
A Portable Approach for PIC on Emerging
Computer Architectures

Viktor K. Decyk

UCLA

Acknowledgments:
T. V. Singh, UCLA (GPUs)

Ricardo Fonseca, ISCTE (Vectorization)
Henry Gardner, ANU (Design Patterns, F2003)

Tuesday, April 12, 2016

Overview

Emerging Exascale architectures support 3 levels of parallelism:
• Distributed Memory Parallelism (eg, MPI)
• Shared Memory Parallelism (eg, OpenMP, pthreads,CUDA)
• Vectorization (eg, Intel vector intrinsics, compiler vectorization,CUDA)

Efficient use of such computers requires effective use of all three

Designing algorithms for each level requires different approaches

It is possible to express the algorithm in a generic way, but
• Different implementations may to required for different architectures
• How to express parallel programming concepts is still evolving

Fortran2003 has new capabilities to make this easier
• Interoperability with C
• Abstract data types
• Make use of design patterns such as Strategy, Factory, Adapter, etc.

Tuesday, April 12, 2016

Overview

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

MPI node MPI node

Simple Hardware Abstraction for Next Generation Supercomputer

NVIDIA GPU Intel Phi

Tuesday, April 12, 2016

PIC Codes: General Approach

Start with the outermost, coarse-grained level: Distributed Memory Parallelism
• Typically using MPI
• Most common approach is domain decomposition
• Most PIC codes already do this

Next move to the middle level: Shared Memory Parallelism
• Typically using OpenMP
• Decomposition into small tiles
• Not very common

Finally, move to the innermost, fine-grained level: Vectorization
• Typically using compiler directives
• Old technique resurrected

Data structures will change as one proceeds

Tuesday, April 12, 2016

PIC Codes: Distributed Memory Parallelism

Domain decomposition is used to assign which data reside on which processor
• No shared memory, data between nodes sent with message-passing (MPI)
• Most parallel PIC codes are written this way

Has been used for a long time:

P. C. Liewer and V. K. Decyk, “A General Concurrent Algorithm for Plasma Particle-in-Cell
Codes,” J. Computational Phys. 85, 302 (1989)

Sample MPI skeleton codes (mini-apps) can be found at UCLA’s PICKSC web site:
http://picksc.idre.ucla.edu/software/skeleton-code/software-skeleton-code-mpi/

Particle data structure:
real part(idimp,npmax)
• idimp = number of particle coordinates, npmax = maximum number of particles

Tuesday, April 12, 2016

Distributed Memory Programming for PIC
Domain decomposition with MPI

Primary Decomposition has non-uniform partitions to load balance particles
• Sort particles according to spatial location
• Same number of particles in each non-uniform domain
• Scales to many thousands and even millions of processors

Particle Manager responsible for moving particles
• Particles can move across multiple nodes to implement dynamic repartitioning

2D Domain decomposition

Each partition has equal number of particles

1D Domain decomposition

•

• •

••

•
•
•

••

•
•

• •

•

•

• •

•
•

•

•
•

•

•
•• ••

•

• •
••

•
•

• •

• •

•

•

• •
••

••

•
•

• ••

•

• ••
•
••

• •

• •

•

•

••• •
••

• ••
•• •

• •
• •

••

• •
•

• •

•

• •

• ••
• •

Tuesday, April 12, 2016

Codes available at: http://picksc.idre.ucla.edu/software/skeleton-code/

Strong scaling of 3D MPI Spectral Electromagnetic code

Tuesday, April 12, 2016

http://picksc.idre.ucla.edu/software/skeleton-code/
http://picksc.idre.ucla.edu/software/skeleton-code/

PIC Codes: Shared Memory Parallelism

Initially use OpenMP on physical node (later can use CUDA or other language)

Biggest challenge is charge/current deposit:
• Different threads may attempt to deposit to the same grid location

Scalable solution is to partition data into small tiles
• Small enough to fit into L1 cache or GPU shared memory
• Micro-domain decomposition, separate from coarse-grained decomposition
• Re-order every time step

