
Ricardo Fonseca | AAC 2016

Challenges in computer simulations 
to the exascale

R. A. Fonseca1,2 

1 GoLP/IPFN, Instituto Superior Técnico, Lisboa, Portugal 
2 DCTI, ISCTE-Instituto Universitário de Lisboa,  Portugal 



Ricardo Fonseca | AAC 2016

Acknowledgements
IST 

– J. L. Martins, T. Grismayer, J. Vieira, P. Ratinho, K. Schoeffler, M. Vranic, U. Sinha, 
T. Mehrling, A. Helm, L. O. Silva 

UCLA 
– A. Tableman, A. Davidson, P. Yu, T. Dalichaouch, F. Tsung,  V.K.Decyk, W. B. Mori, 

C. Joshi 
Simulation results 

– Accelerates Clusters (IST), Dawson/Hoffman Clusters (UCLA), Jugene/Juqueen 
(FZ Jülich), Jaguar (ORNL), SuperMuc (LRZ), BlueWaters (NCSA), Sequoia (LLNL)

2

golp
grupo de lasers e plasmasgrupo de lasers e plasmas



Ricardo Fonseca | AAC 2016

1 μm laser

10 GeV electrons

1017 cm-3 plasma

total propagation distance: 0.5 m

Why Exascale computing?
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High-Intensity Laser-Plasma Interaction 
• Particle Acceleration 
• Radiation sources 

Multi-scale problems 
• Large disparity of spatial/temporal 

scales 

Sample problem: 10 GeV LWFA stage 
• λ0 ~ 1 μm 
• L ~ 0.5 m 

Computational Requirements 
• ~ 109 grid cells 
• ~ 1010 particles 
• Iterations ~ 106 - 107 
• Memory ~ 1 - 10 TB 
• Operations ~ 1018 - 1019 

Exascale performance 
• Simulation time ~ 10s 

Community of Particle-in-cell codes 
• ALaDyn 

• Calder 

• EPOCH 

• HiPACE 

• INF&RNO 

• OSIRIS 

• PICADOR 

• PIConGPU 

• PSC

• QuickPIC 

• SMILEI 

• turboWAVE 

• UPIC-EMMA 

• VLPL 

• Vorpal 

• VPIC 

• WARP 

• …
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osiris 3.0
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code features
· Scalability to ~ 1.6 M cores
· SIMD hardware optimized 
· Parallel I/O
· Dynamic Load Balancing 
· QED module
· Particle merging
· GPGPU support 
· Xeon Phi support

osiris framework
· Massivelly Parallel, Fully Relativistic  

Particle-in-Cell (PIC) Code 
· Visualization and Data Analysis Infrastructure
· Developed by the osiris.consortium

⇒  UCLA + IST

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt
Frank Tsung: tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/  
http://plasmasim.physics.ucla.edu/
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Outline

• The road to Exascale Systems 
– HPC system evolution 
– Current trends 
– Multi scale parallelism 

• Deploying the on large scale HPC systems 
– Parallelization strategies 
– Dealing with load imbalance 

• Recent and future architectures 
– General purpose GPUs 
– Intel manycore (MIC) 

• Overview
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The road to Exascale systems

UNIVAC 1 - 1951 
Internal view
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The Road to Exascale Computing
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High Performance Computing Power Evolution

Sunway Taihulight 
NRCPC, China 

#1 - TOP500 Jun/16

Sunway Taihulight 
• 40 960 compute nodes 

Node Configuration 
• 1× SW26010 manycore processor 

• 4×(64+1) cores @ 1.45 GHz 
• 4× 8 GB DDR3 

Total system 
• 10 649 600 cores 

• 1.31 PB RAM 
Performance 

• Rpeak  125.4 Pflop/s 

• Rmax 93.0 Pflop/s

(data from multiple sources)
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The Road to Power Efficient Computing
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Sunway Taihulight 
NRCPC, China 

#1 - TOP500 Jun/16

Sunway Taihulight 

• Manycore architecture 

• Peak performance 93 PFlop/s 

• Total power 15.3 MW 

• 6.07 Gflop/W 

• 165 pJ / flop
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Petaflop systems firmly established

