
Ricardo Fonseca | AAC 2016

Challenges in computer simulations
to the exascale

R. A. Fonseca1,2

1 GoLP/IPFN, Instituto Superior Técnico, Lisboa, Portugal
2 DCTI, ISCTE-Instituto Universitário de Lisboa, Portugal

Ricardo Fonseca | AAC 2016

Acknowledgements
IST

– J. L. Martins, T. Grismayer, J. Vieira, P. Ratinho, K. Schoeffler, M. Vranic, U. Sinha,
T. Mehrling, A. Helm, L. O. Silva

UCLA
– A. Tableman, A. Davidson, P. Yu, T. Dalichaouch, F. Tsung, V.K.Decyk, W. B. Mori,

C. Joshi
Simulation results

– Accelerates Clusters (IST), Dawson/Hoffman Clusters (UCLA), Jugene/Juqueen
(FZ Jülich), Jaguar (ORNL), SuperMuc (LRZ), BlueWaters (NCSA), Sequoia (LLNL)

2

golp
grupo de lasers e plasmasgrupo de lasers e plasmas

Ricardo Fonseca | AAC 2016

1 μm laser

10 GeV electrons

1017 cm-3 plasma

total propagation distance: 0.5 m

Why Exascale computing?

3

High-Intensity Laser-Plasma Interaction
• Particle Acceleration
• Radiation sources

Multi-scale problems
• Large disparity of spatial/temporal

scales

Sample problem: 10 GeV LWFA stage
• λ0 ~ 1 μm
• L ~ 0.5 m

Computational Requirements
• ~ 109 grid cells
• ~ 1010 particles
• Iterations ~ 106 - 107
• Memory ~ 1 - 10 TB
• Operations ~ 1018 - 1019

Exascale performance
• Simulation time ~ 10s

Community of Particle-in-cell codes
• ALaDyn

• Calder

• EPOCH

• HiPACE

• INF&RNO

• OSIRIS

• PICADOR

• PIConGPU

• PSC

• QuickPIC

• SMILEI

• turboWAVE

• UPIC-EMMA

• VLPL

• Vorpal

• VPIC

• WARP

• …

Ricardo Fonseca | AAC 2016

osiris 3.0

4

code features
· Scalability to ~ 1.6 M cores
· SIMD hardware optimized
· Parallel I/O
· Dynamic Load Balancing
· QED module
· Particle merging
· GPGPU support
· Xeon Phi support

osiris framework
· Massivelly Parallel, Fully Relativistic  

Particle-in-Cell (PIC) Code
· Visualization and Data Analysis Infrastructure
· Developed by the osiris.consortium

⇒ UCLA + IST

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt
Frank Tsung: tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/  
http://plasmasim.physics.ucla.edu/

O i ir ss
3.0

mailto:ricardo.fonseca@ist.utl.pt?subject=
mailto:tsung@physics.ucla.edu?subject=
http://epp.tecnico.ulisboa.pt
http://plasmasim.physics.ucla.edu/

Ricardo Fonseca | AAC 2016

Outline

• The road to Exascale Systems
– HPC system evolution
– Current trends
– Multi scale parallelism

• Deploying the on large scale HPC systems
– Parallelization strategies
– Dealing with load imbalance

• Recent and future architectures
– General purpose GPUs
– Intel manycore (MIC)

• Overview

5

The road to Exascale systems

UNIVAC 1 - 1951
Internal view

Ricardo Fonseca | AAC 2016

The Road to Exascale Computing

7

Pe
rf

or
m

an
ce

 [
M

FL
O

Ps
]

