
Software design of the 2d BEPS2 PIC codes

Viktor K. Decyk
Department of Physics and Astronomy
University of California, Los Angeles
Los Angles, California 90095-1547

Introduction

This Particle-in-Cell (PIC) code is intended for research and teaching in plasma physics.
Plasmas are ionized gases interacting with electromagnetic fields they generate. It is an
example of a many body system described by statistical mechanics. PIC codes model
plasmas as discrete particles and this code serves as a lab to perform numerical
experiments.

This software consists of three separate Particle-in-Cell codes: an electrostatic, and
electromagnetic, and a darwin code. They are based on the 2d OpenMP/MPI skeleton
codes (mppic2, mpbpic2, mpdpic2) available at: http://picksc.idre.ucla.edu/software/
skeleton-code/, with additional diagnostics and initial conditions added. The codes are
written in layers. It is intended to be run on a large variety of platforms, from student
laptops to supercomputers. The lowest, most compute intensive layer is mostly written
in a Fortran77 subset of Fortran90. This layer uses only basic types, without array
syntax and compiles to very fast code. It is easy to replace this layer with a C language
layer. It contains about 120 procedures and 13,000 lines of code. The middle layer
consists of Fortran90 wrappers, which simplifies the argument lists, introduces some
polymorphism with case statements, adds safety checks, and is designed to be easily
called from Python. It consists of 90 procedures and 3,000 lines of code organized in 10
libraries. An upper layer is planned for both Fortran and Python.

Low level libraries

The libraries are organized according the type of code, electrostatic, electromagnetic,
and darwin. Seven of the libraries are used by all 3 codes:

libmpinit2.f: initializes particles
libmppush2.f: pushes electrostatic particles, deposits charge,
 and provides utility functions
libmpsort2.f: reorders particles for parallelization
libmpgard2.f: provides functions to process guard cells
libmpfield2.f: provides spectral field solvers and diagnostics
libmpfft2.f: provides 1D FFTs for scalar and vector arrays

1

http://picksc.idre.ucla.edu/software/skeleton-code/
http://picksc.idre.ucla.edu/software/skeleton-code/
http://picksc.idre.ucla.edu/software/skeleton-code/
http://picksc.idre.ucla.edu/software/skeleton-code/

mpplib2.f90 provides communications procedures using MPI/OpenMP

Two of the libraries are used by the electromagnetic and darwin codes:
libmpcurd2.f: deposits current density
libmpbpush2.f: pushes electromagnetic particles

One library is used by darwin code:
libmpdpush2.f: deposits time derivative of current density

Comments at the beginning of each library describe what each individual procedure
does and comments at the beginning of each function give additional details as well as
information about the input and output variables.

Middle level libraries

The ten middle level libraries provide an easier to use interface to the low level libraries
and can be called by Python. They provide error checking but do not process errors
(which may need to be processed in another language.) They also provide some level of
polymorphism, such as whether a relativistic version of procedures should be used.

The middle level wrapper libraries have the same structure as the low level libraries.
They are written to conform to the Fortran 90 standard. The names are similar, except
that they usually start with mod... and end in ...f90 instead of lib... and ...f.
For example, the wrapper for libmpinit2.f is modmpinit2.f90. In addition, there
are libraries that provide interfaces to the low level procedures to support argument
checking for procedures (similar to header files in C). Their names are the same as the
low level libraries, except they terminate with _h.f90 instead of .f.

Comments at the beginning of each library describe what each individual procedure
does and what low level procedures are called.

The Python wrappers can be created automatically from the middle layer by the numpy
tool f2py. This required that the middle layer avoid certain Fortran90 language features,
such as derived types and function overloading, and required that they provide the
intent attribute for dummy arguments. The attribute intent(inout) was used
whenever a variable or array was modified, and intent(in) otherwise. All
communication between Python and Fortran will occur only in the middle layer,

Input to the code currently consists of about 50 variables which are defined with short
descriptions and given default values in the main codes. Organizing them into
namelists is planned.

2

Main codes

Three Fortran90 main codes were written for each code, mpbeps2.f90,
mpbbeps2.f90, and mpdbeps2.f90. The libraries and main codes are compiled by a
Makefile.

3