The drive towards Exaflop 

• Steady progress for over 60 years 

– 95 systems above 1 PFlop/s 

• Supported by many computing paradigm 
evolutions 

• Trend indicates Exaflop systems by next decade 

• Electric power is one of the limiting factors 

– Target < 20 MW 

– Top system achieves ~ 6 Gflop/W 

•  ~ 0.2 GW for 1 Exaflop 

• Factor of 10× improvement still required 

– Best energy efficiency 

• 7.0 Gflop/W 

• PEZY-SC accelerator

Multicore systems 

• Maintain complex cores and replicate 

• 4 systems in the top 10 are based on multicore CPUs 

• 1× Fujitsu SPARK 

• 3× Intel Xeon E5 

Manicore 

• Use many (simpler) low power cores 

• IBM BlueGene/Q Architecture has 2 systems in the top 6 

• Seem to be the last of their kind 

• #1 (Sunway Taihulight) and future Intel Knights Landing 
systems 

Accelerator/co-processor technology 

• 93 systems on top500 (jun 2016) use accelerator hardware 

• down from 104 in previous list (nov 2015) 

• 66 use NVIDIA GPUs, 27 use Intel MIC, 3 use ATI 
Radeon and 2 use PEZI-SC 

• 3 systems in top 10 

• #3 (Titan) and #8 (Piz Daint) use NVIDIA GPUs 

• #2 (Tianhe-2) uses Intel MIC

9
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Simple hardware abstraction for HPC systems
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•Modern HPC systems present a hierarchy of 
parallelism 

•At the highest level they are a network of 
computing nodes 

•Each node is a set of CPUs / cores (+ GPUs/
MICs) sharing memory inside the node 

•Most processing cores have a vector SIMD unit 
(Intel, PowerPC, Fujitsu) 

•Efficient HPC system use requires taking 
advantage of all these levels of parallelism

Multiscale Parallelism
Interconnect

node 0 node 1 node n

PE #3 PE #4 PE #5

PE #2PE #1PE #0

Memory

node

Core

n-way SIMD Unit



Parallelization of the PIC algorithm

Laser Wakefield Acceleration 
3D Simulation using the OSIRIS code
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Node level parallelism
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Spatial domain decomposition

• Each process cannot directly access memory on another node: 

• Information is exchanged between nodes using network 
messages (MPI)  

• Standard parallelization uses a spatial decomposition:  
• Each node handles a specific region of simulation space 

• Works very well also on multi-core nodes 

• Benefits from shared memory 

• Message passing inside a node is very efficient 

• Very efficient for uniform plasmas

Sim. Volume Parallel Domain

LLNL Sequoia 
IBM BlueGene/Q 
#4 - TOP500 Jun/16 
1572864 cores 
Rmax 16.3 PFlop/s

Speedup
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Efficiency @ 
 1.6 Mcores 

97% 
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Liewer and Decyk, JCP 85 302 (1989);Fonseca et al., PPCF 55 124011  (2013)
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Vectorization of the PIC algorithm
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Interpolate FieldsInterpolate FieldsInterpolate FieldsInterpolate Fields

Push ParticlesPush ParticlesPush ParticlesPush Particles

Store Results

Load nV particles into Vector 
Unit

Push ParticlesPush ParticlesPush ParticlesDeposit Current

• PIC codes are good candidates for 
optimization 

– Operations on each particle independent 
from each other... 

– except for current deposition 

– For most cases work well in single precision 

• Process nV (vector width) particles at a time 
• Field interpolation requires a gather 

operation 
– Field grid may be altered to avoid this 

• Current deposition may cause memory 
collisions 

– Serialize memory accumulation 

– Change grid structure 

– Transpose vectors (vectorize by current line)

BlueWaters CPU tests

• XE Partition 
- 772 480 AMD6276 cores 

• Warm plasma tests 
- Quadratic interpolation 
- uth = 0.1 c 

• 3D Problem size 
- cells = 38624 × 1024 × 640 (~2.5×1010) 
- 400 particles/cell (~ 1013) 

• Computations 
- 2.2 PFlop/s performance  
- 31% of Rpeak

BlueWaters 
NSCA, U.S.A.

Bowers et al., PoP 15 055703 (2008); Fonseca et al., PPCF 55 124011  (2013); 
Vincenti et al., arXiv:1601.02056 [physics.comp-ph] (2016)
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Particles/node, iz = 12

Maintaining parallel load balance is crucial

• For large core counts the simulation 
volume inside each node is very small 
• Fluctuations on the plasma density 

lead to load inbalance 

• Shared memory parallelism can help 
• Use a “particle domain” 

decomposition inside shared 
memory region 

• Smear out localized computational 
load peaks 

• Spawns nT threads to process the 
particles: 
• Use nT copies of the current grid 
• Divide particles evenly across threads 
• Each thread deposits current in only 1 

of the grid copies 

• Accumulate all current grids in a single 
current grid 
• Divide this work also over nT threads
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LWFA Simulation 
Parallel Partition 