EDSAC 1

UNIVAC 1

IBM 704IBM 709

IBM 7090UNIVAC LARC
IBM 7030 Stretch

CDC 6600

CDC 7600
CDC STAR-100 Burroughs ILLIAC IV

Cray-1 CDC Cyber 205
Cray X-MP/4 M-13

Cray-2/8 ETA10-G/8
NEC SX-3/44R

Intel Paragon XP/S 140
Fujitsu Numerical

Wind Tunnel

Hitachi/Tsukuba CP-PACS/2048-
Intel ASCI Red/9152 Intel ASCI Red/9632

IBM ASCI White

NEC Earth SimulatorSGI Project Columbia

IBM Blue Gene/L
IBM Blue Gene/L IBM RoadRunner

Cray XT5-HE Tianhe-1A
K Computer Titan

Tianhe-2

Sunway TaihuLight

1940 1950 1960 1970 1980 1990 2000 2010 2020

Year

1012

109

106

103

100

10-3

Exaflop/s

Petaflop/s

Teraflop/s

Gigaflop/s

Megaflop/s

kiloflop/s

High Performance Computing Power Evolution

Sunway Taihulight
NRCPC, China

#1 - TOP500 Jun/16

Sunway Taihulight
• 40 960 compute nodes

Node Configuration
• 1× SW26010 manycore processor

• 4×(64+1) cores @ 1.45 GHz
• 4× 8 GB DDR3

Total system
• 10 649 600 cores

• 1.31 PB RAM
Performance

• Rpeak 125.4 Pflop/s

• Rmax 93.0 Pflop/s

(data from multiple sources)

Ricardo Fonseca | AAC 2016

The Road to Power Efficient Computing

8

UNIVAC 1

IBM 704

IBM 7090
IBM 7030 Stretch

CDC 6600

CDC 7600

Cray-1

Cray-2/8

Fujitsu Numerical
Wind Tunnel

Intel ASCI Red/9152 Intel ASCI Red/9632
IBM ASCI White

NEC Earth Simulator

IBM Blue Gene/L
IBM Blue Gene/L

IBM RoadRunner
Cray XT5-HE

Tianhe-1A K Computer
Titan Tianhe-2

Sunway TaihuLight

10-9

10-6

10-3

100

103

106

1940 1950 1960 1970 1980 1990 2000 2010 2020

En
er

gy
 p

er
 o

pe
ra

tio
n

[m
J]

Year

kiloJoule

Joule

miliJoule

microJoule

nanoJoule

picoJoule

Energy Requirement Evolution

(data from multiple sources)

Sunway Taihulight
NRCPC, China

#1 - TOP500 Jun/16

Sunway Taihulight

• Manycore architecture

• Peak performance 93 PFlop/s

• Total power 15.3 MW

• 6.07 Gflop/W

• 165 pJ / flop

Ricardo Fonseca | AAC 2016

Petaflop systems firmly established

The drive towards Exaflop

• Steady progress for over 60 years

– 95 systems above 1 PFlop/s

• Supported by many computing paradigm
evolutions

• Trend indicates Exaflop systems by next decade

• Electric power is one of the limiting factors

– Target < 20 MW

– Top system achieves ~ 6 Gflop/W

• ~ 0.2 GW for 1 Exaflop

• Factor of 10× improvement still required

– Best energy efficiency

• 7.0 Gflop/W

• PEZY-SC accelerator

Multicore systems

• Maintain complex cores and replicate

• 4 systems in the top 10 are based on multicore CPUs

• 1× Fujitsu SPARK

• 3× Intel Xeon E5

Manicore

• Use many (simpler) low power cores

• IBM BlueGene/Q Architecture has 2 systems in the top 6

• Seem to be the last of their kind

• #1 (Sunway Taihulight) and future Intel Knights Landing
systems

Accelerator/co-processor technology

• 93 systems on top500 (jun 2016) use accelerator hardware

• down from 104 in previous list (nov 2015)

• 66 use NVIDIA GPUs, 27 use Intel MIC, 3 use ATI
Radeon and 2 use PEZI-SC

• 3 systems in top 10

• #3 (Titan) and #8 (Piz Daint) use NVIDIA GPUs

• #2 (Tianhe-2) uses Intel MIC

9

Ricardo Fonseca | AAC 2016

Simple hardware abstraction for HPC systems

10

•Modern HPC systems present a hierarchy of
parallelism

•At the highest level they are a network of
computing nodes

•Each node is a set of CPUs / cores (+ GPUs/
MICs) sharing memory inside the node

•Most processing cores have a vector SIMD unit
(Intel, PowerPC, Fujitsu)

•Efficient HPC system use requires taking
advantage of all these levels of parallelism

Multiscale Parallelism
Interconnect

node 0 node 1 node n

PE #3 PE #4 PE #5

PE #2PE #1PE #0

Memory

node

Core

n-way SIMD Unit

Parallelization of the PIC algorithm

Laser Wakefield Acceleration
3D Simulation using the OSIRIS code

Ricardo Fonseca | AAC 2016

Node level parallelism

12

Spatial domain decomposition

• Each process cannot directly access memory on another node:

• Information is exchanged between nodes using network
messages (MPI)

