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Abstract

Two concurrent three-dimensional real-to-complex Fourier transform
algorithms have been developed for coarse-grained distributed memory
parallel computers which perform the 3-D transform as three separate sets of 1-
D fast Fourier transforms (FFTs) with each processing node performing local
sequential 1-D FFTs in parallel. In the first algorithm, the 3-D data is first
partitioned into "slabs” (e.g., all x and y for a range of z) and the slabs
distributed among the nodes so each performs sequential FFTs on two
dimensions with no interprocessor communication. Following a redistribution
of the data among the processors, each node then performs sequential FFTs on
the third dimension. In the second scheme, the data is partitioned into "rods"
(e.g., all x for a range of y and z) and is redistributed between each of the three
sets of sequential FFTs. Since each processor performs sequential FFTs locally,
optimized assembly language node FFTs can be used. A particular feature of
both the slab and rod 3D FFT algorithms is that the Fourier coefficients are
packed into the original data array so that the Fourier coefficient array is the
same size as the original data array. Timing results for both algorithms are
presented from the Intel Delta Touchstone. We find that the Slab
Decomposition FFT is faster in all cases. Source codes for the parallel FFTs, as
well as a sample program using the FFT to solve Poisson's equation, are given
in the Appendix.

1. Introduction

Multi-dimensional fast Fourier transforms (FFTs) are used for the solution
of computational problems in virtually all scientific fields. The specific
computational problem motivating the present work is the use of real to complex
FFTs to solve Maxwell's equations in plasma particle-in-cell simulations codes
such as those used in the Numerical Tokamak Project{Dawson et al, 1993].
Efficient parallel algorithms are needed for FFTs for MIMD computers such as
the Intel Delta which do not provide parallel FFTs as part of the system software.

For a 1-D FFT, the only choice for parallelization is a domain
decomposition of the 1-D data such as described in Fox et al [1988]. However, for



a multi-dimensional FFT, another choice is possible since an n-dimensional FFT
can be done as n consecutive sets of 1-D FFTs( Jackson et al [1991]). Here, we
describe two methods for implementing a parallel 3D FFT where each processor
performs sequential 1-D FFTs in parallel. Interprocessor communication is
needed only between sets of 1D FFTs. Since each node performs sequential FFTs
independently, machine-specific optimized node FFTs can be used.

Consider a three dimensional array of real data A(l,m,n) on an xyz-grid of
dimension ny xny Xnz . The 3D Fourier transform coefficients of this array are

n.—1n,~1p -1

C,m ,n')= Z Z Satmme 2’"(/ +mm/ +nn/) €]

=0 m=0n=0

forl’=0,ny/2,m' =0, ny -1 and n’ =0,nz-1. Because the A(l,mn) are real, the
other I’ modes, I’ = nx/2+1, nx, can be recovered using the relationship
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which follows from Eq. 1 and the identity
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Equation 1 can be written in the equivalent form
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from which it is clear that the 3-D transform can be accomplished through three
consecutive 1-D transforms. Note that the 1-D transform over the first index I can
be done independently for each m and #; this is the basis for the parallel Fourier
transform algorithms presented here.

In the first parallel algorithm, presented below, the 3-D transform is
accomplished by initially partitioning the real data array A(l,m,n) into "slabs" so
that each processor has all/ and m (x and y) for a portion of the n(z) values as
illustrated in Fig. 1. Each processor then performs sequential transforms in x and
Y (the sums over ! and m ) for its range of n(z) values. The partially transformed
data is then redistributed so that each processor has all n(z) values; each
processors then performs sequential z transforms for its portion of the partially
transformed data. We refer to this algorithm as the Slab Decomposition FFT.

In the second algorithm, the 3-D transform is accomplished by initially
partitioning the A(l,m,n) array into rectangular cross section "rods" so that each
processor has all I(x) for a range of m and n (y and z ), as illustrated in Fig. 2.
Each processors performs the sequential | transforms (x transforms) for its portion



of the A(l,m,n) array. The partially transformed data is then redistributed among
the processors so that each processors has all m, (all y), but a range of l and n. (x
and z). Each processor now performs sequential m transforms (y transforms) for
its portion of | and n. The partially transformed data is again redistributed so that
each processor has all  for a portion of I and m; the processors then perform the
sequential n transforms(z transforms) . Again, inter node communication is
needed only to redistribute the data. We refer to this method as the Rod
Decomposition FFT.

The first algorithm (Slab Decomposition) requires only one redistribution
of data among the processors. But the maximum number of processor which can
be utilized for this algorithm can be restrictive: Because of the initial partition in z
and the intermediate partition in x (at which stage the coefficients are complex),
the maximum number of processor which can be used is nprocs=min(nz,ny/2). If
more processors are needed for other portions of the user's applicationasina -
PIC code (see, for example Liewer and Decyk, [1989] and Ferraro et al, [1993])
some of the processors will, in fact, be idle during the transform. The second
algorithm (Rod Decomposition) gives a load balanced decomposition as long as
ny*nz, ny/2*ny and ny/2*nz are multiples of the number of processors. The
maximum number of processor which can be used here,
min(ny*nz,nx/z *ny nx/2*nz ), is less restrictive than for the Slab Decomposition.
However, it requires two redistributions of the data and thus more
interprocessor communication.

