
Particle-in-Cell Algorithms for Emerging
Computer Architectures:

Multiple GPUs

Viktor K. Decyk and Tajendra V. Singh

UCLA

Thursday, June 12, 2014

GPUs are graphical processing units originally developed for graphics and games
• Programmable in 2007

GPU Technology has two special features:
• High bandwidth access to global memory (>100 GBytes/sec), but for ordered access
• Ability to handle thousands of threads simultaneously, greatly reducing memory “stalls”

GPUs consist of:
• 12-30 SIMD multiprocessors, each with small (16-48KB), fast (4 clocks) shared memory
• Each multi-processor contains 8-32 processor cores
• Large (0.5-6.0 GB), slow (400-600 clocks) global shared memory, readable by all units
• No cache on some units
• Very fast (1 clock) hardware thread switching

Thursday, June 12, 2014

Simple Hardware Abstraction for Next Generation Supercomputer

A distributed memory node consists of
• SIMD (vector) unit works in lockstep with fast shared memory and synchronization
• Multiple SIMD units coupled via global shared memory and synchronization

Distributed Memory nodes coupled via MPI

Each MPI node is a powerful computer by itself
A supercomputer is a hierarchy of such powerful computers

OpenCL programming model uses such an abstraction for a single node

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

MPI node MPI node

Thursday, June 12, 2014

This hardware model matches a variety of processors

On NVIDIA GPU:
• Vector length = block size (typically 32-128)
• Number of vector processors =12-30
• Fast shared memory = 16-64 KB, plus L2 cache

On Intel MIC (PHI):
• Vector length for single precision = 16
• Number of vector processors = 50-60
• Fast shared memory = L1 Cache (32 KB), L2 Cache (512 KB)

On Dual Intel Xeon multicore:
• Vector length for single precision with SSE2 = 4
• Number of vector processors = 4-16
• Fast shared memory = L1, L2 Cache

Thursday, June 12, 2014

Designing new algorithms for next generation computers

This abstract machine contains a number of familiar hardware elements
• SIMD (vector) processors
• Small working memory (caches)
• Distributed memories

Scientific programmers have experience with each of these elements

Vector algorithms
• Calculation on a data set whose elements are independent (can be done in any order)
• Long history on Crays, Fijitsu, NEC supercomputers

Blocking (tiling) algorithms
• When data will be read repeatedly, load into faster memory and calculate in chunks
• Long history on RISC processors

Domain decomposition algorithms
• Partition memory so different threads work on different data
• Long history on distributed memory computers

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

Thursday, June 12, 2014

Designing new algorithms for next generation computers

Programming these new machines uses many familiar elements,
but put together in a new way.

But some features are unfamiliar:

Languages (CUDA, OpenCL, OpenACC, OpenMP) have new features

GPUs require many more threads than physical processors
• Hides memory latency
• Hardware can use master-slave model for automatic load balancing among blocks

Optimizing data movement is very critical

Thursday, June 12, 2014

 PIC codes integrate the trajectories of many particles interacting
self-consistently via electromagnetic fields. They model plasmas at the most
fundamental, microscopic level of classical physics.

 PIC codes are used in almost all areas of plasma physics, such as fusion energy
research, plasma accelerators, space physics, ion propulsion, plasma processing, and
many other areas.

 Most complete, but most expensive models. Used when more simple models fail, or
to verify the realm of validity of more simple models.

Largest calculations:
• ~3 trillion interacting particles
• ~1.6 million processors (on Sequoia)

Particle-in-Cell Codes

Thursday, June 12, 2014

Simplest plasma model is electrostatic:

1. Calculate charge density on a mesh from particles:

2. Solve Poisson’s equation:

3. Advance particle’s co-ordinates using Newton’s Law:

() ()q Sx x xi i

i

t = -/

4E:d rt=

() ()m dt
d q S dv E x x x xi
i

i i= -# dt
dx vi

i=

Particle-in-Cell Codes

Inverse interpolation (scatter operation) is used in step 1 to
distribute a particle’s charge onto nearby locations on a grid.

Interpolation (gather operation) is used in step 3 to approximate
the electric field from grids near a particle’s location.

