shared memory
• Each multi-processor contains 8-32 processor cores
• Large (0.5-6.0 GB), slow (400-600 clocks) global shared memory, readable by all units
• No cache on some units
• Very fast (1 clock) hardware thread switching

GPU Technology has two special features:
• High bandwidth access to global memory (>100 GBytes/sec)
• Ability to handle thousands of threads simultaneously, greatly reducing memory “stalls”

NVIDIA M2090 has 512 cores!

Wednesday, May 27, 2015

Programming Massively Parallel Processors: A Hands-on Approach
by David B. Kirk and Wen-mei W. Hwu [Morgan Kaufmann, 2010].

CUDA by Example: An Introduction to General-Purpose GPU Programming
by Jason Sanders and Edward Kandrot [Addison-Wesley, 2011].

CUDA Application Design and Development
by Rob Farber [Morgan Kaufmann, 2011].

CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs
by Shane Cook [Morgan Kaufmann, 2012].

The CUDA Handbook: A Comprehensive Guide to GPU Programming
by Nicholas Wilt [Addison-Wesley, 2013].

CUDA Fortran for Scientists and Engineers
by Gregory Ruetsch and Massimiliano Fatica [Morgan Kaufmann, 2014].

http://developer.nvidia.com/cuda-downloads

Programming GPUs

Wednesday, May 27, 2015

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

Programming GPUs: Example 1

Let’s consider a very simple example: copying one 1D array to another
Each SIMD unit processes one block of the total problem

 subroutine copy1(a,b,mx)
! segmented 1d copy of length nx, with block size mx
! a = b
 implicit none
 integer :: mx
 real, dimension(:) :: a, b
 integer :: j, id, nx, nbx, joff

 nx = min(size(a,1),size(b,1))
 nbx = (nx - 1)/mx + 1

 do id = 1, nbx-1 ! outer loop over number of blocks
 joff = mx*id
 do j = 1, min(mx,nx-joff) ! loop over block
 a(j+joff) = b(j+joff)
 enddo
 enddo

 end subroutine

 subroutine copy0(a,b)
! simple 1d copy of length nx
! a = b
 implicit none
 real, dimension(:) :: a, b
 integer :: j, nx
 nx = min(size(a,1),size(b,1))

!$OMP PARALLEL DO PRIVATE(j)
 do j = 1, nx
 a(j) = b(j)
 enddo
!$OMP END PARALLEL DO

 end subroutine

Original vector copy
Parallelized with OpenMP

Serial segmented 1d vector copy
Break up loops into blocks of size mx

Stride 1 memory access important:
Read memory locations in order

Wednesday, May 27, 2015

Programming GPUs:
Copying one 1D array to another

 subroutine copy1(a,b,mx)
! a = b
 implicit none
 integer :: mx
 real, dimension(:) :: a, b
 integer :: j, id, nx, nbx, joff

 nx = min(size(a,1),size(b,1))
 nbx = (nx - 1)/mx + 1

 do id = 0, nbx-1
 joff = mx*id
 do j = 1, min(mx,nx-joff)
 a(j+joff) = b(j+joff)
 enddo
 enddo

 end subroutine

 attributes(global) subroutine gcopy1(a,b,nx)
! inner part of loops goes here
 implicit none
 integer, value :: nx
 real, dimension(nx) :: a, b
 integer :: j, js, id, mx
 mx = blockDim%x ! comes from dimBlock
 j = threadIdx%x ! comes from dimBlock
 id = blockIdx%x ! comes from dimGrid

 js = j + mx*(id - 1)
 if (js <= nx) a(js) = b(js)

end subroutine

The inner part of loop in GPU kernel function:

 subroutine gpu_copy1(a,b,mx)
! outer part of loop goes here
 implicit none
 integer :: mx, nx, nbx
 real, device, dimension(:) :: a, b
 type (dim3) :: dimBlock, dimGrid
 nx = min(size(a,1),size(b,1))
 nbx = (nx - 1)/mx + 1
 dimBlock = dim3(mx,1,1) ! size of block
 dimGrid = dim3(nbx,1,1) ! number of blocks

 call gcopy1<<<dimGrid,dimBlock>>>(a,b,nx)

 crc = cudaThreadSynchronize()
 end subroutine

The loop parameters set by host calling function:

Threads on each block (threadIdx)
run on a single SIMD unit, execute
the same instruction.