Timing comparisons of the two algorithms on the Intel Delta Touchstone
at Caltech show that, for a given problem size on a given number of processors,
the Slab Decomposition is faster in all cases, even when the Rod Decomposition can
use more processors. Times for the Rod Decomposition always begin to increase at
some point as the number of processors increases because of the communication
overhead. Thus we conclude that it is preferable to use the Slab Decomposition
algorithm even if this means some processing nodes must be left idle.

Note that following the first (here, the I or x) transform of the real data
A(l,m,n) with nx*ny*nz words, one obtains (nx/2+1)*ny*nz complex Fourier
coefficients requiring 2*(nx/2+1)*ny*nz words and thus it appears that more
storage space is need than for the original real array. However, some of these
coefficients are related to other coefficients by simple conjugation (see Eq. 2) and
it is possible to store all necessary coefficients in the nx*ny*nz words allocated for
the original data so that the transform can be done "in place," as will be discussed
below.

The plan of this paper is as follows. In Sec. 2, our investigation of various
schemes for the interprocessor exchange of data is described. In Sec. 3, the
scheme used to pack the Fourier coefficients into the original array allocated for
the data is described. The two FFT algorithms are described in detail in Sec. 4 and
timings are given in Sec. 5. In Sec. 6, a sample problem using the 3D FFT to solve
Poisson's equation, is described and the pseudo code presented. The Appendix
gives a FORTRAN source code for the sample problem (solution of Poisson's
equation) and the two parallel 3D FFT algorithms. The FFT source code package



includes a routine which can be called to give the wave vectors stored in the

same manner as the complex Fourier coefficients to enable a use of this parallel
FFT package as a "black box."

2. Interprocessor Communication for Data Exchange on Intel Delta

The key feature of the parallel 3D FFT algorithms presented here is that, by
performing the 3D FFT as sets of 1-D FFTs, interprocessor communications is
needed only between the sets of 1-D FFTs to redistribute the data among the
nodes. The 1-D FFTs are performed locally on the nodes. Since the interprocessor
communication is the only source of parallel inefficiency when all nodes are
participating in the FFT, different methods of data exchange were investigated.

From Fig. 1, it can be seen that the Slab Decomposition 3D FFT requires
each processor to exchange a block of data nxmprocs*ny*nz/nprocs with every
other processor where nprocs is the number of processors. This is essentially a
transpose of the array. The Rod Decomposition (Fig. 2) requires each processor to
exchange a block of data with every other processor within a "plane” of
processors; the "plane” of processors is different for the two redistributions of the
data. ‘

To find the optimum method for the Intel Delta, communication tests
were done with each processor exchanging data with every other processor as
occurs in the Slab Decomposition parallel FFT. Different message sizes, from 4
bytes up to 1 million bytes on mesh size ranging from 4 nodes to 256 nodes were
used in the tests. Initially, we planned to use the fastest, but, of the four schemes
investigated, only one worked for large meshes on large message and thus this is
the method used in the parallel FFT codes. This method, which uses fully
asynchronous communication, is described first below. In the tests and in the FFT
itself, the order in which a processor receives the data is unimportant because the
first word of the message contains the source node number, and from this, the
proper storage location for the data can be determined.

Fully asynchronous exchange (irecvfisend). The method used in the FFT
timing result presented below and in the code in the Appendix uses fully
asynchronous communication. This is the only method that did not cause -
communication deadlock on the Delta for large messages on large meshes. It
requires the user to allocate a working array equal in size to the processor's
portion of the original array. To exchange the data, each processor first posts an
asynchronous receive. Next a block of data is sent to a different processor, and
then the node waits for receipt of the incoming message. The data received is
placed in the temporary working array to avoid overwriting data not yet sent.
This process is repeated until each processor has exchanged data with all others.
The Intel pseudo code for this asynchronous exchange follows. Note that in this
particular example, utilizing the "me.xor.i" construct, the processor which
receives the data is the same as the one sending the data, i. e., this is an actual
exchange of data.



¢ Asynchronous data exchange among all processors
do i = 0, nprocs-1

c Post message receipt. me=my processor id

irmsg = irecv (me, inbuff, nbytes)
c Chose destination node. Each nodes sends to a different
¢ node to avoid communication contention

is = me.xor.i
c Put outgoing data in buffer

c Send message
ismsg = isend (is, outbuff, nbytes, is,0)
c Wait for incoming message '
call msgwait (irmsg)
c Wait for isend to finish
call msgwait (ismsg)
c Store data in temporary array

enddo

Timing results (bandwidth in units of Mbytes/sec) for this communication
scheme on the Intel Delta as a function of message size are shown in Fig. 3 for
four different sizes of processor meshes, 16x16, 16x8 and 8x8. The Delta has 512
processors arranged on a 16x32 two-dimensional mesh. Also shown is the peak
bandwidth of the Intel Delta (11 Mbytes/sec). Timing results (Mbytes/sec) as a
function of processor mesh size for a fixed message size (40 Mbytes) are shown in
Fig. 4. Fig. 5 shows the dependence of the bandwidth as a function of message
size for two different sized processor arrays, 16x8 and 4x8. In both figures the
curves labeled ir/is are the results for this asynchronous method.

