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This talk is about how one can use particle simulations to study micro-
scopic plasma phenomena, such as the behavior of test charges. In a particle
simulation, one assumes some form for the forcé of intgraction between
particles, and then integrates on a computer the equations of motion of a
large number of particles.!l

This method is limited only by the validity of the known force law, and
by the accuracy of the numerical integration scheme. Of course, 1f the number
of pgrticles followed on the computer is too small, then the result will not
be described by plasma theories, that is, the model will not behave much like
a plasma, but the results will still be valid. Particle simulation can be
distinguished from other kinds of simulation by its independence from plasma
theory, and thus it is meaningful to look at this kind of calculation as a
computer experiment.

Most of this talk will be about test charges in plasmas.  The concept of
a test charge has proved to be an important tool in the theoretical develop-
>ment of plasma properties. It is, of course, unthinkable‘that one could
ever measure in an experiment the effect by itself of a single test charge
moving in a plasma. The purpose of this talk is to show how particle simula-
tions can be used to perform computer experiments on just such single test
charges. This gives us for the first time a "microscope” with which to look
direécly at how test charges interact with plasmas, and thus give us a possi-
bility to evaluate some important theoretical concepts.

The method is based on the idea that computer‘experiments, unlike
laboratory experiments, are absolutely reproducible. The essence of the
method is to perform the simulation twice, first with a background plasma, and
the sgcond time with exactly the same initial conditions plus some small

perturbing influence, such as an extra particle, a small current in an




antenna, etc. The results are subtracted, and what is left is the effect of

the small perturbation.

- The potential of a test charge is given in many plasma textbooks, such as

Krall and Trivelpiecez, to be:

k,u) = —oPe —
M = e mw

Where Pe(k,w) represents an external charge, and

2
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is the plasma dispersion relation for an electron plasma.
Therefore I will start with this equation, and in fact, much of this talk

will be devoted to its wmeaning.

Suppose that we choose a test charge moving at constant velocity

Pe (x,t) =q¢ 8(x - %0 - y¥t), . t>0,
then
qee _15359
Pe(k,®) = Ty - @)
so that

-ik
4mqpe ~TX-X0

¢(E’ w) = ik< (E.!-m) 5(_15-, w)

To obtain the answer in (x,t) space, one first inverts the Laplace transform

in time:
-ik, ot+ic
41qpe  — X0 / dw e ~iut

k =
o(k,t) 2 - wpye 2T iRy -w) € (k,w)




+ initial value terms, which will vanish identically for the case in the
simulation, since both runs are prepared identically except for the test
‘charge.

The integrand has two poles, one at @ = kev and another at w = w5, where
Wy are the roots of €. Applying Cauchy's theorem, this integral cén be done by

contour integration to give:

-ike(x0 + vt) 4mare LK X0 -iwjt
b(k,t) = 2Mdte - aes e 3, t5o0

k2e(k,k « v) k2(k » v- 3c (k,
Kk » v, 3 ke oyroy) 3e (e, 0p)

The two terms here are commonly called the Debye cloud term and the Cherenkov
term, respectively. Performing the integral over k, one can write the

solution in real space as

¢(_)S,,r-)= $ (}_ot)"' ¢ (}_:t)s
D c

where
ell » (x ~ %0 - vt)
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where n is the spatial dimensionality.

Usually the second term is discarded, because Wy is always damped.
However, in our case, this cannot be ignored because there are always some
modes whose damping is small, and for those modes ¢c is in fact much bigger

than ¢p.




For a stationary test charge, v = 0, the first term gives the well-known

Debye cloud:

( 2mq, Ap e‘lf:fDI/ADv in 1D
¢p (x) = { 2 Ko (|z=x0[/2p), in 2D
=|z=x0] /2y, in 3D
qee
\
|x-%0]

where Ap = vy/wp is the Debye length. Howéver, if v > 0, things are not so

simple.