Different blocks (blockIdx) run on
different SIMD units

Wednesday, May 27, 2015

Programming GPUs: CUDA Fortran

! Copy data from GPU, using Fortran90 array syntax
 a = g_a

 real, dimension(:), allocatable :: a, b
 real, device, dimension(:), allocatable :: g_a, g_b
! allocate host data
 allocate(a(nx),b(nx),c(nx))
! allocate data on GPU, using Fortran90 array syntax
 allocate(g_a(nx),g_b(nx))

In addition, you must initialize memory on the GPU

Copy from host to GPU

Copy from GPU back to host

! Copy data to GPU, using Fortran90 array syntax
 g_b = b

Execute the subroutine:
! Execute on GPU: g_a = g_b
 call gpu_copy1(g_a,g_b,mx)

CUDA C is similar but more complex (no array syntax, separate memory spaces)

Wednesday, May 27, 2015

Programming GPUs:
Copying one 2D array to another

 subroutine copy2(a,b,mx)
! segmented 2d copy of length nx, ny
! with block size mx
! a = b
 implicit none
 integer :: mx
 real, dimension(:,:) :: a, b
 integer :: j, k, nx, ny, js, id, nbx

 nx = min(size(a,1),size(b,1))
 ny = min(size(a,2),size(b,2))
 nbx = (nx - 1)/mx + 1

 do k = 1, ny
 do id = 0, nbx-1
 joff = mx*id
 do j = 1, min(mx,nx-joff)
 a(j+joff,k) = b(j+joff,k)
 enddo
 enddo
 enddo

 end subroutine

 attributes(global) subroutine gcopy2a(a,b,nx,ny)
 implicit none
 integer, value :: nx, ny
 real, dimension(nx,ny) :: a, b
 integer :: j, k, js, id, mx
 mx = blockDim%x
 j = threadIdx%x
 id = blockIdx%x
 k = blockIdx%y

 js = j + mx*(id - 1)
 if ((js <= nx).and.(k <= ny)) a(js,k) = b(js,k)

 end subroutine

GPU kernel function:

Serial segmented 2d vector copy subroutine gpu_copy2a(a,b,mx)
! outer part of loop goes here
 ...
 real, device, dimension(:,:) :: a, b
 ny = min(size(a,2),size(b,2))
 dimGrid = dim3(nbx,ny,1)

 call gcopy2a<<<dimGrid,dimBlock>>>(a,b,nx,ny)

 ...
 end subroutine

Changes to host calling function:
Each y value is a separate block, nbx*ny blocks

In Fortran, first index is adjacent
in memory

Wednesday, May 27, 2015

Programming GPUs:
Copying one 2D array to another

attributes(global) subroutine
 gcopy2a(a,b,nx,ny)
implicit none
integer, value :: nx, ny
real, dimension(nx,ny) :: a, b
integer :: j, k, js, id, mx
mx = blockDim%x
j = threadIdx%x
id = blockIdx%x
k = blockIdx%y

js = j + mx*(id - 1)
if ((js <= nx).and.(k <= ny)) then
 a(js,k) = b(js,k)
endif

end subroutine

 attributes(global) subroutine gcopy2b(a,b,nx,ny)
 implicit none
 integer, value :: nx, ny
 real, dimension(nx,ny) :: a, b
 integer :: j, k, mx
 mx = blockDim%x ! id no longer needed
 k = blockIdx%x

 j = threadIdx%x
 do while (j <= nx)
 if (k <= ny) a(j,k) = b(j,k)
 j = j + mx
 enddo

 end subroutine

GPU kernel function:

 subroutine gpu_copy2b(a,b,mx)
! outer part of loop goes here
 ...
 dimGrid = dim3(ny,1,1)

 call gcopy2b<<<dimGrid,dimBlock>>>(a,b,nx,ny)

 ...
 end subroutine

Changes to host calling function:
One block handles all x values

Fewer blocks, more work per block

prior GPU kernel function:

