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Plasma Based Accelerator Research is 
at the Forefront of Science

Plasma simulation has greatly impacted on PBA research.
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Why Plasma?

Gauss’ Law
E

1-D plasma density wave

Vph=c

~1000 times larger 
than the conventional 

accelerators3



How to Make a Plasma Wake Field?

Drive BeamTrailing Beam

• Wake: phase velocity = driver velocity (Vg or Vbeam) 

LWFA*

PWFA*
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Blow-out 
Regime[1,2]

LWFA: Tajima and Dawson 1979 
  PWFA: Chen, Dawson et al., 1985

*J. B. Rosenzweig, et. al., Phys. 
Rev. A 44, R6189 (1991)  
*W. Lu, et. al., Phys. Rev. Lett.  
96, 165002 (2006) 

Nonlinear Process
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How to Simulate Plasma Based Accelerator?

Particle-In-Cell Simulation

Massively Parallel	
Simulation Code

* J. Dawson, Review of Modern Physics, Vol. 55, No. 2, April 1983.	
* C. K. Birdsall, L. A. Bruce, Plasma physics via computer simulations. New 
York: McGraw-Hill, 1985. 5



Simulation of PBA

~ 500 um

~ 500 um

Beam Particles: 1010

Plasma Particles: 1012

All particles move self-consistently

Maxwell’s Eqns

Moving Window

Plasma Length: ~1 m

6



QuickPIC simulation of two-bunch electron-driven PWFA. QuickPIC simulation of LWFA with a beam load.

Simulation of PBA

The drive beam evolves in a much longer time scale than the 
plasma particles.7



QuickPIC

QuickPIC[1,2] is a 3D parallel Quasi-Static PIC 
code, which is developed based on the 
framework UPIC[3].

[1] C. Huang et al., J. Comp. Phys. 217, 658 (2006). "
[2] W. An et al.,  J. Comp. Phys. 250, 165 (2013). "
[3] V. K. Decyk, Computer Phys. Comm. 177, 95 (2007).

Full PIC(Osiris): 

QS PIC(QuickPIC): 

1000 Times Faster

Courant Condition

Free of CC!
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Math Behind QuickPIC

(x, y, z; t)

(x, y, ξ=ct-z, s=z)

Plasma: (x, y; ξ)

Beam: (x, y, ξ, s)

9

*P. Sprangle, et al., PRA 41, 4463 (1990)



Iteration Required!	
Coupled with 

equation of motion.

Equations in QuickPIC

For each plasma particle:	
Q varies along ξ 

according to its vz

plasma:

10* P. Mora and T. Antonsen, Phys. Plasmas 4, 217 (1996)  

*



How QuickPIC Works

Embeds a 2D PIC code inside a 3D PIC code based on UPIC Framework.
11



2. Multiple Field Ionization Module 4. Plasma Particle Tracking
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1. Improved Iteration Loop

Current Status of QuickPIC

3. Beam Particle Tracking 
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Current Status of QuickPIC

Time for pushing one 
particle for one step 
u s i n g a s i n g l e 
processor  (double 
precision): ~770 ns
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On-Going Work:	
MPI+OpenMP	

GPU Acceleration	
Python version	

Open Source Project

!

UPIC 2.0	
SKELETON CODES

SUPPORT

*http://picksc.idre.ucla.edu

Current Status of QuickPIC
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Research Using QuickPIC

2007	
FFTB

2014	
FACET

2015	
FACET

Many research papers use QuickPIC as the simulation tool.
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FACET provides high-energy, high peak current e- & e+ 

beams for PWFA experiments at SLAC.

FACET

Facility for Advanced Accelerator Experimental Tests
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* Ian Blumenfeld, et. al., Nature 445, 741 (2007) 
Former Experiments on FFTB at SLAC demonstrated a 
more than 50 GeV/m accelerating gradient can be 
produced in PWFA over a meter long scale.

Demonstrate Ultra-High Gradient 
Acceleration Over 1Meter Long

Plasma Wake Field Acceleration
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Demonstrate High Energy Transfer From a Drive 
Bunch to a Trailing Bunch: Design Experiment

*T. Katsouleas et al., Part. Accel (1987)	
**W. Lu, PRL(2006) and M. Tzoufras, PRL (2008)18



Two-Bunch e- PWFA

*M. Litos et. al, 515, 92 Nature (2014) 

Head Erosion 	
For FACET BEAM

*W. An et. al, 16 101301, PRSTAB (2013) 

19



A Collider Requires Positrons

* E. Adli et al., IPAC 2014
20



The e+-Plasma Interaction Differs from 	
the e--Plasma Interaction 

E200: Commissioned Compressed Positrons This Run!
FACET Has the Only Active PWFA Program with Positrons

7

Focusing and acceleration of positrons has been characterized at low densities

Phys. Rev. Lett. 90, 205002 (2003)
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Focusing and acceleration of positrons has been characterized at low densities