For v > 0, most of the significance of the integrals can be understood by

considering the simplest possible case, a one dimensional cold plasma, where

2
e(k,0) = 1= 912’-
w

In this case the integrals can be done analytically. For the Debye term

e(k, k + v) has poles at kv = * wp, so that one obtains:

_ 0 X2 Xg + vt
¢‘D (x)‘:)= 4
__L_":pv sin [%‘2 (x = x9 - vt)] x < xp + vt

This is just a sine wave extending to infinity behind the particle. For the
Cherenkov term, there is a pole at k = 0, which gives the potential of an
unshielded test charge, and a pole at kv = ®j which gives a potential which

exactly cancels the Debye term for x < xq.




oc (x,t)= =2mqy |x = x| cos wpt

~41qev ‘ 2nqp v
-;Er——-sin [gz (x = x9 = vt)] - ap sin wpt x < xg
+
Z“Qtv

sin wpt X 2> X0
Thus the total solution [Fig. l] is

$(x,t)= -2mqy |x-xg| cos wpt

( -2mqpV sin wpt x < X0
wp .
dnqev 2nqev vt
AR i1 AP [gb'(x'xo—vt)] + w:t sin wpt, x0 < x < xQ +
\ ZIg:v sin wpe X > X0 + vt

The unshielded potential 2mqy |x - xQ|, which oscillates at w = wp is just the
plasma response to the sudden creation at t = 0 of a new charge. The
oscillation at kv = wp is the excitation of a plasma wake by the test charge.
It moves with the particle. The Cherenkov term is necessary to produce the
correct initial values: the oscillation cannot extend to infinity at t = O,
which the Debye term alome would predict.

The major features of the plasma response to a moving test charge Are
contained in the cold plasma model. The fully kinetic model introduces two
new effects: damping and the excitation of waves not Qoving with the particle.

It turns out that the Debye term can be integrated amalytically even in

the fully kinetic case, for a one dimensional plasma. The result [Fig. 2] is:
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¢D (x,t) =

4q¢dp Im £ (xglx = xp=vel/ap) X > xg + vt
K
0 .

~4qedp Im £ (nolx:zo-vtllln) + dmaerp In eixo(x-tg—vt)/kb ,

x <xp + vt

where £(z) is a combination of complex sine and cosine integrals:

£f(z) = Ci(z) sinz - Si(z) cosz,

0? = fRli- ekl = -1+ B0 (X)) AT d e vHan
t

X
D(x) = e‘xz f etﬁ2 dt is Dawson's integral.
0

The imaginary part of the sine and cosine integrals gives a shielding around
the test charge. The complex exponential term gives the wake behind the
particle, and also contributes to the shieldfng.

This Debye term is in reality an asymptotic solution. To get the correct
time evolution one needs to also consider th; Cherenkov term. This I have not
been able to do analytically but only numerically.

The total solution [Fig. 3] looks similar to the cold plasma result:
there is a wake behind the particle superimposed on a much larger "tinging" of
the unshielded test charge potential., There are two important differences.
The first is that the sine wave behind the particle is damped, with the
envelope given by the Landau damping result. Secondly, there are large
oscillations in the vicinity of where the particle was created which gét left

behind, at least 1f the test charge velocity v > vg,
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The "rihging" of the unshielded test charge which dominates the wake is
not really of interest, and is an artifact of the way we initialized.the
system by suddenly creating a chargé. If one wanted to see the wake more
clearly, it would be better if one could find a more gentle way to initialize
the system.

The answer is to do what nature does - create charges as a neutral pair.
It turns out that the ringing is for the most part independent of the velocity
of the test charge. So Ehat if one creates an electron—positron pair, and
shoots one of them off with a given.Vélocity, the ringing due to each will
cancel out, and one will be left with the plasma wave being excited by the

test charge.

There is another thing we must consider if we are going to compare theory

with simulation. In the simulation, one uses finite-size particles, which

changes the wave properties somewhat. However, it 1s easy to fix the theory
to take into account the finite size of the particles if aliasing effects can

be neglected. One merely replaces:
qé (x - x!) + q5(x - x1),

where S(x) is the particle shape function. In Fourier space this means

replacing
q + q8(k),

where S(k) is the transform of S(x). The only place q enters in the equations

is in the plasma frequency, so one has
wp? + wp? |S(k)|2,

which changes the dispersion of waves somewhat. For long wavelength modes,




2
the first order correction with gaussian shaped particles gives
w? = upe? + [3 - a2/2p?] k2 vp?

Usually a = Ap is used, which changes the constant 3 to 2.

This correction also changes the Debye shielding and the plasma wake,
(Fig. 4] primarily by eliminating sharp discontinuities and lengthening the
wavelengths, But these corrections due to finite-size particles do not change
things very much in the theory.

Thus we will use for the extermal charge, an electron-positron pair:

Pe (x,t) = q¢ S(x = x0) = q¢ S(x = xg - vt), t>0

The resulting potential [Fig.5] will then clearly be the difference between
the potentials obtained earlier, ome with finite v, and one with v = Q.