• Standard parallelization uses a spatial decomposition:
• Each node handles a specific region of simulation space

• Works very well also on multi-core nodes

• Benefits from shared memory

• Message passing inside a node is very efficient

• Very efficient for uniform plasmas

Sim. Volume Parallel Domain

LLNL Sequoia
IBM BlueGene/Q
#4 - TOP500 Jun/16
1572864 cores
Rmax 16.3 PFlop/s

Speedup

Sp
ee

du
p

fr
om

 4
09

6
co

re
s

1

10

100

1000

Cores
1 000 10 000 100 000 1 000 000 10 000 000

Strong Scaling
Weak Scaling
Optimal

Efficiency @
 1.6 Mcores

97%
75%

Liewer and Decyk, JCP 85 302 (1989);Fonseca et al., PPCF 55 124011 (2013)

Ricardo Fonseca | AAC 2016

Vectorization of the PIC algorithm

13

Interpolate FieldsInterpolate FieldsInterpolate FieldsInterpolate Fields

Push ParticlesPush ParticlesPush ParticlesPush Particles

Store Results

Load nV particles into Vector
Unit

Push ParticlesPush ParticlesPush ParticlesDeposit Current

• PIC codes are good candidates for
optimization

– Operations on each particle independent
from each other...

– except for current deposition

– For most cases work well in single precision

• Process nV (vector width) particles at a time
• Field interpolation requires a gather

operation
– Field grid may be altered to avoid this

• Current deposition may cause memory
collisions

– Serialize memory accumulation

– Change grid structure

– Transpose vectors (vectorize by current line)

BlueWaters CPU tests

• XE Partition
- 772 480 AMD6276 cores

• Warm plasma tests
- Quadratic interpolation
- uth = 0.1 c

• 3D Problem size
- cells = 38624 × 1024 × 640 (~2.5×1010)
- 400 particles/cell (~ 1013)

• Computations
- 2.2 PFlop/s performance
- 31% of Rpeak

BlueWaters
NSCA, U.S.A.

Bowers et al., PoP 15 055703 (2008); Fonseca et al., PPCF 55 124011 (2013);
Vincenti et al., arXiv:1601.02056 [physics.comp-ph] (2016)

Ricardo Fonseca | AAC 2016

Particles/node, iz = 12

Maintaining parallel load balance is crucial

• For large core counts the simulation
volume inside each node is very small
• Fluctuations on the plasma density

lead to load inbalance

• Shared memory parallelism can help
• Use a “particle domain”

decomposition inside shared
memory region

• Smear out localized computational
load peaks

• Spawns nT threads to process the
particles:
• Use nT copies of the current grid
• Divide particles evenly across threads
• Each thread deposits current in only 1

of the grid copies

• Accumulate all current grids in a single
current grid
• Divide this work also over nT threads

14

LWFA Simulation
Parallel Partition

• 94×24×24 = 55k cores

Load Imbalance (max/avg load)

• 9.04×

Average Performance

• ~12% peak

Shared Memory (OpenMP)

SMP node

+

Total Electric Current

Parallel Reduction

Current 3

Particle Buffer

Thread 1 Thread 2 Thread 3

Current 3Current 3

R A Fonseca et al., PPCF 55 124011 (2013)

Ricardo Fonseca | AAC 2016

• The code can change node boundaries dynamically to attempt to maintain
a even load across nodes:

• Determine best possible partition from current particle distribution
• Rearrange parallel partition

• Partition the space into (10-100x) more domains (patches) than processing
elements (PE)

• Dynamically assign patches to PE
• Assign similar load to PEs
• Attempt to maintain neighboring patches in the same PE

Adjust processor load dynamically

15

Redistribute computational load between nodes

7 PE example

Patch based load balance

Patch assignment
Laser

x1-x2 slice at box center
similar partition along x3
> 30% improvement in inbalance

node boundary

Fonseca et al., PPCF 55 124011 (2013); Germaschewski et al., JCP 318 305 (2016); Beck et al., NIMPR-A 829 418 (2016)

General Purpose Graphical Processing Units

NIVIDIA Fermi K20x die

Ricardo Fonseca | AAC 2016

• Cray XK7

• 18 688 Compute Nodes

• 8.2 MW

• Interconnect

• Cray Gemini interconnect

• Node configuration

• 1× AMD Opteron 6274 @ 2.2 GHz (16 cores)

• 1× NVIDIA Tesla K20x

• memory 32 GB (host) + 6 GB (GPU)