Synchronous exchange (csend/crecv). A second interprocessor data transpose
investigated used synchronous communication. Each processor first sends a
block of data to one processor (using the csend call), then receives a block of
data from another (using the crecv call). The process is repeated until all
processors have exchanged data. Again, the data received must be placed in a
temporary array to avoid overwriting data which has not yet been sent.
Observed bandwidths for this method are shown on the curves in Fig. 4 and 5
labeled cs/cr. Communication deadlock occurred on the Delta for exchanging
large messages on large numbers of processors (about a megabyte on 512
processors.)

Asynchronous receive/ Synchronous send ( irecv/csend). A third
interprocessor data transpose investigated used asynchronous receives and
synchronous sends. Each processor first posts a message receipt (using the irecv
call). Next a block of data is sent to a different processor synchronously (using a
"blocking" send, csend). The processor then waits for receipt of its incoming
message. This is repeated until exchanges have been made with all other
processors. Bandwidths for this communication scheme are shown in curves in
. Figs. 4 and 5 labeled ir/cs. Here, as in the fully synchronous scheme,

communication deadlock occurred when exchanging large messages on a 512
node mesh.



A fourth communication method, which does not require the user to
allocate the temporary storage array, was also investigated. Here each processor
synchronously sent one block of data to all of the other processors (using the call
csend). It then synchronously receives messages from all other processors (using
the call crecv). Since all the data has been sent out before any new data is
received, the need for the user to allocate a temporary array has been eliminated.
Instead, the system must allocate system communication buffer space.
Unfortunately, for large messages on a large number of processors, the system
communication buffers overflowed on the Delta and communication deadlock
occurred. No timings were done for the scheme. The largest case that ran using
this approach was on 128 nodes for an array A(64,64,64).

3. Storage of the Fourier Coefficients for "Packed" Algorithm

Both the Slab and Rod Decomposition FFT algorithms presented here
utilize packing of the Fourier coefficients into the original data array and here we
explain the packing scheme used.

The Fourier transform of the ny xny xnz array of real data produces
(ny/ 2+1)xny xnz complex Fourier coefficients (Eq. 1). If one allocates the extra
storage (two additional planes of data ny xnz ) and uses 2*(nx/2+1)*ny*nz words
to store the Fourier coefficients, they are stored in a real array A(l,m,n) of
dimension nx+2 xny xnz with the real and imaginary parts adjacent:

ReC(l'y)m’n’) storedin AQU'+1,m'+1n'+1)
ImC(l'’m’,n’) stored in A(2I'+2,m’+1,n'+1) 4)

where we have used the FORTRAN convention of starting the array index at 1.
This is eqmvalent to putting the coefficients in a complex array B of dimension
(nx/2+1)*n *ny with g(l "m’n’)stored in B(I'+1,m’+1,n'+1). Note the offset of 1
between the array element indices and the Fourier coefficient indices due to the
Fortran convention of indexing from 1. Equation 4 gives the basic storage scheme
used in the parallel algonthms

However, there is redundant information in the Fourier coefficients in all
stages in the transform process, so that it is possible to "pack” the Fourier
coefficients into the original nyxny xnz array. This is often referred to as an "in
place” FFT and facilitates use of the FFT as a "black box" since no extra storage
need be allocated for the extra planes of Fourier coefficients. Packing is a
particular feature of both parallel FFT algorithms presented here. Here, only the
redundancy and packing of the fully transformed array is described in detail
since a users' application may need access to the Fourier coefficients. Similar
considerations apply in the intermediate transforms as discussed in Sec. 4.

Because the original data is real, there is redundancy within the I’=0 and
I’=ny/2 Fourier coefficients. Only half of the information need be saved for each
so that it is possible to pack the needed information for the I'=ny/2 coefficients
into the I'=0 portion of the array and thus eliminate the need for the extra two



"planes" of storage. No other Fourier coefficients are involved in the packing and
all others are stored as in Eq. 4 above. In the parallel algorithms, this implies that
only the processor storing the 1’=0 portion of the array has non-standard mode
storage.

‘ For I'=nyx/2, Eq. 1 gives

n —1
Clnyg /2,m 1) = 2 P /zz 2 e"z”’” %,{ Y cos(nD)A(, m,n)) (5)
n=0 m=0 =0

where the term in parentheses (the sum over ) is real because the data A(l,m,n)
are real. An analogous result is obtained for I'=0 with the cos(nl) replaced with 1.
Three special cases of redundancy and packing of the I'=0 and I'=ny/2 modes
need to be treated. The packed Fourier coefficient array is shown in Fig. 6. Figure
6a shows the I’=0 plane which would, in the unpacked case, contain all the
ReC(0,m’,n’) and Fig. 6b shows the I'=1 plane which would contain the
ImC(0,m’n’) coefficients. No other parts of the array are affected by the packing.
Case 1. Four coefficients for(m’,n’)={(0,0), (ny/2,0),(ny/2,nx/2) and (0,nz/2)}.
It can be seen from Eq. 5 that for these four sets of (m ‘n’), the C(nx/2,m’'n’), as
well as the C(0,m’,n’), are real. The ReC(nx/2,m’,n’) are packed in the locations of

the ImC(0,m’,n’). These modes are indicated by the four dotted squares in Fig.
6b.