Now that the prediction of theory is understandable, let us examine the
results of a particle simulation. A usual particle-~in-cell type of code was
used, except that second order spline functions were used in the interpolation
on the grid and 64 bit precision was used. Two runs are done. In the
reference run, the electrons are distributed uniformly in space, with a
Maxwellian velocity distribution from a gaussian random number generator. In
addition, one extra test charge, with charge + /10, is left at rest. The
ions form a neutralizing background. The second run is prepared ideantically,
except that the extra test charge moves with velocity v. The time history of
the potential is reéorded in each case, and the difference between the two is
displayed. Both periodic boundary conditions and vacuum boundary conditions
have been used.

' The agreement between theory and simulation [Fig.6] is quite stuanning,

especially for early times. The figure shows the case of a test charge moving

with velocity 3vy, and vacuum boundary conditions. There are 4000 particles
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n a Debye length here, so the plasma paréme:er g = (thD)"1 is small enough to
represent a real plasma.

As time goes on, howevery disagreement,between theory and simulation
becomes evident. This disagreement is the result of particle discreteness,
and indicates what the corrections to the first- order theory are, which
neglects particle discreteness.

Let's examine the major discreteness effects. The first ?hing which is
evident is the occasional and local growth of the plasma wake, or parts of it,
in time, A second effect is the evidence of an interference pattern in the
wake, 1ndicating secondary excitation of other modes. Thirdly, one cén see
the excitation of a precursor in frout of the particle.

We have found that the discreteness effects dépeud on the random numbers
used to initiate the system, but are exactly proportional to the charge of the
test particle. The effects are more obvious when the test particle velocity
is reduced, and when the plasma paraﬁeter is increased (that is, when ndp is
reduced).

Although these effects are not entirely understood, we do have some clues
as to. thelr causes. The most important clue comes from examining the
precursor in front of the test particle, as the test particle velocity
changes, but for the same initial preparation of the plasma. One finds that
this precursor does not depend very much on the test charge itself, and the
leading edge propagates with a velocity about 4vy, which is just about the
velocity of the fastest particle in the simulation. The conclusion is then
that the precurser is caused by the background'electrons which have traversed
the wake behind the test charge, and finally overtake the test charge, and
because of their long term memory, they propagate the disturbance in front

of the test charge. This is reminiscent of a plasma echo, and needs further
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investigation. Notice that the Cherenkov radiation left behind in the
vicinity of where the test charge started, is also not strongly dependent on
the test charge velocity, so that these fast electrons experience a fairly
gsimilar history.

One can conclude that a collision between two fast particLes involves the
excitation of other modes, i.e., electrostatic bremstralling3. These modes
turn out to enhance the high k part of the radiation (the wake), which begins
to become sowmewhat turbulent [Fig.7]. If the test charge moves faster than
any particle, then no precursor is observed, consistent with this picture
[Fig. 8].

Finally, the sporatic growth in time of the wave is not well understood,

but one can observe in the simulation that the growth rate is approximately

given by
Y/wp = 1/3 (aAp)-l/3, nip > 100

and is independent of the charge on the test particle. This growth probably
depends on the pre-existing fluctuation level of waves in the plasma.

The significance of this technique is that we now have a tool, a
microscope if you will, for investigating such fundamental processes as the
behavior of test charges. This gives us valuable clues for further
theoretical developments in basic plasma properties, as well as an opportunity
for theorists to directly test some of their hypotheses and assumptions.

Note, for example, that the Fourier-Laplace transform of the potential created
by a test charge, which we haQe been looking at, is a direct measurement of
the full plasma &, discreteness effects included.

There are a lot of other applications of this subtraction technique. One

can apply this to the study of the radiation pattern emanating from an antenna
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and we have already gtarted this. One can imagine using other perturbations,
a test wave for example, and examine its effect on the perturbed velocity
distribution or on other waves. One does not need to limit the application of
this technique to small effects. This technique is, in fact, a perfect
filter, in the sense that all effects which are uncorrelated with the

perturbation get subtracted out. Finally, this subtraction technique provides

an extremely sensitive verification tool for new particle codes. If a new
code can reproduce these results, one can have great/confidence in its
correctness. It can also be used to understand the physical behévior of
computer models where the fundamental physical behavior is obscured by the
mathematical approximations used, such as in some recent long time step

(implicit) particle codes.
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