A fast reordering scheme is crucial

New particle data structure:
real ppart(idimp,npmax,num_tiles)

Tuesday, April 12, 2016

Designing New Particle-in-Cell (PIC) Algorithms:
Particles ordered by tiles, varying from 2 x 2 to 16 x 16 grid points in 2D

Tuesday, April 12, 2016

PIC Codes: Shared Memory Parallelism

Using micro-domains works much better than expected
• Use more tiles than cores
• Detailed load balance not always necessary (work load will often average out)
• Manual load balance simple (adjust how many tiles each thread controls)
• On GPUs, memory accesses can be pipelined with many threads outstanding

Tuesday, April 12, 2016

PIC Codes: Shared Memory Parallelism: Maintaining Particle Order

Three steps:
1. Create a list of particles which are leaving a tile, and where they are going
2. Using list, each thread places outgoing particles into an ordered buffer it controls
3. Using lists, each tile copies incoming particles from buffers into particle array

• Less than a full sort, low overhead if particles already in correct tile
• Can be done in parallel
• Essentially message-passing, except buffer contains multiple destinations

In the end, the particle array belonging to a tile has no gaps
• Incoming particles are moved to any existing holes created by departing particles
• If holes still remain, they are filled with particles from the end of the array

Tuesday, April 12, 2016

Particle Reordering in 2D

Particle Buffer

GPU Tiles

Tiles

Tiles

Particles buffered
in Direction Order

21

5
3

6

4

7 8

1 234 5678

5

2

8

4

1

7

3

6

Tuesday, April 12, 2016

Particle reordering time is not large

Evaluating New Particle-in-Cell (PIC) Shared Memory Algorithms: Electromagnetic Case
3D EM Benchmark with 128x128x128 grid, 56,623,104 particles, 36 particles/cell
Tile size = 8x8x8. Single precision, Dawson2 Intel i7 cluster

Hot Plasma results with dt = 0.035, c/vth = 10, relativistic
 CPU:Intel i7 OpenMP(12 cores)
Push 90.0 ns. 8.61 ns.
Deposit 61.6 ns. 6.09 ns.
Reorder 1.3 ns. 0.26 ns.
Total Particle 152.9 ns. 14.96 ns.

The time reported is per particle/time step.

Further information available at:

V. K. Decyk and T. V. Singh, "Particle-in-Cell Algorithms for Emerging Computer
Architectures," Computer Physics Communications, 185, 708, (2014),
available at http://dx.doi.org/10.1016/j.cpc.2013.10.013.

Codes available at: http://picksc.idre.ucla.edu/software/skeleton-code/

Tuesday, April 12, 2016

http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://picksc.idre.ucla.edu/software/skeleton-code/
http://picksc.idre.ucla.edu/software/skeleton-code/

PIC Codes: Shared and Distributed Memory Parallelism

Typically use one or two MPI nodes per physical node
• OpenMP on physical node or on NUMA node

Biggest challenge is merging tile sorting and MPI particle manager:
• Particles first reordered by tile
• Then skim off particles at the edges going to another MPI node
• Need to send a table of which directions particles are going along with particles
• Particles can then be directly inserted into proper tile

New particle data structure:
real ppart(idimp,npmax,num_tiles_per node)

Straightforward with 1D MPI partition, complex with 2D or 3D MPI partitions

Tuesday, April 12, 2016

MPI Send Buffer

OpenMP-MPI Particle Reordering

Particle
Buffer

GPU Tiles

MPI Recv Buffer

Domain 1

Domain 2

Tiles

Tuesday, April 12, 2016

GPU Tiles

Strong scaling of 3D MPI/OpenMP Spectral Electromagnetic code

Codes available at: http://picksc.idre.ucla.edu/software/skeleton-code/

Tuesday, April 12, 2016

http://picksc.idre.ucla.edu/software/skeleton-code/
http://picksc.idre.ucla.edu/software/skeleton-code/