• K20X Accelerator

• 14 SMX streaming multiprocessors @ 732 MHz

• 6 GB GDDR5

• 1.5 MB L2 Cache

• SMX streaming multiprocessors

• 192 CUDA cores for float/int

• 64 double precision cores

• 64 KB shared memory / L1 cache

• 64 K registers

• up to 2048 threads

• Fast switching between threads

• executes 32 threads at a time (warp)

• SIMD like operation

• Peak performance

• 3.95 TFlops / 1.31 Tflops peak (single/double precision)

• DRAM Bandwidth 250 GB/sec

General Purpose Graphical Processing Unit Accelerators

17

ORNL Titan NVIDIA Tesla K20X (Kepler) accelerator

• Total system

• 299 008 host cores + 18 688 GPUs

• 0.6 PB host RAM + 0.1 PB GPU RAM

• Performance

• RMAX = 17.2 PFlop/s

• RPEAK = 27.1 PFlop/s

ORNL Titan
Cray XK7
#3 - TOP500 Jun/16

Ricardo Fonseca | AAC 2016

SMX Shared memorySMX Shared memorySMX Shared memory

PIC algorithms on GPU architectures

• Most important bottleneck is memory access

– PIC codes have low computational intensity (few
flops/memory access)

– Memory access is irregular (gather/scatter)

• Memory access can be optimized with a streaming
algorithm

– Global data read/write only once

– Regular (coalesced) memory access

• PIC codes can implement a streaming algorithm by
keeping particles ordered by tiles

– Minimizes global memory access since field
elements need to be read only once

– Global gather/scatter is avoided.

– Deposit and particles update have optimal memory
access.

• Challenge: optimizing particle reordering

18

GPU DRAM

Simulation data
• Particles

• Grids

• Organized by tiles

SMX Shared memory

Tile data
• Particles

• Grids

All calculations are performed on (fast)
shared memory

Copy tile data to/from SMX
shared memory
• Regular memory access

• Peak bandwidth

• Low overhead

Decyk and Singh, CPC 185 708 (2014); Zenker et al., arXiv:1606.02862 [cs.DC] (2016)

Ricardo Fonseca | AAC 2016

Tile

Tile
Tile

Advancing particles / deposit current
• Within a tile, all particles read or write the same block of fields.

– Before pushing particles, copy fields to fast memory

– After depositing current to fast memory, write to global memory

– Different tiles can be done in parallel

• Each tile contains data for the grids in the tile, plus guard cells

– Similar to MPI code, but with tiny partitions

• Parallelization of particle advance trivial

– Each particle is independent of others, no data hazards

• Current deposit is also easy if each tile is controlled by one thread

– This avoids data collisions where two threads try to update the same
memory

• However, if each tile is controlled by a vector of threads, data collisions
are possible.

– Atomic updates

– “Checkerboard” tile access

– Line current deposition

19

Process tiles
in parallel

Tile

1 thread / tile
• Avoid data hazards

• Straightforward
parallelization

Decyk and Singh, CPC 185 708 (2014); Zenker et al., arXiv:1606.02862 [cs.DC] (2016)

Ricardo Fonseca | AAC 2016

Efficient particle reordering between tiles
• Three steps:

1. Create a list of particles which are leaving a tile, and
where they are going

2. Using list, each thread places outgoing particles into
an ordered buffer it controls

3. Using lists, each tile copies incoming particles from
buffers into particle array

• Less than a full sort, low overhead if particles already in
correct tile

– Can be done in parallel
– Essentially message-passing, except buffer contains

multiple destinations
• Same algorithm works well for shared memory CPU/

OpenMP

• Extend to multiple boards using MPI

– Copy from GPU buffer to/from MPI buffers

– Pack multiple tiles into single message

20

Reorder buffer #0
• 1 per tile

• Particles are buffered
in direction order

4 3 5

1 2

7 6 8

GPU Tiles

4 3 5

1 2

7 6 8

GPU Tiles

1
2
3
4
5
6
7
8

Tile #0
Copy particles leaving the tile
to its reorder list buffer

Tiles #1 - #8
Copy particles from tile #0
reorder buffer

Decyk and Singh, CPC 185 708 (2014)

Ricardo Fonseca | AAC 2016

OSIRIS CUDA performance

21

Parallel Scaling

Sp
ee

du
p

fo
rm

 1
GP

U

1

10

100

1000

GPUs
1 10 100 1000

Weak scaling
Optimal

Efficiency
94%

NVIDIA K20x performance

CPU (8 cores)