Wednesday, May 27, 2015

Programming GPUs:
Copying one 2D array to another

 subroutine copy3(a,b,mx,my)
! segmented 2d copy of length nx, ny
! with block size mx, my
! a = b
 implicit none
 integer :: mx, my
 real, dimension(:,:) :: a, b
 integer :: j, k, nx, ny, joff, koff
 integer :: idx, idy, nbx, nby
 nx = min(size(a,1),size(b,1))
 ny = min(size(a,2),size(b,2))
 nbx = (nx - 1)/mx + 1
 nby = (ny - 1)/my + 1

 do idy = 0, nby-1
 koff = my*idy
 do idx = 0, nbx-1
 joff = mx*idx
 do k = 1, min(my,ny-koff)
 do j = 1, min(mx,nx-joff)
 a(j+joff,k+koff) =
 b(j+joff,k+koff)
 enddo
 enddo
 enddo
 enddo

 end subroutine

 attributes(global) subroutine gcopy3(a,b,nx,ny)
 implicit none
 integer, value :: nx, ny
 real, dimension(nx,ny) :: a, b
 integer :: j, k, js, ks, idx, idy, mx, my
 mx = blockDim%x; my = blockDim%y
 j = threadIdx%x; k = threadIdx%y
 idx = blockIdx%x; idy = blockIdx%y

 ks = k + my*(idy - 1)
 js = j + mx*(idx - 1)
 if ((js <= nx) .and. (ks <= ny)) then
 a(js,ks) = b(js,ks)
 endif
 end subroutine

GPU kernel function:

Doubly segmented serial 2d vector copy subroutine gpu_copy3(a,b,mx)
! outer part of loop goes here
 ...
 real, device, dimension(:,:) :: a, b
 dimBlock = dim3(mx,my,1)
 dimGrid = dim3(nbx,nby,1)

 call gcopy3<<<dimGrid,dimBlock>>>(a,b,nx,ny)

 ...
 end subroutine

Changes to host calling function:
One block handles some x,y values

Wednesday, May 27, 2015

Programming GPUs: Vector copy

Summary
• Processing must be segmented into independent blocks
• Inner loop runs on GPU, loop parameters are set on host
• Data coalescing is important (adjacent threads read adjacent memory locations)
• Each block should execute same instruction (avoid complex if statements)

Wednesday, May 27, 2015

Programming GPUs: CUDA Fortran

Sample output:

make cudaf

./fexample1

 j= 0 :CUDA_DEVICE_NAME=Tesla M2090
 CUDA_MULTIPROCESSOR_COUNT= 16
 CUDA_GLOBAL_MEM_SIZE= 5636554752 (5.249451 GB)
 Capability= 20
 using device j= 0
 Fortran empty kernel time= 2.2300000E-04
 Fortran 1d copy time= 3.0000001E-06
 GPU 1d copy time= 7.4000003E-05
 1d copy maximum difference = 0.000000
 Fortran 2d copy time= 3.6940000E-03
 GPU 2d copy time= 4.3499999E-04
 2d copy maximum difference = 0.000000

Homework: vary blocksize mx and data lengths nx, ny

Wednesday, May 27, 2015

Programming GPUs: Example 2
Transpose a 2D array:
First copy in to fast memory
Then copy out from fast memory
Copy to slow memory has stride 1

 subroutine transpose2(a,b,mx,my)
! segmented 2d transpose of length nx, ny
! with block size mx, my
! a = transpose(b)
 implicit none
 integer :: mx, my, j, k, nx, ny
 real, dimension(:,:) :: a, b
 integer :: idx, idy, joff, koff, nbx, nby
 real, dimension(mx+1,my) :: s
 nx = min(size(a,2),size(b,1))
 ny = min(size(a,1),size(b,2))
 nbx = (nx - 1)/mx + 1; nby = (ny - 1)/my + 1
 do idy = 0, nby-1
 koff = my*idy
 do idx = 0, nbx-1
 joff = mx*idx

 do k = 1, min(my,ny-koff)
 do j = 1, min(mx,nx-joff)
 s(j,k) = b(j+joff,k+koff)
 enddo
 enddo

 do j = 1, min(mx,nx-joff)
 do k = 1, min(my,ny-koff)
 a(k+koff,j+joff) = s(j,k)
 enddo
 enddo

 enddo
 enddo
 end subroutine

 subroutine transpose0(a,b)
! simple 2d transpose of length nx,ny
! a = transpose(b)
 implicit none
 real, dimension(:,:) :: a, b
 integer :: j, k, nx, ny
 nx = min(size(a,2),size(b,1))
 ny = min(size(a,1),size(b,2))

