
Josh May
September 2017

OSIRIS Workshop
UCLA, Los Angeles CA

OSIRIS Collision Package
Overview

• PIC makes simulating plasmas computationally possible by
restricting field to a grid and using finite-size macroparticles.

• Effects smaller than a cell size (rarely smaller than a Debye length)
can’t be resolved.

• Pure PIC has no concept of real number density; one simulation
represents a range of physical systems, up to a scaling factor.

• Discrete particles effects are simulated using Monte Carlo
(stochastic) methods, assuming the information which was
discarded was essentially random

• (Note PIC *DOES* have collisions, but they’re distinct in scale and
behavior from physical collisions.)

Why collisions are needed

Monte Carlo Binary Coulomb Collision
Model

• Particles are randomly paired, and
collided off each other using fluid and
particle data

• In center-of-momentum frame, collision is
a rotation in p-space

• Θ is a random variable with variance
given by collision frequency (1); Φ is
random and uniform

• By randomly sampling many pairs,
approximates an integral over the
distribution function, and so solves the
collision term in the Landau form (2).

• Assumes Θ << 1

ΘUz

Ux

Uy

Φ

< tan(⇥) >2=
2⇡e2ae

2
b n ln(�)

µ2
abu

3
�t

T. Takizuka and H. Abe. “A Binary Collision Model for Plasma Simulation with a Particle Code” Journal of Computational Physics, 25:205-219, 1977.

@f

@t

⌘

col

= �
X

�

@

@vj

2⇡e2ae
2

b ln(�)

ma

Z
dv0


�jk
u

� ujuk

u3

� 
fa
mb

@fb(v0)

@v0k
� fb(v0)

ma

@fa
@vk

�

(1)

(2)

Nanbu extension to large collision
events

cos� =
1

A

ln
�
e

�A + 2UsinhA
�

D
sin2

�N

2

E
=

1

2
(1� e�s)

cothA�A�1
= e�s

s = 4⇡ln⇤

✓
q1q2
µ12

◆2

n2v
�3
rel

�t (s ⇠ ⌫
coll

�t)

• Collision model of Nanbu

• Question is how to model many
small-angle scatterings from
Coulomb Collisions in a single
simulated collision timestep

• Ansatz assumption that the
distribution of the scattering
angle is given by equation 1

• Equations 3, 4 then follow
analytically; though 4 is non-
invertible, various approximations
in different regimes can be used
to efficiently numerically solve
these

(1)

(2)

(3)

K Nanbu. “Theory of cumulative small-angle collisions in plasmas.” Physical Review E, 55(4):4642–4652, April 1997.

(4)

• This model also breaks down for very low speeds/temperatures - the collisionality diverges to
infinity

• Equations 6 gives a mean free path equal to the particle spacing; by using this as a lower bound
the divergence is avoided

Pérez Relativistic and Low
Temperature Corrections

• Equation 2 is not however relativistically correct (no distinction is made between p and mv, for
instance)

• Pérez et al. solved this by using a relativistic invariant to arrive at equation 5
• Working in momentum space the collision remains a rotation, and so equations 3, 4 remain valid

with the new s

s12 =
4⇡n2�tln⇤(q1q2)2

c4m1�1m2�2

�Cp?1
m1�1 +m2�2

✓
m1�?

1m2�?
2

p?21
c2 + 1

◆2

s0 =

✓
4⇡

3

◆1/3 n1n2

n12

¯

�t
m1 +m2

max

⇣
m1n

2/3
1 ,m2n

2/3
2

⌘vrel s = min(s, s0)

F Pérez, L Gremillet, A Decoster, M Drouin, and E Lefebvre. “Improved modeling of relativistic collisions
and collisional ionization in particle-in-cell codes.” Physics of Plasmas, 19(8):083104, 2012

(5)

(6)

Collision step in main iteration loop

iter_sim()
 ….
 call ionize_neutral(…)
 call sort_collide(sim%part, dx, n, t,
dt, n_threads)
 call sim%jay%update_boundary(…)
 ….

os-simulation

os-particles

if
 collide()
else
 sort()

collide_particles()
 collision_sort()
 !$omp parallel do
 do loop_over_cells
 find_fluid_state()
 debye_length()
 random_paring()
 select case (model)
 do loop_over_species()
 unlike_collide()
 like_collide()
 enddo

os-spec-collisions

…

Collision models selected using function
pointers, easy to add moreOpenMP parallelization for all collision cells

Collision loop in each cell

unlike_collide_perez()
 <find correction for uneven particle weights>
 <find (weighted) average relative velocity>
 log_lambda = …
 s_first = … !shared part of collision frequency
 do loop_over_pairs
 relative_velocity = … ! one-particle-at-rest frame
 <boost momenta to center-of-momentum frame>
 s = … ! collision frequency for pair
 <invert Nanbu equation to get collision angle>
 <calculate rotation in CoM>
 <update momenta stochastically based on weighting>
 <boost momenta back to lab frame>

Five input parameters are required

• Needed input parameters:

• Actual charge density for n=1
(cgs)

• Which species to collide

• Self-collide?

• Charge state of ion

• Collision timestep (0, the
default, doubles as flag to turn
collisions off)

Other inputs to know

• Defaults to be aware of

• Perez collision model

• Collision cell size equals PIC
cell size

• Calculate Coulomb log in each
cell

• One option one might want: Low
temperature correction

Things you have to worry about a little

• Numerical heating (see Paulo Alves)

• Ratio of collision cell to MPI node

• Good resolution

• Depends on the problem, no hard rules

• Size of collision gradients (nx_collision_cells)

• Resolving the collision frequency (n_collide)

• Representing the distribution function (nx_collision_cells, ppc)

• That said, the algorithm is fairly forgiving

Things you don’t have to worry about

• Over-resolving the collision frequency

• Relative size of macro-particles

• Multiple equivalent species

• Highly different densities

• Relativistic effects

• Conservation of energy and momentum *on average*
(except for heating)

Computational Cost

• It is fairly expensive

• Depends on system, but roughly 2X cost for two species
colliding at each timestep

• Currently only vectorization is OpenMP (which works
quite well!); adopting for GPGPU or KNL seems
promising, but future work

• SIMD within each collision cell is possible too, but is
challenging

• For the general user, just a few parameters need to be
input and the collision package will take care of the rest.
Be careful of numerical heating, but otherwise you can’t
really mess up.

• With a little more care, you may improve the
computational performance without losing physics.

• For the developer, both the package and the individual
models are well isolated; easy (and encouraged) to add to
or modify.

• Better vectorization, impact ionization are obvious goals

Take Away Message

