
Algorithmic Development for PIC codes on
Advanced Architectures:

OpenMP

Viktor K. Decyk and Tajendra V. Singh

UCLA

Friday, April 25, 2014

Simplest plasma model is electrostatic:

1. Calculate charge density on a mesh from particles:

2. Solve Poisson’s equation:

3. Advance particle’s co-ordinates using Newton’s Law:

() ()q Sx x xi i

i

t = -/

4E:d rt=

() ()m dt
d q S dv E x x x xi
i

i i= -# dt
dx vi

i=

Particle-in-Cell Codes

Inverse interpolation (scatter operation) is used in step 1 to
distribute a particle’s charge onto nearby locations on a grid.

Interpolation (gather operation) is used in step 3 to approximate
the electric field from grids near a particle’s location.

When running in parallel, data collisions might occur

X

Friday, April 25, 2014

Designing New Particle-in-Cell (PIC) Algorithms for Shared Memory

Most important bottleneck is memory access
• PIC codes have low computational intensity (few flops/memory access)
• Memory access is irregular (gather/scatter)

Memory access can be optimized with a streaming algorithm (global data read only once)

PIC codes can implement a streaming algorithm by keeping particles ordered by small tiles
• Minimizes global memory access since field elements need to be read only once.
• Cache is not needed, gather/scatter can be avoided.
• Deposit and particles update can have optimal stride 1 access.

Friday, April 25, 2014

Designing New Particle-in-Cell (PIC) Algorithms:
Particles ordered by tiles, varying from 2 x 2 to 16 x 16 grid points

We created a new data structure for particles, partitioned among threads blocks:

 dimension ppart(idimp,npmax,num_tiles)

Friday, April 25, 2014

Designing New Particle-in-Cell (PIC) Algorithms: Push/Deposit Procedures:

Within a tile, all particles read or write the same block of fields.
• Before pushing particles, copy fields to fast memory
• After depositing charge to fast memory, write to global memory
• Different tiles can be done in parallel.

Each tile contains data for the grids in the tile, plus guard cells: an extra column of grids on
the right, and an extra row of grids on the bottom for linear interpolation.

For push, parallelization is easy, each particle is independent of others, no data hazards
• Similar to MPI code, but with tiny partitions

For deposit, parallelization is relatively easy if each tile is controlled by one thread
• Care has to be taken in adding fast tile memory to global memory for the guard cells
• Atomic updates (which treat an update as an uninterruptible operation) are one approach

Friday, April 25, 2014

Designing New Particle-in-Cell (PIC) Algorithms: Maintaining Particle Order

Three steps:
1. Particle Push creates a list of particles which are leaving a tile
2. Using list, each thread places outgoing particles into a buffer it controls
3. Using lists, each tile copies incoming particles from buffers into particle array

• Less than a full sort, low overhead if particles already in correct tile
• Can be done in parallel
• Essentially message-passing, except buffer contains multiple destinations

In the end, the particle array belonging to a tile has no gaps
• Particles are moved to any existing holes created by departing particles
• If holes still remain, they are filled with particles from the end of the array

Friday, April 25, 2014

Particle Reordering

Particle Buffer

GPU Tiles

Tiles

Tiles

Particles buffered
in Direction Order

21

5
3

6

4

7 8

1 234 5678

5

2

8

4

1

7

3

6

Friday, April 25, 2014

Evaluating New Particle-in-Cell (PIC) Algorithms with OpenMP: Electrostatic Case
2D ES Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
Tile size = 16x16. Single precision

Hot Plasma results with dt = 0.1
 CPU:Intel i7 OpenMP(12 cores)
Push 20.7 ns. 1.92 ns.
Deposit 9.4 ns. 0.99 ns.
Reorder 1.6 ns. 0.20 ns.
Total Particle 31.7 ns. 3.11 ns.

The time reported is per particle/time step.
The total particle speedup with 12 cores was 10.2 compared to 1 core
Field solver takes an additional 9%.

Friday, April 25, 2014

Evaluating New Particle-in-Cell (PIC) Algorithms on OpenMP: Electromagnetic Case
2-1/2D EM Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
Tile size = 16x16. Single precision

Hot Plasma results with dt = 0.04, c/vth = 10, relativistic
 CPU:Intel i7 OpenMP(12 cores)
Push 68.4 ns. 6.00 ns.
Deposit 43.2 ns. 4.29 ns.
Reorder 0.6 ns. 0.10 ns.
Total Particle 112.2 ns. 10.39 ns.

The time reported is per particle/time step.
The total particle speedup with 12 cores was 10.8x compared to 1 core.
Field solver takes an additional 8-10%.

Friday, April 25, 2014

Further information available at:

V. K. Decyk and T. V. Singh, "Particle-in-Cell Algorithms for Emerging Computer
Architectures," Computer Physics Communications, 185, 708, (2014),
available at http://dx.doi.org/10.1016/j.cpc.2013.10.013.

http://www.idre.ucla.edu/hpc/research/

Source codes available at:
https://idre.ucla.edu/hpc/parallel-plasma-pic-codes/

Friday, April 25, 2014

http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://www.idre.ucla.edu/hpc/research/
http://www.idre.ucla.edu/hpc/research/
http://www.idre.ucla.edu/hpc/research/
http://www.idre.ucla.edu/hpc/research/