GPU (K20x)

Performance [M Part / s]
0 200 400 600 800 1000 1200

311
1 040

261

110

862

216 2D Warm
3D Warm
2D Cold
3D Cold

• Weak scaling tests
• Start from 1 GPU board

• Scale problem size linearly with number of boards

• Increase number of boards

• Near perfect scaling up to 225 boards
• Parallel efficiency 94%

• Single board tests

• Up to 4× speedup from 1 cpu (8 cores)

• Cold plasma tests shows performance > 1 G part/s

• Impact of tile reordering ~ 17%

Intel Xeon Phi Architecture

Intel Xeon Phi 5110p die

Ricardo Fonseca | AAC 2016

• Knights Corner Architecture
• Also known as “Many Integrated Core” or MIC

• Processing
• 60 x86_64 cores @ 1.053 GHz

• 4 threads / core

• 512 kB L2 + 32 kB L1I + 32 kB L1D cache

• Scalar unit + 512 bit vector unit

• Up to 32 flops / cycle /core

• 2.02 TFlops single precision

• 1.01 TFlops double precision

• Memory
• Shared 8 GB GDDR5 RAM

• Up to 320 GB/s

• System Interface
• PCIe x16 connection

• Offload execution
• CPU code offloads heavy sections to the MIC

• Native execution
• Board runs 64bit Linux

• Network connection to other boards/nodes (MPI)

• Run all code inside the board(s)

Intel Xeon Phi (MIC)

Intel Xeon Phi architectures

23

•

NUDT Tianhe-2a

• Total system

• 512 000 host cores + 48 000 MICs

• 1 PB host RAM + 0.26 PB MIC RAM

• Performance

• RMAX = 33.9 PFlop/s

• RPEAK = 54.9 PFlop/s

• TH-IVB-FEP Cluster

• 16 000 Compute Nodes

• 17.8 MW

• Interconnect

• TH Express 2

• Node configuration

• 2× Intel® Xeon® CPU E5-2692 @
2.20GHz (12 cores)

• 3× Intel® Xeon® Phi 31S1P

• 64 GB (host) + 2x8 GB (MIC)

NUDT Tianhe-2a
TH-IVB-FEP Cluster
#2 - TOP500 Jun/16

Ricardo Fonseca | APS 2015

Logical view of a Xeon Phi board

24

core core core

Shared memory

core core core

core core core

OpenMP region

M
 c

or
es

core core core

Shared memory

core core core

core core core

OpenMP region

M
 c

or
es

core core core

Shared memory

core core core

core core core

OpenMP region

M
 c

or
es

core core core

Shared memory

core core core

core core core

OpenMP region

M
 c

or
es

core core core

Shared memory

core core core

core core core

OpenMP region

M
 c

or
es

core core core

Shared memory

core core core

core core core

OpenMP region

M
 c

or
es

N nodes

Intel Xeon Phi board

Logical View

• Use the board in native execution mode

• All code runs inside the board

• Each MIC board can be viewed as small computer
cluster with N SMP nodes with M cores per node

• Use a distributed memory algorithm (MPI) for
parallelizing across nodes

• Use a shared memory algorithm (OpenMP) for
parallelizing inside each node

• The exact same code used in "standard" HPC
systems can run on the MIC board

• Extending to multiple boards/nodes
straightforward using MPI

Intel Xeon Phi Boards

Ricardo Fonseca | APS 2015

EM-PIC codes on Xeon Phi clusters

25

• Same strategy for standard HPC clusters works
well

• Exploit all levels of parallelism available:
distributed memory, shared memory and
vector units