Case 2. Two columns of modes m’=0 and ny/2 for n'=1,nz-1, excluding
n’=nz/2. Half of these modes are redundant. For these modes,

n,-1 -1
C(ny/2,ny/2,n')= t e . Zcos(:rm) ZCOS(nI)A(l mn)|, (6)
. n=0 m=0 =0

where the term in parenthesis is real and similarly for the coefficients( nx/Z on’),
C(0,0n°) and C(0,ny/2,n") . Using the identity
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it can be seen that
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and thus half of the modes can be obtained from the other by complex
conjugation using the prescription of Eq. 8. An analogous result holds for the
other three columns. The Fourier coefficients for C(ny/2,0,n’), for n’=nzf2+1,nz-1
are stored in the locations of the C(0,0,n’), for n’=nz/2+1,nz-1 coefficients. The



Fourier coefficients for C(nx/Z,ny/Z,n '), for n’=nz/2+1,nz-1 are stored in the
locations of the C( O,ny/Z,n '), for n’'=nz/2+1,nz-1 coefficients. When needed, the
other modes are generated from those stored by complex conjugation as given in
Eq. 8. These mode columns are shown as the striped rectangles in Figs. 6a&b.

Case 3. I'=nx/2 Coefficients excluding Cases 1 and 2. From Eq. 5 and Eq. 7,
it can be shown that

C(n, / 2,ny -m,n;—n')= C*(nx /12,m',n') 9)

and similarly for the I'=0 modes. Thus it is necessary to store only half of these
modes with the other redundant Fourier coefficients recreated by complex
conjugation as needed. The modes C(nx/2,m’,n’) for m’=ny/2+1,ny-1and
n’=1,nz/2-1 are stored in the locations of the modes C(0,m’,n’) for m’=ny/2+1,ny-1
and n’=0,nz-1. These modes are shown as the shaded rectangle in Figs. 6a&b.

4. Description of Slab and Rod Decbmposition Parallel 3D FFT Algorithms
a. The Slab Decomposition 3-D FFT

In the forward Slab Decomposition FFT algorithm, the global data array
A(ny,ny,nz) is assumed to initially partitioned into slabs along the z axis as shown
in Fig. 1 so that each node has a fraction 1/nprocs of the total data where nprocs
is the total number of processors used. Each node has all x and y data for a
portion of the z axis. A is real and ny, ny and nz are all powers of 2. Thus the data
is initially distributed locally as A(nx,ny,nsz) where nsz=nz/nprocs.

First, a node-optimized 1-D FFT is used to perform the transform in x
direction. On the Intel machines, Intel's real-to-complex 1-D FFT routine
scfftldis called. The x-transform of the data results in nx/2+1 complex
coefficients, which exceeds the initial number of data points. However, because
some of these coefficients are real, they can be packed into original array. The
two planes of coefficients C(0,m,n) and C(nx/2,m,n) for m=0,ny-1 and n=0,nz-1 are
real. We pack the C(ny/2,m,n) coefficients into the location of the ImC(0,m,n) of an
unpacked algorithm (i.e., in the A(2,m,n) plane). Here, and at all stages in the Slab
Decomposition FFT, only the first two x-planes (I=1&2 for all m,n) of the array
are involved in the packing and thus, localized to one processor (presumably
logical processor 0).

Next, a node-optimized complex-to-complex FFT is used to perform the
transform in y. The two packed planes of modes must be treated as special cases.
After the y transform, packing is again necessary. The rows of coefficients
C(0,0,n) and C(nx/2,0,n) for n=0,nz-1 are real; C(nx/2,0,n) is packed in the location of
the ImC(0,0,n), e.g. in A(2,0,n). The complex coefficients C(0,m’,n) and C(ny/2,m’n)
for m’=1,ny-1 and n=0,nz-1 have redundant modes, e.g., the bottom portion of the
C(0,m’,n) for m=ny/2+1,ny-1 can be obtained from the top portion, m=1,ny/2 by
complex conjugation using the prescription in Eq. 9. The lower portion of the



coefficients C(ny/2,m’,n) for m’=ny/2+1, n=0,nz-1are stored in the location of the
lower portion of the C(0,m’,n); the upper portion can be recreated using Eq: 9.
The rows C(0,ny/2,n) and C(nx/2,n /2,n) for n=0,nz-1 are real; the C(nx/2,ny/2,n)
are stored in the location of the ImC( 0,ny/2,n).

Followmg the x- and y- transform, the data is redistributed among the
processors using the fully asynchronous method described in Sec. 2. After the
exchange, each node will have all of y and z data for a portion of the x axis as
shown in Fig. 1. Again, a node-optimized complex-to-complex 1-D FFT is used
(here, Intel's cs £ £t 1d routine) to perform the transforms in the z-direction.