When running in parallel, data collisions might occur

X

Thursday, June 12, 2014

Distributed Memory Programming (MPI) for PIC

This is dominant technique used on today’s supercomputers

Domain decomposition is used to assign which data reside on which processor
• No shared memory, data between nodes sent with message-passing (MPI)
• Most parallel PIC codes are written this way

Details can be found at:

P. C. Liewer and V. K. Decyk, “A General Concurrent Algorithm for Plasma Particle-in-Cell
Codes,” J. Computational Phys. 85, 302 (1989)

Sample codes can be found at:
https://idre.ucla.edu/hpc/parallel-plasma-pic-codes

Thursday, June 12, 2014

https://idre.ucla.edu/hpc/parallel-plasma-pic-codes
https://idre.ucla.edu/hpc/parallel-plasma-pic-codes

Distributed Memory Programming for PIC
Domain decomposition with MPI

Primary Decomposition has non-uniform partitions to load balance particles
• Sort particles according to spatial location
• Same number of particles in each non-uniform domain
• Scales to many thousands of processors

Particle Manager responsible for moving particles
• Particles can move across multiple nodes

2D Domain decomposition

Each partition has equal number of particles

1D Domain decomposition

•

• •

••

•
•
•

••

•
•

• •

•

•

• •

•
•

•

•
•

•

•
•• ••

•

• •
••

•
•

• •

• •

•

•

• •
••

••

•
•

• ••

•

• ••
•
••

• •

• •

•

•

••• •
••

• ••
•• •

• •
• •

••

• •
•

• •

•

• •

• ••
• •

Thursday, June 12, 2014

GPU Programming for PIC

Most important bottleneck is memory access
• PIC codes have low computational intensity (few flops/memory access)
• Memory access is irregular (gather/scatter)

Memory access can be optimized with a streaming algorithm (global data read only once)

PIC codes can implement a streaming algorithm by keeping particles ordered by tiles.
• Minimizes global memory access since field elements need to be read only once.
• global gather/scatter can be avoided.
• Deposit and particles update can have optimal memory access.
• Single precision can be used for particles

Challenge: optimizing particle reordering

Thursday, June 12, 2014

Designing New Particle-in-Cell (PIC) Algorithms:
Particles ordered by tiles, varying from 2 x 2 to 16 x 16 grid points

We created a new data structure for particles, partitioned among threads blocks:

 dimension ppart(idimp,npmax,num_tiles)

Thursday, June 12, 2014

Designing New Particle-in-Cell (PIC) Algorithms: Push/Deposit Procedures:

Within a tile, all particles read or write the same block of fields.
• Before pushing particles, copy fields to fast memory
• After depositing charge to fast memory, write to global memory
• Different tiles can be done in parallel.

Each tile contains data for the grids in the tile, plus guard cells: an extra column of grids on
the right, and an extra row of grids on the bottom for linear interpolation.

For push, parallelization is easy, each particle is independent of others, no data hazards
• Similar to MPI code, but with tiny partitions

For deposit, parallelization is also easy if each tile is controlled by one thread
• This avoids data collisions where two threads try to update the same memory

However, if each tile is controlled by a vector of threads, data collisions are possible.
• Atomic updates (which treat an update as an uninterruptible operation) are one approach

Thursday, June 12, 2014

Designing New Particle-in-Cell (PIC) Algorithms: Maintaining Particle Order

Three steps:
1. Create a list of particles which are leaving a tile, and where they are going
2. Using list, each thread places outgoing particles into an ordered buffer it controls
3. Using lists, each tile copies incoming particles from buffers into particle array

• Less than a full sort, low overhead if particles already in correct tile
• Can be done in parallel
• Essentially message-passing, except buffer contains multiple destinations

In the end, the particle array belonging to a tile has no gaps
• Incoming particles are moved to any existing holes created by departing particles
• If holes still remain, they are filled with particles from the end of the array

Straightforward to implement with one thread per tile
• Much more complex with multiple threads per tile

