
PIC Vectorization with Intel KNC MIC and OpenMP

Viktor K. Decyk, UCLA, USA, and Ricardo Fonseca, ISCTE, Portugal

In this part of the research project, we investigated the use of vectorization with Intel PHI co-
processors. The co-processor we are testing is the 1.1 GHz Xeon Phi Coprocessor 5110P
(Knights Corner) MIC. We began with the Intel 16.0.2 Fortran compiler and compiled the
Fortran version of the OpenMP 3D electrostatic (ES) code (mpic3.f90) without vectorization (-
O3 -mmic -no-vec) and executed on the KNC MIC to establish a baseline performance
benchmark.

We then wrote the 5 most important procedures using the Intel KNC MIC C/C++ vector
intrinsics. For better performance on the KNC MIC, we transposed the particle array so that x
locations for all the particles are stored together, followed by the y locations, etc. In addition, the
loop which first assigned data to the particle array was performed in parallel. Memory is
distributed among nodes in recent NUMA Intel architectures, and the assignment is made when
first written. Since subsequent processing of particles used the same parallel loop structure, this
avoids subsequent parallel loops where threads process data which resides on a remote node.
With OpenMP 3.1, setting the environment variable OMP_PROC_BIND=true was also
beneficial.

The results with the Intel 16.0.2 C/C++ compiler on 60 cores (with 240 threads) showed
speedups compared to the baseline as follows: Push, 2.8x, Deposit, 2.8x, Sort = 0.9x, Solver
1.1x, and FFT, 1.0x, with an overall speedup for the entire code of 2.0x. The best one expects
for the KNC MIC is 16, so the results showed modest improvements. The sort procedure had a
modest slowdown. This was because that part of the sorting prefers the particle data not be
transposed, whereas the particle calculations prefer the transposed structure. Overall the
transposed structure is better, since the amount of time spent sorting is small.

We then attempted to use compiler directives and code rewrites to see how close we could come
to the hand-coded results. We followed the same procedure as described in the document
VectorPIC3.pdf in the directory vpic3, where one breaks up long loops into multiple subloops
with vectorizable parts and parts which run better in scalar mode, storing results into temporary
arrays.

The results with the Intel 16.0.2 Fortran compiler on 60 cores (with 240 threads) showed
speedups compared to the baseline as follows: Push, 1.7x, Deposit, 1.7x, Sort = 1.2x, Solver
1.0x, and FFT, 1.0x, with an overall speedup for the entire code of 1.4x.

In conclusion, the Fortran compiler based vectorization achieved about 70% of the performance
achieved by using vector intrinsics. However, the performance was far from 16x improvement
desired.

We continued with the Intel C compiler. The C version of the OpenMP code mpic3.c executed
about 20% slower without vectorization (-O3 -mmic -no-vec) than the Fortran version overall.

We then transposed the particle array and made small simplifications in addressing as we had in
the Fortran version, The C compiler based vectorization achieved a speedup of 14% compared
to the original baseline code versus a speedup of 2.4x by using vector intrinsics. Thus compiler
vectorization with the C compiler is ineffective.

We then continued with the 3D electromagnetic (EM) code (mbpic3). We began with the Intel
16.0.2 Fortran compiler and compiled the Fortran version of the OpenMP 3D electromagnetic
(EM) code (mbpic3.f90) without vectorization (-O3 -mmic -no-vec) and executed on the KNC
MIC to establish a baseline performance benchmark.

We then wrote the 6 most important procedures the Intel KNC MIC C/C++ vector intrinsics. For
better performance on the KNC MIC, we transposed the particle array so that x locations for all
the particles are stored together, followed by the y locations, etc. The results with the Intel
16.0.2 C/C++ compiler on 60 cores (with 240 threads) showed speedups compared to the
baseline as follows: Push, 2.4x, Charge Deposit, 2.6x, Current Deposit, 1.8x, Sort = 1.9x,
Solver 2.3x, and FFT, 1.6x, with an overall speedup for the entire code of 2.0x.

We then attempted to use compiler directives and code rewrites to see how close we could come
to the hand-coded results. We followed the same procedure as described in the document
VectorPIC3.pdf in the directory vbpic3, where one breaks up long loops into multiple subloops
with vectorizable parts and parts which run better in scalar mode, storing results into temporary
arrays.

The results with the Intel 16.0.2 Fortran compiler on 60 cores (with 240 threads) showed
speedups compared to the baseline as follows: Push, 1.8x, Charge Deposit, 1.6x, Current
Deposit, 1.7x x, Sort = 1.6x, Solver 1.2x, and FFT, 0.9x, with an overall speedup for the entire
code of 1.5x.

In conclusion, the Fortran compiler based vectorization achieved about 75% of the performance
achieved by using vector intrinsics. However, the performance was far from 16x improvement
desired.

We continued with the Intel C compiler. The C version of the OpenMP code mpic3.c executed
about 20% slower without vectorization (-O3 -mmic -no-vec) than the Fortran version overall.

We then transposed the particle array and made small simplifications in addressing as we had in
the Fortran version, The C compiler based vectorization achieved a speedup of 25% compared
to the original baseline code versus a speedup of 2.3x by using vector intrinsics. Thus compiler
vectorization with the C compiler is rather ineffective.

Electrostatic Code, with dt = 0.1
 Scalar Vectorized KNC MIC
Push 2.00 ns. 1.20 ns. 0.71 ns.
Deposit 1.56 ns. 0.93 ns. 0.56 ns.
Reorder 0.69 ns. 0.62 ns. 0.80 ns.
Total Particle 4.26 ns. 2.76 ns. 2.07 ns.
Total particle speedup was about 1.5x for the Vectorized code,
2.1x for the KNC MIC code. 240 Threads

Electromagnetic Code, with dt = 0.04, c/vth = 10
 Scalar Vectorized KNC MIC
Push 4.40 ns. 2.45 ns. 1.85 ns.
Deposit 4.77 ns. 2.90 ns. 2.42 ns.
Reorder 1.08 ns. 0.68 ns. 0.57 ns.
Total Particle 10.25 ns. 6.02 ns. 4.84 ns.
Total particle speedup was about 1.7x for the Vectorized code,
2.1x for the KNC MIC code. 240 Threads

Table I: Benchmarks for particle processing of Vectorized codes
using compiler directives and KNC MIC codes using vector
intrinsics, with 128x128x128 grid and 56,623,104 particles

The benchmark codes are available at: https://picksc.idre.ucla.edu/software/skeleton-code/

The Intel 16.0.2 vectorizing compiler is rather primitive, similar to the state of the Cray compiler
when it was first introduced in the 1980s. The most important flaw shared by both compilers was
that any inhibition to vectorization prevented the vectorization of an entire loop. Later Cray
compilers were able to separate such loops into scalar and vector loops. The Intel compiler also
has a serious problem in estimating speedups, which can result in a loop vectorization that is
slower than the unvectorized version. For the procedure VMPOIS33, which is easy to vectorize,
the compiler estimated a speedup of 8 for the main loop, yet there very little actual speedup
compared to the scalar loop. It was observed that the compiler would use gather/scatter load/
store instructions even when masked contiguous load/stores would have been better. The
compiler reported vector dependencies were were false. Another issue is that Fortran90 array
syntax such as zeroing out an array qe = 0.0 would execute on a single core. Special subroutines
had to be written to have this execute on multiple cores.

https://picksc.idre.ucla.edu/software/skeleton-code/
https://picksc.idre.ucla.edu/software/skeleton-code/