• 94×24×24 = 55k cores 

Load Imbalance (max/avg load) 

• 9.04× 

Average Performance 

• ~12% peak

Shared Memory (OpenMP)

SMP node

+

Total Electric Current

Parallel Reduction

Current 3

Particle Buffer

Thread 1 Thread 2 Thread 3

Current 3Current 3

R A Fonseca et al., PPCF 55 124011  (2013)
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• The code can change node boundaries dynamically to attempt to maintain 
a even load across nodes: 

• Determine best possible partition from current particle distribution 
• Rearrange parallel partition 

• Partition the space into (10-100x) more domains (patches) than processing 
elements (PE) 

• Dynamically assign patches to PE 
• Assign similar load to PEs 
• Attempt to maintain neighboring patches in the same PE

Adjust processor load dynamically

15

Redistribute computational load between nodes

7 PE example

Patch based load balance

Patch assignment
Laser

x1-x2 slice at box center 
similar partition along x3 
> 30% improvement in inbalance

node boundary

Fonseca et al., PPCF 55 124011  (2013); Germaschewski et al., JCP 318 305 (2016); Beck et al., NIMPR-A 829 418 (2016)



General Purpose Graphical Processing Units

NIVIDIA Fermi K20x die



Ricardo Fonseca | AAC 2016

• Cray XK7 

• 18 688 Compute Nodes 

• 8.2 MW 

• Interconnect 

• Cray Gemini interconnect 

• Node configuration 

• 1× AMD Opteron 6274 @ 2.2 GHz (16 cores) 

• 1× NVIDIA Tesla K20x 

• memory 32 GB (host) + 6 GB (GPU) 

• K20X Accelerator 

• 14 SMX streaming multiprocessors @ 732 MHz 

• 6 GB GDDR5 

• 1.5 MB L2 Cache 

• SMX streaming multiprocessors 

• 192 CUDA cores for float/int 

• 64 double precision cores 

• 64 KB shared memory / L1 cache 

• 64 K registers 

• up to 2048 threads 

• Fast switching between threads 

• executes 32 threads at a time (warp) 

• SIMD like operation 

• Peak performance 

• 3.95 TFlops / 1.31 Tflops peak (single/double precision) 

• DRAM Bandwidth 250 GB/sec

General Purpose Graphical Processing Unit Accelerators
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ORNL Titan NVIDIA Tesla K20X (Kepler) accelerator

• Total system 

• 299 008 host cores + 18 688 GPUs 

• 0.6 PB host RAM + 0.1 PB GPU RAM 

• Performance 

• RMAX = 17.2 PFlop/s 

• RPEAK = 27.1 PFlop/s

ORNL Titan 
Cray XK7 
#3 - TOP500 Jun/16
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SMX Shared memorySMX Shared memorySMX Shared memory

PIC algorithms on GPU architectures

• Most important bottleneck is memory access 

– PIC codes have low computational intensity (few 
flops/memory access) 

– Memory access is irregular (gather/scatter) 

• Memory access can be optimized with a streaming 
algorithm 

– Global data read/write only once 

– Regular (coalesced) memory access 

• PIC codes can implement a streaming algorithm by 
keeping particles ordered by tiles 

– Minimizes global memory access since field 
elements need to be read only once 

– Global gather/scatter is avoided. 

– Deposit and particles update have optimal memory 
access. 

• Challenge: optimizing particle reordering
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GPU DRAM

Simulation data 
• Particles 

• Grids 

• Organized by tiles

SMX Shared memory

Tile data 
• Particles 

• Grids

All calculations are performed on (fast) 
shared memory

Copy tile data to/from SMX 
shared memory 
• Regular memory access 

• Peak bandwidth 

• Low overhead

Decyk and Singh, CPC 185 708 (2014); Zenker et al., arXiv:1606.02862 [cs.DC] (2016)
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Tile

Tile
Tile

Advancing particles / deposit current
• Within a tile, all particles read or write the same block of fields. 

– Before pushing particles, copy fields to fast memory 

– After depositing current to fast memory, write to global memory 

– Different tiles can be done in parallel 

• Each tile contains data for the grids in the tile, plus guard cells 

– Similar to MPI code, but with tiny partitions 

• Parallelization of particle advance trivial 

– Each particle is independent of others, no data hazards 

• Current deposit is also easy if each tile is controlled by one thread 

– This avoids data collisions where two threads try to update the same 
memory 

• However, if each tile is controlled by a vector of threads, data collisions 
are possible. 

