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• PIC makes simulating plasmas computationally possible by 
restricting field to a grid and using finite-size macroparticles. 

• Effects smaller than a cell size (rarely smaller than a Debye length) 
can’t be resolved. 

• Pure PIC has no concept of real number density; one simulation 
represents a range of physical systems, up to a scaling factor. 

• Discrete particles effects are simulated using Monte Carlo 
(stochastic) methods, assuming the information which was 
discarded was essentially random 

• (Note PIC *DOES* have collisions, but they’re distinct in scale and 
behavior from physical collisions.)

Why collisions are needed



Monte Carlo Binary Coulomb Collision 
Model

• Particles are randomly paired, and 
collided off each other using fluid and 
particle data 

• In center-of-momentum frame, collision is 
a rotation in p-space 

• Θ is a random variable with variance 
given by collision frequency (1); Φ is 
random and uniform 

• By randomly sampling many pairs, 
approximates an integral over the 
distribution function, and so solves the 
collision term in the Landau form (2). 

• Assumes Θ << 1
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Nanbu extension to large collision 
events
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• Collision model of Nanbu 

• Question is how to model many 
small-angle scatterings from 
Coulomb Collisions in a single 
simulated collision timestep 

• Ansatz assumption that the 
distribution of the scattering 
angle is given by equation 1 

• Equations 3, 4 then follow 
analytically; though 4 is non-
invertible, various approximations 
in different regimes can be used 
to efficiently numerically solve 
these
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• This model also breaks down for very low speeds/temperatures - the collisionality diverges to 
infinity

• Equations 6 gives a mean free path equal to the particle spacing; by using this as a lower bound 
the divergence is avoided

Pérez Relativistic and Low 
Temperature Corrections

• Equation 2 is not however relativistically correct (no distinction is made between p and mv, for 
instance)

• Pérez et al. solved this by using a relativistic invariant to arrive at equation 5
• Working in momentum space the collision remains a rotation, and so equations 3, 4 remain valid 

with the new s

s12 =
4⇡n2�tln⇤(q1q2)2

c4m1�1m2�2

�Cp?1
m1�1 +m2�2

✓
m1�?

1m2�?
2

p?21
c2 + 1

◆2

s0 =

✓
4⇡

3

◆1/3 n1n2

n12

¯

�t
m1 +m2

max

⇣
m1n

2/3
1 ,m2n

2/3
2

⌘vrel s = min(s, s0)

F Pérez, L Gremillet, A Decoster, M Drouin, and E Lefebvre. “Improved modeling of relativistic collisions 
and collisional ionization in particle-in-cell codes.” Physics of Plasmas, 19(8):083104, 2012
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Collision step in main iteration loop

iter_sim()
  ….
  call ionize_neutral(…)
  call sort_collide( sim%part, dx, n, t, 
dt, n_threads)
  call  sim%jay%update_boundary(…)
  ….

os-simulation

os-particles

if
  collide()
else
  sort()

collide_particles()
  collision_sort()
  !$omp parallel do
  do loop_over_cells
    find_fluid_state()
    debye_length()
    random_paring()
    select case (model)
    do loop_over_species()
      unlike_collide()
      like_collide()
    enddo

os-spec-collisions

…

Collision models selected using function 
pointers, easy to add moreOpenMP parallelization for all collision cells



Collision loop in each cell

unlike_collide_perez()
  <find correction for uneven particle weights>
  <find (weighted) average relative velocity>
  log_lambda = …
  s_first = … !shared part of collision frequency
  do loop_over_pairs
    relative_velocity = … ! one-particle-at-rest frame
    <boost momenta to center-of-momentum frame>
    s = … ! collision frequency for pair
    <invert Nanbu equation to get collision angle>
    <calculate rotation in CoM>
    <update momenta stochastically based on weighting>
    <boost momenta back to lab frame>



Five input parameters are required

• Needed input parameters: 

• Actual charge density for n=1 
(cgs) 

• Which species to collide 

• Self-collide? 

• Charge state of ion 

• Collision timestep (0, the 
default, doubles as flag to turn 
collisions off)



Other inputs to know

• Defaults to be aware of 

• Perez collision model 

• Collision cell size equals PIC 
cell size 

• Calculate Coulomb log in each 
cell 

• One option one might want: Low 
temperature correction



Things you have to worry about a little

• Numerical heating (see Paulo Alves) 

• Ratio of collision cell to MPI node 

• Good resolution 

• Depends on the problem, no hard rules 

• Size of collision gradients (nx_collision_cells) 

• Resolving the collision frequency (n_collide) 

• Representing the distribution function (nx_collision_cells, ppc) 

• That said, the algorithm is fairly forgiving



Things you don’t have to worry about

• Over-resolving the collision frequency 

• Relative size of macro-particles 

• Multiple equivalent species 

• Highly different densities 

• Relativistic effects 

• Conservation of energy and momentum *on average* 
(except for heating)



Computational Cost

• It is fairly expensive 

• Depends on system, but roughly 2X cost for two species 
colliding at each timestep 

• Currently only vectorization is OpenMP (which works 
quite well!); adopting for GPGPU or KNL seems 
promising, but future work 

• SIMD within each collision cell is possible too, but is 
challenging



• For the general user, just a few parameters need to be 
input and the collision package will take care of the rest. 
Be careful of numerical heating, but otherwise you can’t 
really mess up. 

• With a little more care, you may improve the 
computational performance without losing physics. 

• For the developer, both the package and the individual 
models are well isolated; easy (and encouraged) to add to 
or modify. 

• Better vectorization, impact ionization are obvious goals

Take Away Message


