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Introduction 

•  Particle-in-cell (PIC) codes have been 
widely used throughout plasma physics 
for over 50 years 

•  They are used when kinetic effects are 
important and continuum fluid models are 
inadequate 

•  Basic PIC code loop: 

*Birdsall	
  and	
  Langdon	
  [1985]	
  



But… What mathematical model do PIC codes represent? 

•  Statistical model such as the Vlasov equation? 

–  Are particles phasespace markers, does the PIC code represent an ensemble 
average? 

•  Molecular dynamics model represented by a Klimontovich equation? 

 
–  Not an ensemble average but a numerical experiment of a single instance? 

•  We hypothesize that the mathematical model behind PIC codes is a Klimontovich 
equation with finite-size particles 

•  We verify that the PIC code converges to this model as numerical parameters are 
varied 
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Preliminaries 

•  Our computational model for the Klimontovich equation for finite-size particles is 
the “gridless PIC” code 

–  We evolve a given number of particles with Maxwell’s equations but without a grid 
–  Spectral 

•  For a periodic system, one can solve the model for a given number of particles 
with infinite Fourier series. 

•  We truncate the infinite Fourier series at a maximum wavenumber 
•  Allows comparison with a gridded PIC code 
 

–  Gaussian particle shape function 
–  Finite time step 

•  Gridless code with finite-size particles 
–  Description 
–  Convergence properties 

•  Conventional PIC code*  
–  Does it converge to the gridless code? 
–  The dispersion relation of electron plasma waves 

*from	
  the	
  UPIC	
  Framework,	
  Decyk,	
  Computer	
  Phys.	
  Comm.	
  (2007)	
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Simulation Set-up 

•  1D, periodic, thermal plasma 
•  18432 electrons with exactly the same initial positions and velocities 
•  Fixed ion background 
•  L = 512λD 

•  Electrostatic, dt = 0.1ωp
-1 

•  Electromagnetic, dt ~ 0.01ωp
-1, vth/c = 0.1 

•  We further specify: 
–  a = particle size 
–  Nmax = number of modes 
–  λD = Debye length 
–  Δ = grid size 

Δ can also be used as a normalizing length to relate the gridless to gridded 
codes 

•  Our metric for comparisons: time history of the total field energy 
•  Electrostatic field energy 
•  Longitudinal electric, transverse electric, and magnetic field energies 



Testing convergence of the electrostatic gridless code 



Gridless code convergence with number of modes 

Baseline case: L = 512λD, a=λD, Nmax = 1024 

Nmax	
  

[We	
  add	
  10-­‐14	
  which	
  falls	
  at	
  the	
  machine	
  precision;	
  this	
  follows	
  similarly	
  on	
  following	
  slides]	
  



Gridless Code convergence with particle size 

•  A conventional PIC code with L = 512λD, a = λD, and Δ = λD would have Nmax=256. 

•  Is convergence found for a fixed number of modes by varying particle size?  
 

Comparison case: L = 512λD, Nmax = 256, variable a 
Baseline case: L = 512λD, Nmax = 1024, similar a 
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Gridless Code convergence depends on kmaxa 

•  Whether varying number of modes (kmax) or particle size (a): 

•  Key consideration: At some kma, S(k) reduces all Fourier modes with k > km by a ratio 
smaller than double precision can resolve 
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Gridless Code convergence with time step 

•  The previous convergence is 
maintained for long times 

–  Approximately 50000 time steps 
–  a=2.25λD, Nmax=256 vs 1024 

•  Energy differences with the same 
parameters and a very small time 
step (dt = 0.003125 ωp

-1) also 
show convergence 

–  Slower, quadratic vs 
exponential 

–  Such small time steps are 
unnecessary, but it’s 
reassuring to see that nothing 
unreasonable occurs 

dt	
  



Testing convergence of the electrostatic gridded PIC code  
with the gridless code 



