
Overview of PICKSC 
Science Gateway

Qiyang Hu, Frank Tsung

September 19, 2017



Introduction

• Gateway = Web Graphical User Interface:
• PIC software: BEPS, OSIRIS

• For developers, users, educators and students

• A proof-of-concept implementation
• From scratch

• Ready to expand



User Management
Namelist Input 

Generation
Job Management Post Processing

Work Modules for PICKSC Science Gateway

• LAMP Stacks: plain PHP, no framework

• ‘User’ and ‘Job’ modules have database tables in the backend

• 'Input' interface supports for hundreds or thousands of parameters

• 'Postprocess' includes the batch processing



Current Server Architecture

• Hostname: 
picksc.hoffman2.idre.ucla.edu
• only user: picksc

• CentOS 6.7
PHP: 5.3.3
MySQL 5.1

• Google sign-in enabled

• InCommon Certs



User Management: Google OAuth2

Google Authorization 
Server

User’s BrowserPICKSC Web GUI Server runs

returns

id token

id
 to

ken

id
 to

kenac
ce

ss
 p

ro
fi

le

(browser redirect)

1

2

3

4

5

6

7

request token

OAuth2 

Dialog



Input Module
• Inputs defined in a hierarchical description in XML file

• Grouped in 3 level hierarchy
• Can limit display subset of parameters that differ from defaults
• Can handle multiple namelists/XMLs
• Help available for each input

• Server implementation:
• ‘protected’ folder

• outside from web root

• ‘common’
• provide common template

• ‘userdata’
• user space

• Each Code should have:
• Its own XML files

• For multiple namelist sections

• Its customized problems
• Must specify/use XML filename



Smart Interface for Input

osiris.xml namelist template



Input Validation

• All rules hard-coded in system
• PHP + Javascript

• Chart plot:
• Flot: Jquery-based

• In XML files:
• <input>

...
</input>
<validation>

<rule>3</rule>
<rule>4</rule>

</validation>



Manage jobs from web server

Insert a job 
record in DB 
to get a PK 

Create 
directories 

and batch files

Submit the job 
to the 

scheduler

Update the 
job info in DB

• Job has a separate ID (primary key) in DB

• All job info saved in `job’ table in DB

• Input saved in namelist folder

• Output saved in a separate job folder



UGE Environment Setup

• 'picksc' (the apache user) is the solo user to UGE

• PHP runs bash q-related command

• Job submission:
• Export bash environment variables

• Batch cmd file:
• Adopt IDRE script template

• joblog & output files: in job space

• Copy input file to job space

• Job id: parsed from the stdout
• Write to local DB



Job batch running to H2

• Manage files
• Common libs in protected folder

• Python post-process scripts

• plot templates

• Job-specific files: copied to job space
• Customized parameters

• Improve the syncing process of the job 
status between H2 and web server.



Jobs folder

• Separate subfolder under ‘protected’ folder

• Named by the job id in DB 
• PK in jobs table

• Batch file and output files saved per job

• Deleting job will delete info in:
1. DB

2. Scheduler

3. Corresponding folder



Interfaces for jobs

• General Users:
• Run the executables from ‘common’ folder

• Currently it can display the std out content 

• Manage their own jobs

• Admin Users:
• Upload executables to ‘common’ folder

• Manage all job input/outputs



Post-processing

• More options for post-processing
• IDL, matplotlib

• Customized parameters

• Python libs installed in /protected/libs/ folder
• visxd from Frank for IDL

• plot.py from Frank for matplotlib
• osiris.plot

• mpld3

• Online view of hdf5 pictures



A quick screenshot for reviewing the animations



Live Demo



Future Developments

User Management
Namelist Input 

Generation
Job Management Post Processing

More robust 
method

Process more 
scientific problem

Submit to more 
remote resources

Process more 
data format

Migrate to professional web frameworks



New Server Architecture



Apache Airavata as a black-box middleware