 do k = 1, ny
 do j = 1, nx
 a(k,j) = b(j,k)
 enddo
 enddo

 end subroutine

Original vector transpose

In original, stride 1 memory access is
obtained only when reading b array

Wednesday, May 27, 2015

Programming GPUs: Transpose 2D array

 subroutine transpose2(a,b,mx,my)
! a = transpose(b)
 ...
 real, dimension(mx+1,my) :: s
 ...
 do idy = 0, nby-1
 koff = my*idy
 do idx = 0, nbx-1
 joff = mx*idx
 do k = 1, min(my,ny-koff)
 do j = 1, min(mx,nx-joff)
 s(j,k) =
 b(j+joff,k+koff)
 enddo
 enddo
 do j = 1, min(mx,nx-joff)
 do k = 1, min(my,ny-koff)
 a(k+koff,j+joff) =
 s(j,k)
 enddo
 enddo
 enddo
 enddo
 end subroutine

 attributes(global) subroutine
 gtranspose2(a,b,nx,ny)
! inner part of loops go here
 implicit none
 integer, value :: nx, ny
 real, dimension(ny,nx) :: a
 real, dimension(nx,ny) :: b
 integer :: j, k, js, ks, jb, kb
 integer :: joff, koff, mx, mxv
 real, shared, dimension(*) :: s
 mx = blockDim%x; mxv = mx + 1
 j = threadIdx%x; k = threadIdx%y
 idx = blockIdx%x; idy = blockIdx%y
 koff = mx*(idy - 1)
 joff = mx*(idx - 1)

 ks = k + koff
 js = j + joff
 if ((js <= nx) .and. (ks <= ny)) then
 s(j+mxv*(k-1)) = b(js,ks)
 endif

 call syncthreads() ! synchronize threads

 js = k + joff
 ks = j + koff
 if ((js <= nx) .and. (ks <= ny)) then
 a(ks,js) = s(k+mxv*(j-1))
 endif
 end subroutine

On GPU, mx = my The inner part of loop in GPU kernel function:

Wednesday, May 27, 2015

Programming GPUs: Transpose 2D array

attributes(global) subroutine
 gtranspose2(a,b,nx,ny)
...
real, shared, dimension(*) :: s
mx = blockDim%x; mxv = mx + 1
j = threadIdx%x; k = threadIdx%y
idx = blockIdx%x; idy = blockIdx%y
koff = mx*(idy - 1)
joff = mx*(idx - 1)

ks = k + koff
js = j + joff
if ((js <= nx).and.(ks <= ny)) then
 s(j+mxv*(k-1)) = b(js,ks)
endif

call syncthreads()

js = k + joff
ks = j + koff
if ((js <= nx).and.(ks <= ny)) then
 a(ks,js) = s(k+mxv*(j-1))
endif
end subroutine

GPU kernel function: Host calling function
similar to gpu_copy3

 subroutine gpu_transpose2(a,b,mx)
 ...
 real, device, dimension(:,:) :: a, b
 ...
 dimBlock = dim3(mx,mx,1)
 dimGrid = dim3(nbx,nby,1)
! calculate size of shared memory
 ns = (mx + 1)*mx*sizeof(a(1,1))

 call gtranspose2<<<dimGrid,dimBlock,ns>>>(a,b,nx,ny)

 crc = cudaThreadSynchronize()

 end subroutine

Wednesday, May 27, 2015

Programming GPUs: Transpose

Summary
• Stride 1 access is obtained to slow global memory
• Stride 1 access is not obtained to fast shared memory, but it is 100x faster
• Processing in pieces small enough to fit in fast memory (tiling) is important

Wednesday, May 27, 2015

Programming GPUs: CUDA Fortran

Sample output:

./fexample2

 using device j= 0
 Fortran empty kernel time= 2.2800000E-04
 Fortran 2d transpose time= 4.2500001E-04
 GPU 2d transpose time= 2.5099999E-04
 2d transpose maximum difference = 0.000000