Phys. Rev. Lett. 90, 205002 (2003)
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Focusing and acceleration of positrons has been characterized at low densities
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Generation of Mono-Energetic e+ with 
High Gradient

Drive Beam:  σr = 70.0 µm , 
σz = 30.0 µm , N2 =1.4 x 1010,  
εN =(50,200) mm·mrad 
!
Plasma Density: 8.0 x 1016 
cm-3  (1.5 meters long)

*S. Corde et. al, 524, 442 Nature(2015). 
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Drive Beam:  σr = 70.0 µm , σz = 30.0 µm , N =1.6 x 1010 , εN =(50,200) mm·mrad 
Plasma Density: 8.0 x 1016 cm-3  (1.3 meters long including two 15 cm long density ramps)

      

ξ = -1.25 ξ = 1.25

Generation of Mono-Energetic e+ with 
High Gradient
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Drive Beam:  σr = 70.0 µm , σz = 30.0 µm , N =1.6 x 1010 , εN =(50,200) mm·mrad 
Plasma Density: 8.0 x 1016 cm-3  (1.3 meters long including two 15 cm long density ramps)

ξ = 1.25

ξ = -1.25

The Pseudo Potential ψ

Generation of Mono-Energetic e+ with 
High Gradient
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*S. Corde et. al, 524, 442 Nature(2015). 

Generation of Mono-Energetic e+ with 
High Gradient

25



Another Way to Accelerate Positron

Plasma Hollow Channel

Other Research at FACET

Kinoform

1.6 GeV Energy 
Gain for in 1 meter	
0.2% Energy Spread 

(Initial E.S. is 0 )
26



Even High Efficiency and High Quality Beam Aiming to 
the Future Linear Collider.

27

Going Beyond Current Experimental Capabilities



Going Beyond Current Experimental Capabilities

Beam Loading Scenarios 
& 

Ion Motion

28



• Theory allows for designing highly efficient stages that maintain 
excellent beam quality. 

• Simulation for PWFA-LC showed ~ 50% energy transfer efficiency 
with <1% energy spread 

• BUT…….

M. Tzoufras et al., PRL 101 145002 (2008)

High Efficiency PWFA through Nonlinear Beam 
Loading and Shaped Bunches 
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Matched Beams Lead to Ion Collapse that Degrades 
Emittance

Trailing beam density:

Efficient beam loading and	
high luminosity:

Matching:

Energy spread:

For collider parameters:

Leads to:

⇤2
r =

r
2
�

k�1
p ⇥N
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N

(2�)3/2⇥2
r⇥z

nb

n0
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µm� rad
p

⇥Nz⇥Ny

r
Energy

250GeV

1
�
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⇥z = �
c

⇤p
(� > 1)

nb

n0
⇡ 104 � 105

Ion motion, which can 
degrade the accelerating 
and focusing fields, occurs 
when nb/no~M/m 30
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Blowout PWFA

Ion Motion in PWFA

Ions collapse!

* J. B. Rosenzweig et al. Phys. 
Rev. Lett., 95:195002, 2005

Electron beam

r
C frame
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Big Challenge

400 µm x 400 µm x 300 µm  Box

16384 x 16384 x 2048 Cells

12 µm x 12 µm x 60 µm  Box

4096 x 4096 x 512 Cells

Δ⊥ ≈ 25 nm Δ⊥ ≈ 3 nm

Ion Motion in PWFA

32



 Trailing Beam:  σz = 10.0 µm , N = 1.0 x 1010 , 
                         σx = 0.463 µm , εNx = 2.0 mm·mrad , σy = 0.0733 µm , εNy = 0.05 mm·mrad 
                         Υ = 48923.7 (25 GeV), Plasma Density : 1.0 x 1017 cm-3

XZ XZ

YZ YZ

Li

Li

H

H

In Li, the emittance in x does not change, 
and in y direction it only increase by 20%. 
!
In H, the emittance in x increase by 10%, 
and in y direction it increases by 70%.

Ion Motion Driven by Asymmetric Trailing Beam

σx / Δ⊥ = 75.9	
σy / Δ⊥ = 12.0
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FACET E200 Collaboration
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Fisher, J. Frederico, S. Gessner, S.Z. Green, M.J. Hogan, C. Joshi, M. Litos, W. Lu, 
K.A. Marsh, W.B. Mori, N. Vafaei-Najafabadi, D. Walz, V. Yakimenko 
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Summary

High energy gain and high efficiency 
acceleration of both e- and e+ in the 
PWFA have been demonstrated in the 
experiments at FACET. 	
!
QuickPIC simulation results for these 
experiments show a good agreement 
with the experimental results. The 
simulation study also provides us more 
detailed information that can help us 
explore the unknown and guide our 
future experiments.
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