Because of the packing, the z-transform must be done in several steps.
First, the row C(0,0,n) for n=0,nz-1 are unpacked and transformed. C(0,0,0) and
C(0,0,nz/2) are real; the others are complex. Only the top portion, n=1,nz/2-1 need
be saved because the lower portion, n=nz/2-1,nz-1, can be recreated using the
prescription in Eq. 9. Next, the row C(nx/2,0,n) for n=0,nz-1 are unpacked and
transformed. Again, C(ny/2,0,0) and C(nx/2,0,nz/2) are real and are packed
together with C(nx/2,0,nz/2) packed into the location of ImC(nx/2,0,0). The
complex coefficients C(nx/2,0,n) for n=1,nz/2-1 are saved; the modes for
nz/2=nz/2+1,nz-1can be obtain from these. We save C(nx/2,0,n) for n=nz/2+1,nz-1
and pack them in the location of the second half of the C(0,0,n) as shown in Fig.
6. The modes C(0,0,0) and C(nx/2,0,0) are real and packed together, as are
C(0,0,nz/2) and C(nx/2,0,nx/2) as shown in Fig. 6

In an analogous manner, the C(0,ny/2,n) for n=0,nz-1are unpacked and
transformed and only the top portion saved, n=0,nz/2+1. Next, the C(nx/2,ny, /2,n)
for n=0,nz-1 are unpacked and transformed and only the bottom portion saved
n=nz/2+1, nz-1, in the location below the saved C(0,ny/2,n) as shown in Fig. 6.
C(0,ny/2,0) and C(nx/2,ny/2,0) are both real and stored together as shown in Fig. 6
and hkew1se for C(0,n /Z,nz/Z) and C(nx/2,ny/2,nz/2). The 1-D FFT complex-to-
complex z-direction transforms are performed on the rest of the data. No special
treatment is needed for the packed planes of complex coefficients which contain
the saved complex C(0,m,n) and C(ny/2,m,n).

After the completion of all z-direction transforms the data structure is
shown in Fig. 6. The forward in place 3D-FFT real-to-complex has been
completed. It is important to note that the packed data are in node 0 only. Only
two planes of data - A(1,l,m) and A(2,],m) - contain any packed data. All other
locations are the same as in "unpacked" algorithm, for all of z and y data.

The inverse transform is done by applying the routines and data exchange
in reverse order, unpackmg and re-creating modes by complex conjugation as
needed. At the end of the inverse transform, the data is stored as it was initially,
i.e., in a slab decomposition partltxoned inz.

Because of the initial partition in z, n; must be a multiple of the number of
processors and the maximum number of processor which can be used is nz. After
the redistribution of data following the x and y transforms, the data is partitioned
in the x direction into slabs. Because of this, nyx/2 must be a multiple of the
number of processors because in this stage, there are ny/2 complex Fourier



coefficients and the real and imaginary parts must be in the same processor. If
this is too restrictive, the intermediate stage could also use a "rod" decomposition
which would allow nx/2*ny processors to be used. The Fortran source code for
both the forward (real to complex) slab decomposition FFT routines, sfft3rc and
the inverse (complex to real) sfft3cr are included in the Appendix.

B. The Rod Decomposition 3-D FFT

In the Rod Decomposition parallel 3D FFT, the data is partitioned into
rectangular cross section "rods" such that each node has all of x data but portion
of y and z data as shown in Fig. 2. This is a 2-dimensional decomposition of the
3D data. Let nrows be the number of processors assigned to the y direction and
ncols be the number assigned to the z direction. This forms a logical processor
mesh of nprocs=nrows*ncols processors. On the Intel Delta, the logical mesh
maps to a physical mesh of size nrowsxncols. The real array A(ny,ny,nz) is thus
decomposed in such a way that A(nx,nsry,nsz) is a local matrix on each node,
where nsry=ny/nrows and nsz=nz/ncols. (Whether the processor mesh is real or
logical is unimportant in the following discussion. The underlying parallel
architecture is irrelevant to the code and all the code here and in the Appendix
also works on the Intel Gamma which has a hypercube architecture.)

In the first stage , 1-D FFT real-to-complex x-direction transforms are
performed on each node for its portion of the data. After these transforms, the
data is packed the same way as it is following the x transform in the Slab
Decomposition, described above. All processors have packed data since all have
an [’=0 mode.

After the x-direction transforms, the data must be redistributed as shown
in Fig. 2. Data is exchanged only between nodes on the same mesh column as can
be seen in Fig. 2. The size of the block is nsxmsry*nsz+1 words, where
nsx=nx/nrows, nsry=ny/nrows, and nsz=nz/ncols. Because the exchange is only
among processors in the same column, a modified version of the fully
asynchronous exchange is used. Again, the order in which the processors receive
the data messages is unimportant because the first word of the message contains
the source node from which the proper placement for the data can be
determined. The code for the asynchronous exchange among processors in the
same column follows:

c me = my processor id
ityper=8000+me
do ks=0,nrows-1
c Post message receipt
imsg = irecv(ityper, ibuf2, len)
c Select destination node from those within my “column*®
kl = ks*ncols.xor.me
c Put appropriate data into message buffer

itype = 8000+kl

10



c Send message
imsgs=isend(itype, ibuffer, len,kl, 0)
c Wait for receipt of message
call msgwait (imsg)
¢ put input buffer to temporary array