Wednesday, May 27, 2015

Programming GPUs: Example 3

Sum reduction of 1D array

 subroutine sum1(a,sa,mx)
! 1d sum reductions, each of length mx
! sa = sum(a)
 implicit none
 integer :: mx
 real :: sa
 real, dimension(:) :: a
 integer :: j, js, jb, nx, nbx
 real :: t
 nx = size(a,1)
 nbx = (nx - 1)/mx + 1

 sa = 0.0
 do jb = 1, nbx
 t = 0.0
 do js = 1, min(mx,nx-mx*(jb-1))
 j = js + mx*(jb - 1)
 t = t + a(j)
 enddo
 sa = sa + t

 enddo

 end subroutine

 subroutine sum0(a,sa)
! simple 1d sum reduction of length nx
! sa = sum(a)
 implicit none
 real :: sa
 real, dimension(:) :: a
 integer :: j

 sa = 0.0
!$OMP PARALLEL DO PRIVATE(j)
!$OMP& REDUCTION(+:sa)
 do j = 1, size(a,1)
 sa = sa + a(j)
 enddo
!$OMP END PARALLEL DO
 end subroutine

Original sum reduction
Parallelized with OpenMP

Serial segmented 1d sum reduction
Partial sums of blocks of size mx

Stride 1 memory access important:
Read memory locations in order

Wednesday, May 27, 2015

Programming GPUs:
Sum reduction of 1D array

 subroutine sum1(a,sa,mx)
! sa = sum(a)
 ...
 real :: sa
 real, dimension(:) :: a
 ...
 sa = 0.0
 do jb = 1, nbx
 t = 0.0
 do js = 1, min(mx,nx-mx*(jb-1))
 j = js + mx*(jb - 1)
 t = t + a(j)
 enddo
 sa = sa + t

 enddo

 end subroutine

 attributes(global) subroutine gsum1(a,sa,nx)
! inner part of loop goes here
 implicit none
 integer, value :: nx
 real, dimension(:) :: a, sa
 integer :: j, js, jb, mx, joff, mxm
 real :: t
 real, shared, dimension(*) :: s
 mx = blockDim%x
 js = threadIdx%x
 jb = blockIdx%x
 joff = mx*(jb - 1)

 j = js + joff ! first copy to shared memory
 if (j <= nx) s(js) = a(j)
 call syncthreads()
 if (js==1) then ! one thread performs sum
 mxm = nx - joff
 if (mxm > mx) mxm = mx
 t = 0.0
 do j = 1, mxm
 t = t + s(j)
 enddo ! sum different blocks
 t = atomicAdd(sa(1),t)
 endif

 end subroutine

The inner part of loop in GPU kernel function:
On GPU, copy to shared memory
one thread performs partial sum
Not very efficient

Wednesday, May 27, 2015

Programming GPUs:
Sum reduction of 1D array

 attributes(global) subroutine
 gsum1(a,sa,nx)
 ...
 real, shared, dimension(*) :: s
 mx = blockDim%x
 js = threadIdx%x
 jb = blockIdx%x
 joff = mx*(jb - 1)

 j = js + joff
 if (j <= nx) s(js) = a(j)
 call syncthreads()
 if (js==1) then mxm = nx - joff
 if (mxm > mx) mxm = mx
 t = 0.0
 do j = 1, mxm
 t = t + s(j)
 enddo
 t = atomicAdd(sa(1),t)
 endif

 end subroutine

host calling function:GPU kernel function:

 subroutine gpu_sum1(a,sa,mx)
 implicit none
 integer :: mx
 real, device, dimension(:) :: a, sa
 integer :: nx, nbx, ns
 type (dim3) :: dimBlock, dimGrid
 nx = size(a,1)
 nbx = (nx - 1)/mx + 1
 dimBlock = dim3(mx,1,1)
 dimGrid = dim3(nbx,1,1)
 sa(1) = 0.0
! calculate size of shared memory
 ns = mx*sizeof(a(1))

 call gsum1<<<dimGrid,dimBlock,ns>>>(a,sa,nx)

 end subroutine

Wednesday, May 27, 2015

21 43 75 6 8

86 10 75 612 8

Parallel Sum Reduction:

0:

1:

2:

3:

