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I.  Introduction

      This document presents the mathematical foundation of the gridless periodic 
Particle-in-Cell electrostatic code in the UCLA Particle-in-Cell Framework.  The 
electrostatic code uses only the Coulomb force of interaction between particles.  This is 
the most fundamental of plasma models and is useful when inductive electric and 
magnetic fields are not important.  The solutions presented are an exact Fourier series.  
The only approximations made in solving them are truncating the Fourier series and 
using a finite time step.
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II.  Electrostatic Plasma Model

      The simplest model is the electrostatic model, where the force of interaction is 
determined by solving only the Poisson equation in Maxwell’s equation.  The main 
interaction loop is as follows:

1. Calculate charge density in real space from the particles:
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t = -/
2. Solve Poisson’s equation:
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3. Advance particle co-ordinates using Newton’s Law:
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      The function S(x) is the particle shape function.  For point particles, this would be a 
delta function, but in computer modeling extended shapes are commonly used.  The 
codes described here are spectral and solve the electric field using Fourier transforms.  
For the electrostatic case and periodic boundary conditions, a procedure for a gridless 
system is as follows:

1. Fourier Transform the charge density:
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2. Solve Poisson’s equation in Fourier space:
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Note that this equation implies that (k=0) = 0.  This means that strictly periodic 
systems are charge neutral.

3. Fourier Transform the Smoothed Electric Field to real space:
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For delta function particles shapes, S(k) = 1/V.  When solving these equations on the 
computer, we generally use discrete time co-ordinates and truncate the infinite Fourier 
series.  In discretizing time, the explicit leap-frog integration scheme is commonly used, 
because it is second order accurate.  In this scheme, the particle co-ordinates are known 
at staggered times.   These are the only approximations to an exact solution.
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The discrete equations of motion are as follows:
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III. Energy and Momentum Flux

      For the electromagnetic model, the energy flux is well known to be given by the 
Poynting vector S:

      tS E E B B j E8 8: : ::d 2
2
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where

      
cS E B4 #r=

This equation describes the conservation of energy: the time rate of change of 
electromagnetic field energy plus the outflow of the energy is equal to the negative of 
the work done on the particles.  This equation is not unique and other energy flux 
equations can also be derived: only differences in energy and flux are significant.  It is 
less well known that analogous energy flux equations can be derived for the 
electrostatic and Darwin models.

      For the electrostatic model, an energy flux equation is given by:
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where
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and
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This equation can be easily shown by making use of the equation of continuity and the 
identity:
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An alternate form of this equation can be derived by using the result,
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to obtain:
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where the alternative energy flux vector is
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The electrostatic energy in the form /2 is useful for isolated systems.  
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      In addition to the energy flux, the momentum flux equation is also useful.  For the 
electromagnetic case, the equation is well known:
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is the Maxwell Stress Tensor.   The quantity S/c2 is the momentum in the 
electromagnetic field.

      In the electrostatic case, there is no momentum in the longitudinal field and the 
magnetic field vanishes, so the momentum flux equation reduces to:

      ET:d t=

where
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      These energy and momentum flux equations are not unique, and alternative forms 
are possible and useful.
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IV. Units

      These codes use dimensionless grid units, which means that distance is normalized 
to some distance .   Generally, this distance  is the smallest distance which needs to be 
resolved in the code, such as a Debye length.   Time is normalized to some frequency 0.  
Generally this frequency is the highest frequency that needs to be resolved in the code, 
such as the plasma frequency.  Charge is normalized to the absolute value of the charge 
of an electron e.  Mass is normalized to the mass of an electron me. Other variables are 
normalized from some combination of these.

      In summary, dimensionless position, time, velocity, charge, and mass are given by:
/x x d=K            t t0~=I          /v v 0d~=K            /q q e=K            /m m me e=O

Dimensionless charge and current densities are given by:
/e3t td=L                /j j e3 0d d~=J

Dimensionless electric field and potential are given by:
/e mE E e 0

2~ d=M         /e me 0
2 2z z ~ d=M  

Dimensionless energy is given by:
/mW W e 0

2 2~ d=O

The dimensionless particle equations of motion are:
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The dimensionless Poisson equations is:

                            AE f:d t=M M L
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defines the relation between the sources and the fields.  Whatever time and space scales 
are chosen, these equations have the same form.  Only the constant Af changes.

      In these codes, the normalization length is chosen to be a virtual grid spacing,

      / / /L N L N L Nx x y y z zd = = =

and the normalization frequency to be the plasma frequency pe. In that case, one can 
show that:

6



A
n N

N N N1
f

o p

x y z
3d

= =

where Np is the number of particles.  The grid spacing is then related to some other 
dimensionless physical parameter, typically the Debye length.  Thus:
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the
them d
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where the dimensionless thermal velocity is an input to the code.  Note that if the grid 
space is equal to Debye length, then Af is identical to the plasma parameter g which 
appears as an small expansion parameter in plasma theory.
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