¢ Wait until outgoing message finishes
call msgwait (imsgs)
enddo

After the first block data exchange among nodes, each node has all of y data, but
only partial of x and partial of z data. At this stage, only the processors in the first
"row" have packed data. :

Next, the 1-D FFT complex-to-complex y-direction transforms are
performed. All of the nodes in the first row of the processor mesh now have
packed data (the two real coefficient planes, C(0,m,n) and C(nx/2,m,n) for m=0,ny-
1,n=0,nz-1) which must first be unpacked. No other data requires any special
treatment. After the y-transforms, there is redundancy in the coefficients and the
data is packed as it was following the y-transform in the Slab algorithm. In this
case, since each processor has a portion of the z data, the z index goes from
n=0,nsz-1. '

After the y transforms, the data is again redistributed as shown in Fig. 2.
Here, data is exchanged only among processors in the same row. The size of the
block is nsx*nscy*nsz+1 words where nscy=ny/ncols. The pseudo code for the
block data exchange among nodes on the same mesh rows follows:

integer nrows,ncols

me = mynode ()
ityper=8000+me
len = 4 + nsx*nscy*nsz*4

do ks = 0,ncols-1
imsgr = irecv(ityper, ibuf2, len)
exchange with processor in the same row only
kl = ks.xor.me

(o]

£ill up the output buffer

(¢]

itype = 8000+kl
imsgs=isend(itype, ibuffer, len, kl, 0)
call msgwait (imsgr)
c put the input buffer into the proper location in the temporary array

call msgwait (imsgs)
enddo

Following this exchange, all of z data and portion of x and y data will be
on each node (Fig. 2). Before the 1-D FFT complex-to-complex transforms in z-
direction can be performed, the packed data must be unpacked and the missing
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coefficients reconstructed by complex conjugation as in the Slab Decomposition
algorithm. The packed data are located on nodes whose node number is
(ny/2+1)/nscy, where nscy= ny/ncols. The number of special nodes is 1 or 2
depending on the number of processors initially assigned to the y and z
directions. Node 0 is always a special node. After the z-transforms, the forward
real-to-complex 3D-FFT has been accomplished. The final data structure for the
packed coefficient array is the same as in the Slab Decomposition FFT and is
shown in Fig. 6.

The inverse 3D FFT complex-to-real transform is performed by doing the
operations of the forward FFT in reverse. After the inverse FFT, the data is
partitioned into rods as it was initially. The limitation for this data decomposition
is that the maximum number of nodes the program can run on must satisfy the
following condition: (ny/nrows >1), where nrows is the number of nodes in the
row of the mesh dimension. Source code for both the forward real-to-complex
(rfft3rc) and reverse complex-to-real (rf £t 3cr) Rod Decomposition
algorithms are included in the Appendix.

5. Timings for Slab and Rod Decomposition Parallel 3-D FFTs

Timings were done to study the efficiency of the parallel FFTs and to compare
Slab and Rod Decomposition parallel 3-D FFTs to establish which is preferable
for various problem and processor mesh sizes. The Slab Decomposition was
found to be faster for all problem sizes. In all cases, the times presented are the
time for both a forward and inverse 3D FFT.

Fig. 7 plots the time (in sec) for the Slab Decomposition FFT as a function
of the number of processors for four different size data array A(l,m,n) for (I,mn) =
(64,64,64), (128,128,128), (1024,32,512) and (512,32,1024). The last two have the
same total number of data elements and, from Fig. 7, the FFT times were
essentially the same. It can be seen that the time decreases and the number of
processors increases in all cases (but clearly not linearly). The curves end where
the maximum number of processor for the problem size is used. Recall that the
maximum number of processors that can be used for the Slab Decomposition
FFT is nprocs=min(nz,ny/2).

Fig. 8 plots the time for the Rod Decomposition FFT as a function of the
number of processors for the same four problem sizes as in Fig. 7. For each case,
the curves turn over and the time begins to increase as the number of processors
increases. This is due to a large increase in the ratio of communication to
computation time as the number of processors increases. The scales on Fig. 7 and
8 have been made the same to simplify comparison. It can be seen that for all
cases, the Slab Decomposition FFT is significantly faster. In Fig. 9, a direct
comparison is made for the case with A(1024,32,512).

From these timing results, we conclude that the Slab Decomposition FFT is
always faster, even when the Rod Decomposition can utilize more processors.
Thus, it may be faster to use the Slab Decomposition and leave some processors
idle, assuming that they are needed for other portions of the code, as in a PIC
code. However, there will be an additional overhead needed to move the data

12



from the full set of processors to the set needed for the Slab FFT and the trade-
offs must be considered when deciding which FFT to use.

6. Use of the FFT to Solve Poisson's Equation

To present an example of how to use the parallel 3-D FFT algorithms
presented above, we will use the Slab Decomposition FFT to solve Poisson's
equation which arises in many plasma particle-in-cell codes (Liewer and Decyk,
[1989] and Ferraro et al, [1993]). In electrostatic PIC codes, a charge density array

p(x) is calculated on a grid and one needs to solve Poisson's equation to
determine the electrostatic potential ¢(x) on the grid:

Vo(x)=p(x)

This can be solve by using the Fourier transformed equation
-k’ ¢(k) = p(k) | (10)

so that the ¢(k) can be determined algebraically from the p(k). In the simulation,
the infinite sum over Fourier modes is approximated as a finite sum where the
shortest wavelength that can be resolved on the grid twice the grid spacing.