PIC Codes: Vectorization

Vectorization today refers to making use of low level data parallel instructions
• Reading, processing, writing blocks of data simultaneously
• Can be done either with special vector intrinsics or compiler generated

Old idea resurrected (used on Cray machines in the 1980s)
• Data parallel vector intrinsics work well, but requires special skills and not portable
• Intel compiler directives currently get modest speedups, but improving
 • Some old Cray code will not vectorize

Vectorize each OpenMP thread independently
• Outer loop OpenMP, inner loop vectorized

Biggest challenge is again charge/current deposit:
• Different vector elements may attempt to deposit to the same grid location

New particle data structure is transposed to enable efficient reading of blocks of data:
real ppart(npmax,idimp,num_tiles)

Tuesday, April 12, 2016

Vector Programming for PIC
• vectorizable means elements can be processed in any order
• Deposit algorithm uses long and short vectors to avoid data collisions

 dimension part(idimp,nop), q(nxv*ny) ! nop=total particles
 dimension nn(4,npp), amxy(4,npp) ! npp=particles in block

 do j = 1, npp ! loop over blocks of particles
 n = part(1,j+joff)
 m = part(2,j+joff)
 dxp = qm*(part(1,j+joff) - real(n))
 dyp = part(2,j+joff) - real(m)
 amx = qm - dxp
 amy = 1.0 - dyp
 n = n + nxv*m + 1
! store locations nn and weights amxy for deposit
 nn(1,j) = n
 nn(2,j) = n + 1
 nn(3,j) = n + nxv
 nn(4,j) = n + nxv + 1
 amxy(1,j) = amx*amy
 amxy(2,j) = dxp*amy
 amxy(3,j) = amx*dyp
 amxy(4,j) = dxp*dyp
 enddo
! deposit charge
 do j = 1, npp ! loop over blocks of particles
cdir$ ivdep
 do i = 1, 4 ! loop over distinct points
 q(nn(i,j)) = q(nn(i,j)) + amxy(i,j)
 endo
 enddo

X

Tuesday, April 12, 2016

PIC Codes: Vectorization

Sample code for Intel SSE2 vector intrinsics:

/* loop over particles in tile in groups of 4 */
 for (j = 0; j < nps; j+=4) {
/* find interpolation weights */
/* x = ppart[j+npoff]; */
/* y = ppart[j+nppmx+npoff]; */
 v_x = _mm_load_ps(&ppart[j+npoff]);
 v_y = _mm_load_ps(&ppart[j+nppmx+npoff]);
/* nn = x; */
/* mm = y; */
 v_nn = _mm_cvttps_epi32(v_x);
 v_mm = _mm_cvttps_epi32(v_y);
/* dxp = qm*(x - (float) nn); */
 v_dxp = _mm_sub_ps(v_x,_mm_cvtepi32_ps(v_nn));
 v_dxp = _mm_mul_ps(v_dxp,v_qm);
/* dyp = y - (float) mm; */
 v_dyp = _mm_sub_ps(v_y,_mm_cvtepi32_ps(v_mm));
/* nn = nn - noff + mxv*(mm - moff); */
 v_nn = _mm_sub_epi32(v_nn,v_noff);
 v_mm = _mm_sub_epi32(v_mm,v_moff);
 v_it = _mm_mul_epu32(v_mxv,_mm_srli_si128(v_mm,4));
 v_mm = _mm_mul_epu32(v_mm,v_mxv);
 v_mm = _mm_add_epi32(v_mm,_mm_slli_si128(v_it,4));
 v_nn = _mm_add_epi32(v_nn,v_mm);
/* amx = qm - dxp; */
/* amy = 1.0f - dyp; */
 v_amx = _mm_sub_ps(v_qm,v_dxp);
 v_amy = _mm_sub_ps(v_one,v_dyp);
/* calculate weights, for lower left/right, upper left/right */
 a = _mm_mul_ps(v_amx,v_amy);
 b = _mm_mul_ps(v_dxp,v_amy);
 c = _mm_mul_ps(v_amx,v_dyp);
 d = _mm_mul_ps(v_dxp,v_dyp);
 _mm_store_si128((__m128i *)ll,v_nn);