Thursday, June 12, 2014

GPU Particle Reordering

GPU Buffer

GPU Tiles

GPU Tiles

Particles buffered
in Direction Order

21

5
3

6

4

7 8

1 234 5678

5

2

8

4

1

7

3

6

Thursday, June 12, 2014

Evaluating New Particle-in-Cell (PIC) Algorithms on GPU: Electrostatic Case
2D ES Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
optimal block size = 128, optimal tile size = 16x16. Single precision

GPU algorithm also implemented in OpenMP
Hot Plasma results with dt = 0.1
 CPU:Intel i7 GPU:Fermi M2090
Push 20.7 ns. 0.552 ns.
Deposit 9.4 ns. 0.247 ns.
Reorder 1.6 ns. 0.114 ns.
Total Particle 31.7 ns. 0.914 ns.

The time reported is per particle/time step.
The total particle speedup on the Fermi M2090 was 35x compared to 1 CPU.
Field solver takes an additional 12% on GPU, 11% on CPU.

Thursday, June 12, 2014

Evaluating New Particle-in-Cell (PIC) Algorithms on GPU: Electromagnetic Case
2-1/2D EM Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
optimal block size = 128, optimal tile size = 16x16. Single precision

GPU algorithm also implemented in OpenMP
Hot Plasma results with dt = 0.04, c/vth = 10, relativistic
 CPU:Intel i7 GPU:Fermi M2090
Push 68.4 ns. 0.980 ns.
Deposit 43.2 ns. 1.327 ns.
Reorder 0.6 ns. 0.068 ns.
Total Particle 112.2 ns. 2.375 ns.

The time reported is per particle/time step.
The total particle speedup on the Fermi M2090 was 47x compared to 1 CPU.
Field solver takes an additional 16% on GPU, 11% on CPU.

Thursday, June 12, 2014

Designing New Particle-in-Cell (PIC) Algorithms: Multiple GPUs

Multiple GPUs can be controlled with MPI
• Merge MPI and GPU algorithms

We started with existing 2D MPI codes from UPIC Framework
• Replacing MPI push/deposit with GPU version was no major challenge

With multiple GPUs, we need to integrate two different particle partitions
• MPI and GPU each have their own particle managers to maintain particle order

Only the first/last row or column of tiles on GPU interacts with neighboring MPI node
• Particles in row/column of tiles collected in MPI send buffer
• Table of outgoing particles are also sent
• Table is used to determine where incoming particles must be placed

Thursday, June 12, 2014

MPI Send Buffer

GPU-MPI Particle Reordering

GPU Buffer

GPU Tiles

MPI Recv Buffer

GPU 1

GPU 2
GPU Tiles

Thursday, June 12, 2014

Copy GPU data to host: gs(1:4)->s(1:4)

MPISend s(1)

MPIRecv r(1)

MPISend s(2)

MPIRecv r(2)

MPISend s(3)

MPIRecv r(3)

MPISend s(4)

MPIRecv r(4)

Copy host data to GPU: r(1:4)->gr(1:4)

FFT requires an all-to-all transpose among GPUs

Data is first transposed on GPU into buffers gs
GPU buffers gs are copied to host buffers s
MPI on host sends buffers s, receives data in buffers r.
Host buffers are copied to GPU buffers gr
Buffer gr is further transposed on GPU.

Synchronous example with 4 nodes

Thursday, June 12, 2014

gs(3)->s(3)

MPISend s(2)

MPIRecv r(1)
r(1)->gr(1)

gs(4)->s(4)

MPISend s(3)

MPIRecv r(2)
r(2)->gr(2)

gs(2)->s(2)

MPISend s(1)

gs(1)->s(1)

MPISend s(4)

MPIRecv r(3)
r(3)->gr(3)

MPIRecv r(4)
r(4)->gr(4)

All-to-all transpose among GPUs: asynchronous version

Overlap the copying between GPUs and host with MPI messages with three buffers
• One buffer sends a segment from GPU to host
• Another buffer sends a second segment between GPUs
• A third buffer sends a third segment from host to GPU.

Improvement in performance is modest, typically less than 10%

Asynchronous example with 4 nodes

Thursday, June 12, 2014

Designing New Particle-in-Cell (PIC) Algorithms: Multiple GPUs

One MPI node is used to control a single GPU. If multiple GPUs can exist on a single
host, a procedure is needed to assign each MPI node a different GPU device id.