• Paralellization of PIC algorithm
• Spatial decomposition across nodes: each

node handles a specific region of simulation
space

• Communicate between nodes/boards
using MPI

• Split particles over cores inside node

• Use OpenMP for parallelism

• Multiple nodes can fit inside a single board

• Vectorization of PIC algorithm

• The Xeon Phi has a wide vector unit

• Process 16 particles at a time

• Explicit vectorization yields the best result

Particle Push

Split Path / Create virtual
particles

Interpolate FieldsInterpolate FieldsInterpolate FieldsInterpolate Fields

Push ParticlesPush ParticlesPush ParticlesPush Particles

Store Results

Load nV particles into Vector
Unit

Current Deposition

Interpolate FieldsInterpolate FieldsInterpolate FieldsCalculate Currents

Load nV virtual part. into Vector
Unit

Push Particles
Push Particles

Push ParticlesTranspose current to get 1
vector per current line

Push Particles
Push Particles
Push ParticlesLoop over vectors and

accumulate current

Vectorized by particle
• Vectors contain same

quantity for all particles

Vectorized by current line
• Vectors contain 1 line of

current for 1 particle

Transpose vectors
• Done through vector

operations

Fonseca et al., PPCF 55 124011 (2013); Surmin et al., CPC 202 204 (2016); Vincenti et al., arXiv:1601.02056 [physics.comp-ph] (2016)

Ricardo Fonseca | AAC 2016

Single Board performance (warm plasma)

26

CPU Intel Xeon E5-2660 @ 2.20GHz (8 cores)

Intel icc 13.0.1:

[cpu] icc -O3 -xHost -no-prec-div -ipo -align array32byte

[mic] icc -mmic -O3 -no-prec-div -align array64byte

• Only particle advance/deposit was vectorized

• Standard Fortran 03 code used for the remainder of the
code

• Manual vectorization also plays a key role in CPU code
• Explicit AVX vectorization used

• Up to 4× speedup from 1 cpu (8 cores)
• Manual vectorization at least 3.2× faster than auto

vectorization

manual vectorization on both MIC and CPU

2D Performance [M Part/s]

linear

quadratic

cubic

0 100 200 300 400 500 600 700

295.2

424.2

604.5

72.9

113.3

215.7

1 CPU (8 cores)
1 MIC

3D Performance [M Part/s]

linear

quadratic

cubic

0 100 200 300

68.8

139.1

292.3

20.3

43.8

109.8

1 CPU (8 cores)
1 MIC

Speedup [MIC / 1 CPU]

2D 3D
linear 2.80 2.66

quadratic 3.74 3.18

cubic 4.05 3.38

Speedup MIC manual / auto vectorization

2D 3D
linear 7.12 4.12
quadratic 6.18 3.52
cubic 5.86 3.29

Ricardo Fonseca | AAC 2016

Parallel Scalability

27

32 Compute Nodes

2× 8 core Intel E5-2650 @ 2.6 GHz

2× Xeon Phi 5110P @ 1.1 GHz

Infiniband FDR14 interconnect

SuperMIC cluster

• Use existing MPI parallelization for distributed
memory systems

– MPI universe spawns multiple boards / nodes

– No changes required to the single MIC code

Parallel Scaling

Sp
ee

du
p

1

10

100

MIC boards
1 10 100

Optimal
2D Weak
3D Weak
2D Strong

Efficiency
93%
96%
74%

• Weak scaling tests
• Start from 1 MIC board

• Scale problem size linearly with
number of boards

• Increase number of boards

• Near perfect scaling up to 32 boards
• Parallel efficiency 93% (2D) and

96% (3D)

• Final problem size

• ~ 109 particles

• Strong scaling tests
• Start from 2 MIC boards

• Keep problem size constant

• Increase number of boards

• Good scaling up to 32 boards
• Parallel efficiency 74%

Ricardo Fonseca | AAC 2016

Production runs

28

• Simulation setup

• Collision of an electron and a positron plasma
cloud

• Physics dominated by the Weibel instability

• 2D simulation in the perpendicular plane

• Parameters

• 4096 × 4096 cells

• 22 particles / cell / species

• γ vfl = ± 0.6 c

• γ vth = 0.1 c

• Run on 16 MIC boards

• Very good performance for calculations

Overview

Harvard Mark I - 1944
Rear view of Computing Section

Ricardo Fonseca | AAC 2016

Overview

• Outstanding progress in computational power since 1950s
• Present systems can reach performances of 0.1 EFlop/s

• Energy cost for calculations has gone down by 14 orders of
magnitude

• Continuous evolution of architectures and computing paradigms

• Exascale simulations are within reach
• Present simulations can already track > 1013 particles for millions of

time steps

• Increasing quality and quantitative fidelity of simulations

• Continuously evolve algorithms and codes to efficiently use new
generations of computing hardware

• This is a community effort among experts in large scale plasma
simulation

• This evolution presents a formidable challenge for computational
physicists

• Useful to have an ecosystem of codes where ideas are shared.

• The community needs sustainable support for exascale software
development

30

http://picksc.idre.ucla.edu/