To solve the equation, let p(l,m,n) be the charge array at the grid points

x(lmmn) =(xy,z) = (1Ax,mAynAz). wherel=1ny, m= 1,ny and n =1,n;. The 3D
Fourier transform coefficients of this array are

n.—1n,—1p -1

)= S S S plmmg Krmnx a1
1=0 m=0n=0

where the wave vectors are

m n
k(l',m' ,n')=2n( Ax a nAz) (12)

forl'=0,nx/2,m’' =0, 41, i2,...:b1y/2 and n' = 40, #1, £2,...4nz/2.
To use a fast Fourier transform algorithm to evaluate the Fourier
coefficients in Eq. 11, one makes use of the fact that

-2m —i27(n' =nx)n
‘ nx * Ax

e =e

and computes the p(I';m’,n’) for I'=0,nx/2, as above ,but for m’=0, ny-1and n’ =
0, nz-1. While this is mathematically equivalent to the original range of m’ and
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n’, it must be remembered that to compute the values of the wave number itself
in Eq. 10, one must use the original ranges for m’ and n’ which follow Eq. 12.
Once the Fourier coefficients are computed by calling the sfft3rc

routine, one computes the ¢(k) =¢(I°,m’,n’) algebraically
. U ] L} 1 U L
o(',m' ,n )=‘FP(I"'” ,n')

where k2=k'k and k is given in Eq. 12. The inverse sfft3cr is then called to

compute ¢(x) =¢(l,m,n). The code included in the FFT package includes a routine
which creates an appropriately packed table of the k indices (I’,m’,n’). The.
routine (kprep) returns an array ktable(i,l';m,'n') (where i=1,2,3 for x,y,z
components) which is packed in a manner analogous to the packed Fourier
coefficients (Fig. 6) so that the Fourier coefficient and mode numbers I'm',n' can
be obtained using the same set of indices in the code. This allows the FFT
routines to be used without the necessity of the user having any knowledge of
the packing scheme utilized. The use for this table is shown in the pseudo code
below, which uses the Slab Decomposition FFT to solve Poisson's equation for

V2A(x).

c Pseudo code for Slab Decomposition Solution of Poisson's Equation with
c matrix A(nx,ny,nz) the source term

c Assumes A is in Slab Decomposition with nzs=nz/nprocs z-grid points
C per processor

real A(nx,ny,nzs)

c ktable is a matrix with k indices needed for wave number evaluation
integer ktblz(3,nx,ny,nzs)

c Prepare tables for 1D FFTs
call sfft3prep

c calculate packed wave number arrays,.e.g. k indices stored as modes
call kprep(ktblz)

¢ call 3dfft real-to-complex to transform A

call sfft3rc
c Divide each element of the A array by 1/k2

do iz = 1,nzs
do iy=1,ny
do ix=1,nx+2
xkx=2.%*3.1416*ktblz (1, ix,iy,iz)/nx
yky=2.*3.1416*ktblz (2, ix,iy,iz)/ny
zkz=2.*3.1416*ktblz(3,1ix,iy,iz)/nz
pwr2k=zkz**2 + yky**2 + xkx**2
if (pwr2k.eq.0) then
pwr2k=1.
endif
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a(ix,iy,iz)=(1./pwr2k)*a(ix,iy,iz)
enddo
enddo
enddo

c call 3dfft complex-to-real with A array as argument
call sfft3cr

c Solution is in the array A with initial Slab Decomposition

The FORTRAN source codes for this sample problem can be found in the
Appendix. The codes may also be obtained electronically by contacting
edith@cube.jpl.nasa.gov (Edith Huang).
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Figure Captions

Fig. 1 Partitioning of three dimensional data for the Slab Decomposition parallel
FFT. The data is initially partitioned into slabs along the z axis so each processor
initially has all x and y data for a range of z. The 1D Fourier transforms in x and y
can be done in parallel in each node with no interprocessor communication.
Next, the data is redistributed among the processors into slabs partitioned along
the x axis. The nodes then performs the z transforms in parallel for their range of
x.

Fig. 2 Partitioning of three dimensional data for the Rod Decomposition parallel
FFT. The data is initially partitioned into rectangular cross section "rods" so each
processor initially has all x data for a range of y and z. The 1D Fourier transforms
in x are done in parallel in each node with no interprocessor communication. The
data must be redistributed twice in this algorithm: first, before the y transforms
and, second, before the z transforms. This algorithm was found to be slower than
the Slab Decomposition FFT for all problem sizes.

Fig. 3 Bandwidth timing results (in Mbytes /sec) as a function of message size for

three mesh sizes on the Intel Delta: 16x16 (0), 16x8(X) and 8x8(A) processors using
the asynchronous scheme described in the text. Tests are for each processor
exchanging a message with every other processor. The top line is the ideal
bandwidth for the Delta (11 Mbytes/sec).

Fig. 4 Results of timing tests of communication schemes. Bandwidth timing
results (in Mbytes/sec) as a function of Delta mesh size for three communication

schemes: fully asynchronous (0), synchronous (X) and synchronous

send/asynchronous receive(A) . In this test, each processor exchanged a 40 Mbyte
message with every other processor. Times are comparable for the three schemes.