– Atomic updates 

– “Checkerboard” tile access 

– Line current deposition

19

Process tiles 
in parallel

Tile

1 thread / tile 
• Avoid data hazards 

• Straightforward 
parallelization

Decyk and Singh, CPC 185 708 (2014); Zenker et al., arXiv:1606.02862 [cs.DC] (2016)
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Efficient particle reordering between tiles
• Three steps: 

1. Create a list of particles which are leaving a tile, and 
where they are going 

2. Using list, each thread places outgoing particles into 
an ordered buffer it controls  

3. Using lists, each tile copies incoming particles from 
buffers into particle array 

• Less than a full sort, low overhead if particles already in 
correct tile 

– Can be done in parallel 
– Essentially message-passing, except buffer contains 

multiple destinations 
• Same algorithm works well for shared memory CPU/

OpenMP 

• Extend to multiple boards using MPI 

– Copy from GPU buffer to/from MPI buffers 

– Pack multiple tiles into single message

20

Reorder buffer #0 
• 1 per tile 

• Particles are buffered 
in direction order

4 3 5

1 2

7 6 8

GPU Tiles

4 3 5

1 2

7 6 8

GPU Tiles

1
2
3
4
5
6
7
8

Tile #0 
Copy particles leaving the tile 
to its reorder list buffer

Tiles #1 - #8 
Copy particles from tile #0 
reorder buffer

Decyk and Singh, CPC 185 708 (2014)
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OSIRIS CUDA performance
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Parallel Scaling
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• Weak scaling tests 
• Start from 1 GPU board 

• Scale problem size linearly with number of boards 

• Increase number of boards 

• Near perfect scaling up to 225 boards 
• Parallel efficiency 94%

• Single board tests 

• Up to 4× speedup from 1 cpu (8 cores) 

• Cold plasma tests shows performance > 1 G part/s 

• Impact of tile reordering ~ 17%



Intel Xeon Phi Architecture

Intel Xeon Phi 5110p die
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• Knights Corner Architecture 
• Also known as “Many Integrated Core” or MIC 

• Processing 
• 60 x86_64 cores @ 1.053 GHz 

• 4 threads / core 

• 512 kB L2 + 32 kB L1I + 32 kB L1D cache 

• Scalar unit + 512 bit vector unit 

• Up to 32 flops / cycle /core 

• 2.02 TFlops single precision 

• 1.01 TFlops double precision 

• Memory 
• Shared 8 GB GDDR5 RAM 

• Up to 320 GB/s 

• System Interface 
• PCIe x16 connection 

• Offload execution 
• CPU code offloads heavy sections to the MIC 

• Native execution 
• Board runs 64bit Linux 

• Network connection to other boards/nodes (MPI) 

• Run all code inside the board(s)

Intel Xeon Phi (MIC)

Intel Xeon Phi architectures

23

•

NUDT Tianhe-2a

• Total system 

• 512 000 host cores + 48 000 MICs 

• 1 PB host RAM + 0.26 PB MIC RAM 

• Performance 

• RMAX = 33.9 PFlop/s 

• RPEAK = 54.9 PFlop/s

• TH-IVB-FEP Cluster 

• 16 000 Compute Nodes 

• 17.8 MW 

• Interconnect 

• TH Express 2 

• Node configuration 

• 2× Intel® Xeon® CPU E5-2692 @ 
2.20GHz (12 cores) 

• 3× Intel® Xeon® Phi 31S1P 

• 64 GB (host) + 2x8 GB (MIC)

NUDT Tianhe-2a 
TH-IVB-FEP Cluster 
#2 - TOP500 Jun/16
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Logical view of a Xeon Phi board
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Logical View

• Use the board in native execution mode 

• All code runs inside the board 

• Each MIC board can be viewed as small computer 
cluster with N SMP nodes with M cores per node 

• Use a distributed memory algorithm (MPI) for 
parallelizing across nodes 

• Use a shared memory algorithm (OpenMP) for 
parallelizing inside each node  

• The exact same code used in "standard" HPC 
systems can run on the MIC board 

• Extending to multiple boards/nodes 
straightforward using MPI

Intel Xeon Phi Boards
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EM-PIC codes on Xeon Phi clusters
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• Same strategy for standard HPC clusters works 
well 

• Exploit all levels of parallelism available: 
distributed memory, shared memory and 
vector units 