Tuesday, April 12, 2016

PIC Codes: Vectorization

Key idea is that grid points written by a single particle are guaranteed to be different
• These grid points are simultaneously written as vectors, one particle at a time

Source codes available at:
Sample OpenMP/Vector skeleton codes (mini-apps) can be found at:
http://picksc.idre.ucla.edu/software/skeleton-code/openmpvectorization/

Tuesday, April 12, 2016

http://picksc.idre.ucla.edu/software/skeleton-code/software-skeleton-code-openmpvectorization/
http://picksc.idre.ucla.edu/software/skeleton-code/software-skeleton-code-openmpvectorization/

PIC Codes: Controlling Variations

Fortran 2003 now has abstract data types
• Allows one to write more complex code in a manageable way

The important idea is write what is invariant in a generic (abstract) way,
and encapsulate what varies in specific (concrete) classes

Tuesday, April 12, 2016

 type, abstract :: emf
 contains
 procedure(ajdeposit), deferred :: jdeposit
 procedure(aqdeposit), deferred :: qdeposit
 procedure(apoisson), deferred :: poisson
 procedure(amaxwell), deferred :: maxwell
 procedure(apush), deferred :: push
 end type
!
 abstract interface
 subroutine ajdeposit(this,particles,j)
! deposit current
 import :: emf
 implicit none
 class (emf), intent(in) :: this
 real, dimension(:,:), intent(inout) :: particles
 real, dimension(:,:,:), intent(inout) :: j
 end subroutine
 ...
 end interface

PIC Codes: Controlling Variations

Here is an abstract type useful for either for an electrostatic or electromagnetic PIC code:

Tuesday, April 12, 2016

 module es_class
! class for electrostatic type of plasma simulation
 use emf_class
 implicit none
!
 type, extends(emf) :: es
 contains
 procedure :: jdeposit => es_jdeposit
 procedure :: qdeposit
 procedure :: poisson
 procedure :: maxwell => es_maxwell
 procedure :: push => es_push
 end type
!
 contains
!
 subroutine qdeposit(this,particles,q)
! deposit charge
 class (es), intent(in) :: this
 real, dimension(:,:), intent(in) :: particles
 real, dimension(:,:), intent(inout) :: q
 ...
 end subroutine

 end module

PIC Codes: Controlling Variations

Here is a concrete class useful for an electrostatic code:

Tuesday, April 12, 2016

 subroutine step_simul(this,particles,q,j,e,et,b)
! advance plasma one time step
 class (emf), intent(in) :: this
 real, dimension(:,:), intent(inout) :: particles
 real, dimension(:,:), intent(inout) :: q
 real, dimension(:,:,:), intent(inout) :: j, e, et, b
 call this%jdeposit(particles,j)
 call this%qdeposit(particles,q)
 call this%poisson(q,e)
 call this%maxwell(j,e,et,b)
 call this%push(particles,e,b)
 end subroutine

PIC Codes: Controlling Variations

Similarly, one can implement a concrete class for an electromagnetic code

Here is an abstract procedure that can be used with any kind of emf class
• it knows nothing about the various concrete classes

 type (es), target :: es_sim
 type (em), target :: em_sim
 class (emf), pointer :: sim
!
! set PIC simulation type to electromagnetic
 sim => em_sim
! run simulation one time step
 call step_simul(sim,particles,q,j,e,et,b)

The main code looks like this:

Tuesday, April 12, 2016

PIC Codes: Status of current research

OpenMP/MPI layers works well

Still experimenting with Intel compiler based vectorization strategies

All three layers implemented on GPUs with CUDA
• OpenACC does not work well on GPUs with PIC at this time

GPUs and Intel PHI each have strengths and weaknesses
• On GPU everything must be vectorized (sorting very painful)
• On Intel both scalar and vector processors can be used together
• GPUs can handle many more threads simultaneously
• GPUs have fast hardware atomic operations

Tuesday, April 12, 2016