This was done by making use of the MPI_GET_PROCESSOR_NAME procedure:

The host name of each MPI node is sent to every other node. If the incoming name
matches the local name, the remote processor id is added to a local list. This list is
then locally sorted and is used to assign a unique device id to the MPI nodes on the
same host.

Thursday, June 12, 2014

Evaluating New Particle-in-Cell (PIC) Algorithms on GPU: Electrostatic Case
2D ES Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
optimal block size = 128, optimal tile size = 16x16. Single precision. Fermi M2090 GPU

Hot Plasma results with dt = 0.1
 CPU:Intel i7 1 GPU 24 GPUs 108 GPUs
Push 22.1 ns. 0.327 ns. 13.4 ps. 3.46 ps.
Deposit 8.5 ns. 0.233 ns. 11.0 ps. 2.60 ps.
Reorder 0.4 ns. 0.442 ns. 19.7 ps. 5.21 ps.
Total Particle 31.0 ns. 1.004 ns. 49.9 ps. 13.10 ps.

The time reported is per particle/time step.
The total particle speedup on the 108 Fermi M2090s compared to 1 GPU was 77x,

Field solver takes an additional 5% on 1 GPU, 45% on 2 GPUs, and 73% on 108 GPUs

Thursday, June 12, 2014

Evaluating New Particle-in-Cell (PIC) Algorithms on GPU: Electromagnetic Case
2-1/2D EM Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
optimal block size = 128, optimal tile size = 16x16. Single precision. Fermi M2090 GPU

Hot Plasma results with dt = 0.04, c/vth = 10, relativistic
 CPU:Intel i7 1 GPU 24 GPUs 108 GPUs
Push 66.5 ns. 0.422 ns. 18.3 ps. 4.26 ps.
Deposit 36.7 ns. 0.972 ns. 43.8 ps. 11.31 ps.
Reorder 0.4 ns. 0.690 ns. 31.2 ps. 8.33 ps.
Total Particle 103.6 ns. 2.092 ns. 95.5 ps. 29.60 ps.

The time reported is per particle/time step.
The total particle speedup on the 108 Fermi M2090s compared to 1 GPU was 71x,

Field solver takes an additional 10% on 1 GPU, 62% on 24 GPUs, and 74% on 108 GPUs

Thursday, June 12, 2014

Performance as a function of the number of GPUs (Left). Dashed red line is ideal scaling,
blue shows particle time, black shows total time. Degradation of total time is due to the all
to all transpose in the FFT, which dominates. The FFT takes about 30-70% of the total
time. The MPI/OpenMP code (Right) uses the same algorithm as the GPU code.

Thursday, June 12, 2014

Performance as a function of the number of GPUs (Left). Dashed red line is ideal scaling,
blue shows particle time, black shows total time. Degradation of total time is due to the all
to all transpose in the FFT, which dominates. The FFT takes about 40-70% of the total
time. The MPI/OpenMP code (Right) uses the same algorithm as the GPU code.

Thursday, June 12, 2014

Conclusions

PIC Algorithms on emerging architectures are largely a combination of previous techniques
• Vector techniques from Cray
• Blocking techniques from cache-based architectures
• Message-passing techniques from distributed memory architectures

• Programming to Hardware Abstraction leads to common algorithms
• Streaming algorithms optimal for memory-intensive applications

Scheme should be portable to architectures with similar hardware abstractions

Further information available at:

V. K. Decyk and T. V. Singh, "Particle-in-Cell Algorithms for Emerging Computer
Architectures," Computer Physics Communications, 185, 708, (2014),
available at http://dx.doi.org/10.1016/j.cpc.2013.10.013.

http://www.idre.ucla.edu/hpc/research/

Source codes available at:
https://idre.ucla.edu/hpc/parallel-plasma-pic-codes/

Thursday, June 12, 2014

http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://www.idre.ucla.edu/hpc/research/
http://www.idre.ucla.edu/hpc/research/
http://www.idre.ucla.edu/hpc/research/
http://www.idre.ucla.edu/hpc/research/