Convergence of the gridded code with gridless code 

•  Aliasing: particle density perturbations with                 get mapped 
unphysically to shorter wavelengths 

•  Interpolation: we use linear, quadratic, and cubic B-spline functions  
–  Particle shape is a product of the interpolation function and filter function used to 

suppress aliasing 
–  With m the order of interpolation: 

•  To compare gridded with gridless code, we take Seff(k) ≈ S(k) 

–  α = 6, 4, and 3 for linear, quadratic, and cubic, respectively 

Sg(k) = e�(kag)2/2

Wm(k) = [sin(k�/2)/(k�/2)]m+1

Seff (k) = Wm(k)Sg(k)
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Comparison case:  
Gridded PIC code, L = 512λD, Nmax = 256, a=2.25Δ, λD = Δ 

Baseline case:  
Gridless code, L = 512λD, Nmax = 256, λD = Δ 

Higher order interpolation gives better convergence 

 
The higher the order of interpolation, the more the aliased modes are reduced  

Electrostatic Field Energy Particle Kinetic Energy Total Energy 



The gridded code converges to the gridless code  
as the ratio of grid size to particle size is decreased 

Comparison case:  
Gridded PIC code, L = 512λD, Nmax = 256, λD/Δ = variable, cubic interpolation 

Baseline case:  
Gridless code, L = 512λD, Nmax = 256 

a=λD	
  a=2.25λD	
  

λD/Δ	
  λD/Δ	
  



A physical question: 
Do electron plasma waves have the proper dispersion relation? 

•  The shape function affects the electron charge and thereby the plasma frequency 
•  The change in the dispersion relation can be determined simply by 

     or 
 
For example,      becomes 
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Solid line: Kinetic dispersion relation  
Dashed line: Kinetic dispersion relation with correction for finite-shape-particles  



Testing convergence of the electromagnetic gridless code 



Gridless code convergence with number of modes 

Baseline case: L = 512λD, a=λD, Nmax = 1024 

Nmax	
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Gridless Code convergence with particle size 

•  A conventional PIC code with L = 512λD, a = λD, and Δ = λD would have Nmax=256. 

•  Is convergence found for a fixed number of modes by varying particle size?  
 

Comparison case: L = 512λD, Nmax = 256, variable a 
Baseline case: L = 512λD, Nmax = 1024, similar a 
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Gridless Code convergence depends on kmaxa 

•  Whether varying number of modes (kmax) or particle size (a): 

•  Key consideration: again, when does the shape factor fall below machine precision 
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Testing convergence of the electromagnetic gridded PIC code  
with the gridless code 

 



Higher order interpolation gives better convergence 

•  The higher the order of interpolation, the more the aliased modes are 
reduced  

•  The transverse electric field energy is not quite as convergent, but both 
longitudinal and transverse energies show improved convergence as the 
interpolation increases from linear to cubic 
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The gridded code converges to the gridless code  
as the ratio of grid size to particle size is decreased 

Comparison case:  
Gridded PIC code, L = 512λD, Nmax = 256, λD/Δ = variable, cubic interpolation 

Baseline case:  
Gridless code, L = 512λD, Nmax = 256 
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Another physical question: 
Do electron plasma waves have the proper dispersion relation? 

•  The shape function affects the electron charge and thereby the plasma frequency 
•  The change in the dispersion relation can be determined simply by 

     or 
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Conclusions 

•  For 1D electrostatic and electromagnetic codes, we have found 
convergence 

–  The gridless code converged for 

•  We found that a spectral PIC code converged to the gridless code 
–  Convergence occurred as “a” and λD increased relative to Δ.   
–  These are interesting results, since we normally use PIC code with a=Δ= λD. 
–  With kmax_PIC = π/Δ, the gridless result implies using a > 5/2 Δ
–  For a=λD, this implies using a PIC code with Δ ~ 0.5 λD. 

•  We conclude that the mathematical model behind the PIC code is the 
Klimontovich model with finite-size particles 
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