2016 10 75 612 8

2036 10 75 612 8

Wednesday, May 27, 2015

Programming GPUs: Sum reduction of 1D array

Implementation of local parallel sum reduction
device functions are inlined, sdata is in shared memory

 attributes(device) subroutine lsum2(sdata,n)
! finds local sum of n data items shared by threads
! using binary tree method. input is modified
 implicit none
 real, dimension(*) :: sdata
 integer, value :: n
 integer :: l, k
 real :: s
 l = threadIdx%x
 k = blockDim%x/2
 s = 0.0

 if (l <= n) s = sdata(l)
 do while (k > 0)
 if (l <= k) then
 if ((l+k) <= n) then
 s = s + sdata(l+k)
 sdata(l) = s
 endif
 endif
 call syncthreads()
 k = k/2
 enddo

 end subroutine

Wednesday, May 27, 2015

Programming GPUs:
Sum reduction of 1D array

 attributes(global) subroutine
 gsum1(a,sa,nx)
 ...
 real, shared, dimension(*) :: s
 mx = blockDim%x
 js = threadIdx%x
 jb = blockIdx%x
 joff = mx*(jb - 1)

 j = js + joff
 if (j <= nx) s(js) = a(j)
 call syncthreads()

 if (js==1) then
 mxm = nx - joff
 if (mxm > mx) mxm = mx
 t = 0.0
 do j = 1, mxm
 t = t + s(j)
 enddo
 t = atomicAdd(sa(1),t)
 endif

 end subroutine

Prior GPU kernel function:

 attributes(global) subroutine gsum2(a,d,nx)
 implicit none
 integer, value :: nx
 real, dimension(:) :: a, d
 integer :: j, js, jb, mx, joff, mxm
 real, shared, dimension(*) :: s
 mx = blockDim%x
 js = threadIdx%x
 jb = blockIdx%x
 joff = mx*(jb - 1)

 j = js + joff
 if (j <= nx) s(js) = a(j)
 call syncthreads()

 mxm = nx - joff
 if (mxm > mx) mxm = mx
 call lsum2(s,mxm)
 if (js==1) d(jb) = s(1)

 end subroutine

GPU kernel function:

Multiple parallel sum reductions:
write out partial sum of each block

Wednesday, May 27, 2015

Programming GPUs:
Sum reduction of 1D array

 subroutine gpu_sum2(a,d,mx)
 implicit none
 integer :: mx
 real, device, dimension(:) :: a, d
 integer :: nx, nbx, ns
 type (dim3) :: dimBlock, dimGrid
 nx = size(a,1)
 nbx = (nx - 1)/mx + 1
 dimBlock = dim3(mx,1,1)
 dimGrid = dim3(nbx,1,1)
! calculate size of shared memory
 ns = mx*sizeof(a(1))

 call gsum2<<<dimGrid,dimBlock,ns>>>(a,d,nx)

 crc = cudaThreadSynchronize()

 end subroutine

 attributes(global) subroutine
 gsum2(a,d,nx)
 implicit none
 integer, value :: nx
 real, dimension(:) :: a, d
 integer :: j, js, jb, mx, joff, mxm
 real, shared, dimension(*) :: s
 mx = blockDim%x
 js = threadIdx%x
 jb = blockIdx%x
 joff = mx*(jb - 1)

 j = js + joff
 if (j <= nx) s(js) = a(j)
 call syncthreads()

 mxm = nx - joff
 if (mxm > mx) mxm = mx
 call lsum2(s,mxm)
 if (js==1) d(jb) = s(1)

 end subroutine

GPU kernel function:

Multiple parallel sum reductions:
write out partial sum of each block

host calling function:

Wednesday, May 27, 2015

Programming GPUs: Sum reduction of 1D array

Many times only local sums are required
If global sum is needed, one can combine these two procedures

Perform parallel sums for each block:
 call gpu_sum2(g_a,g_d,mx)
Then add the partial sums with serial algorithm:
 call gpu_sum1(g_d,g_s,mx)

If array is long, one can iterate gpu_sum2 several times.
This is done by the host procedure gpu_sum3:
 call gpu_sum3(g_a,g_d,g_s,mx)

Sample output:

./fexample3

 Fortran empty kernel time= 5.1999999E-05
 Fortran 1d sum time= 4.0000000E-06
 GPU 1d sum time= 2.5300001E-04
 1d sum maximum difference = 0.000000
 s,t = 4501500. 4501500.

Wednesday, May 27, 2015

• Vector algorithms are relatively easy
• Processing has to be done in small blocks
• Tiling algorithms are well known from cache based machines
• Sum reductions are harder
• Irregular problems such as reordering data can be very hard
• Very useful to develop a serial version before implementing a Cuda version
• Libraries such as BLAS, FFTs, are available to avoid reinventing the wheel
• New languages such as OpenACC (similar to OpenMP) are evolving

Programming GPUs: Conclusions

Wednesday, May 27, 2015