• Paralellization of PIC algorithm 
• Spatial decomposition across nodes: each 

node handles a specific region of simulation 
space 

• Communicate between nodes/boards 
using MPI 

• Split particles over cores inside node 

• Use OpenMP for parallelism 

• Multiple nodes can fit inside a single board 

• Vectorization of PIC algorithm 

• The Xeon Phi has a wide vector unit 

• Process 16 particles at a time 

• Explicit vectorization yields the best result

Particle Push

Split Path / Create virtual 
particles

Interpolate FieldsInterpolate FieldsInterpolate FieldsInterpolate Fields

Push ParticlesPush ParticlesPush ParticlesPush Particles

Store Results

Load nV particles into Vector 
Unit

Current Deposition

Interpolate FieldsInterpolate FieldsInterpolate FieldsCalculate Currents

Load nV virtual part. into Vector 
Unit

Push Particles
Push Particles

Push ParticlesTranspose current to get 1 
vector per current line

Push Particles
Push Particles
Push ParticlesLoop over vectors and 

accumulate current

Vectorized by particle 
• Vectors contain same 

quantity for all particles

Vectorized by current line 
• Vectors contain 1 line of 

current for 1 particle

Transpose vectors 
• Done through vector 

operations

Fonseca et al., PPCF 55 124011  (2013); Surmin et al., CPC 202 204 (2016); Vincenti et al., arXiv:1601.02056 [physics.comp-ph] (2016)
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Single Board performance (warm plasma)
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CPU Intel Xeon E5-2660 @ 2.20GHz (8 cores) 

Intel icc 13.0.1:  

[cpu] icc -O3 -xHost -no-prec-div -ipo -align array32byte 

[mic] icc -mmic -O3 -no-prec-div -align array64byte

• Only particle advance/deposit was vectorized 

• Standard Fortran 03 code used for the remainder of the 
code 

• Manual vectorization also plays a key role in CPU code 
• Explicit AVX vectorization used 

• Up to 4× speedup from 1 cpu (8 cores) 
• Manual vectorization at least 3.2× faster than auto 

vectorization

manual vectorization on both MIC and CPU

2D Performance [ M Part/s ]

linear

quadratic

cubic

0 100 200 300 400 500 600 700

295.2

424.2

604.5

72.9

113.3

215.7

1 CPU (8 cores)
1 MIC

3D Performance [ M Part/s ]

linear

quadratic

cubic

0 100 200 300

68.8

139.1

292.3

20.3

43.8

109.8

1 CPU (8 cores)
1 MIC

Speedup [MIC / 1 CPU]

2D 3D
linear 2.80 2.66

quadratic 3.74 3.18

cubic 4.05 3.38

Speedup MIC  manual /  auto vectorization

2D 3D
linear 7.12 4.12
quadratic 6.18 3.52
cubic 5.86 3.29
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Parallel Scalability
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32 Compute Nodes 

2× 8 core Intel E5-2650 @ 2.6 GHz  

2× Xeon Phi 5110P @ 1.1 GHz  

Infiniband FDR14 interconnect

SuperMIC cluster 

• Use existing MPI parallelization for distributed 
memory systems 

– MPI universe spawns multiple boards / nodes 

– No changes required to the single MIC code

Parallel Scaling
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• Weak scaling tests 
• Start from 1 MIC board 

• Scale problem size linearly with 
number of boards 

• Increase number of boards 

• Near perfect scaling up to 32 boards 
• Parallel efficiency 93% (2D) and 

96% (3D) 

• Final problem size 

• ~ 109 particles 

• Strong scaling tests 
• Start from 2 MIC boards 

• Keep problem size constant 

• Increase number of boards 

• Good scaling up to 32 boards 
• Parallel efficiency 74%
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Production runs
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• Simulation setup 

• Collision of an electron and a positron plasma 
cloud 

• Physics dominated by the Weibel instability 

• 2D simulation in the perpendicular plane 

• Parameters 

• 4096 × 4096 cells 

• 22 particles / cell / species 

• γ vfl = ± 0.6 c 

• γ vth = 0.1 c 

• Run on 16 MIC boards 

• Very good performance for calculations



Overview

Harvard Mark I - 1944 
Rear view of Computing Section
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Overview

• Outstanding progress in computational power since 1950s 
• Present systems can reach performances of 0.1 EFlop/s 

• Energy cost for calculations has gone down by 14 orders of 
magnitude 

• Continuous evolution of architectures and computing paradigms 

• Exascale simulations are within reach 
• Present simulations can already track > 1013 particles for millions of 

time steps 

• Increasing quality and quantitative fidelity of simulations 

• Continuously evolve algorithms and codes to efficiently use new 
generations of computing hardware 

• This is a community effort among experts in large scale plasma 
simulation 

• This evolution presents a formidable challenge for computational 
physicists 

• Useful to have an ecosystem of codes where ideas are shared. 

• The community needs sustainable support for exascale software 
development
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http://picksc.idre.ucla.edu/