Fig.5 Results of timing tests of communication schemes. Bandwidth timing
results (in Mbytes/sec) as a function of message size for three different
communication schemes and two mesh sizes (16x8 open symbols, 4x8 filled
symbol): fully asynchronous (o), synchronous (squares) and synchronous
send/asynchronous receive(A). In this test, each processor exchanged a 40 Mbyte
message with every other processor.

Fig. 6 "Packed" storage scheme for Fourier coefficients used in both parallel FFT
algorithms, showing the three "special cases" (dotted, cross-hatched and shaded
regions) discussed in the text. Aside from the special cases, the complex Fourier
coefficients are stored in the original real data array A(l,m,n) with real and
imaginary parts adjacent. The two planes shown here , the A(1,m,n) plane in (a)
and the A(2,m,n) plane in (b), are the only planes of data which have packed
coefficients. See text for explanation.
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Fig. 7 Times for the Slab Decomposition parallel FFT on the Delta as a function
of the number of processors used for four different sizes problems: 64x64x64
array (0), 128x129x128 array (square), 1024x32x512 array (A) and 512x32x1024
array(x). For all tests, times are for a forward FFT plus a reverse FFT.

Fig. 8 Times for the Rod Decomposition parallel FFT on the Delta as a function of
the number of processors used for the same four problems as in Fig. 7: 64x64x64
array (0), 128x129x128 array (square), 1024x32x512 array (A) and 512x32x1024
array(x). At some number of processors, the times begin to increase as the

number of processors increases because of the addition communication costs. For
all problems, the Rod Decomposition was slower than the Slab Decomposition.

Fig. 9 Direct comparison of Slab and Rod Decomposition FFTs for a (128,128,128)
matrix. Note that the Slab Decomposition utilizing its maximum number of
nodes is faster even when the Rod Decomposition can utilize more nodes.
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Appendix

EXPRESS™ Cubix Source Code

1. Makefile for Poisson Solve Program (Makefile)

2. Poisson Solve Main Program utilizing Slab Decomposition 3DFFT (psolve.f).
3. Routines to Initialize Parallel Computer for Slab (meshinit.f)

4. Routines to Initialize Constants for FFTs for Slab (kprep.f)

5. Routines for Forward and Reverse Slab Decomposition FFTs (sfft.f)

6. Include Files for Slab FFT (slabinc.include).

7. Routines to Initialize Parallel Computer for Rod (meshinita.f)

8. Routines to Initialize Constants for FFTs for Rod (krprep.f)

9. Routines for Forward and Reverse Rod Decomposition FFTs (rfft.f)

10. Include Files for Rod FFT (rodinc.include).
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makefile Fri Oct 29 09:04:10 1993 1

#!/bin/csh

CUBIXF=kprep.f meshinit.f
RESTF=sfft.£f
MAINl=psolve.f

all: psolve

psolve:$(MAIN1) $(CUBIXF) $(RESTF)
x£f77 -opsolve $(MAIN1l) $(CUBIXF) $(RESTF) -Knoieee -kcubix -lkmath



psolve.f Fri Oct 29 09:09:50 1993 1

c***********************ﬁ******************i**

program psolve

c This program solves Poisson equation
¢ This is a CUBIX program
¢ This program use logical node map table
c .
character*40 file_n
¢ include file parals.inc must be changed for different
c size of the array A and mesh size
c parals.inc is set to run on 2x2 mesh (4 nodes)
c for this example

include ’‘parals.inc’
include ‘simgb3ds.inc’

c 2 dimension should be the largest

dimension f (nxx,nyy,nzsl)

dimension A(nxx,nyy,nzsl),tmp(nyy)

dimension AA(nxsl,nyy,nzz)

dimension dx(4*nxx+4),dy(4*nyy+4),dz(4*nzz+4)
c work array .

dimension t(nxx,nyy,nzsl)

dimension dcopy(nt)

dimension ktblz(3,nxsl,nyy,nzz)
c After the forward transfoms the data in array A are
c represented as in array AA(nxsl,nyy,nzz)

equivalence(A(1,1,1),AA(1,1,1))

nxX=nxx
ny=nyy
nz=nzz
nxs=nxsl
nzs=nzsl

non

initialize Express, and set up logical ring table
call meshinit

c
c From physical node number ’‘me’ to the logical
c node number in the ring
c
procnum=ptable (me+1) -1
c Find out the mesh dimension
c

call mypart (irows,icols)
¢ Input file name

file_n='sinput.dat’

¢ length of the input file name
lenf=10

c read the input file

call inputf (A, nx,ny,nzs,nprocs,procnum, tmp, file_n, lenf)

c set coefficients
c Get ready to do fft transforms
call sfft3prep(dx,dy,dz,nx,ny,nz)

c calculate kspace table
c the output table ktblz contains the kspace
call kprep(ktblz,nxs,nx,ny,nz,procnum)



psolve.f Fri Oct 29 09:09:50 1993 2

c 3D-FFT forward transform, real to complex
call sfft3rc(A,t,nx,ny,nz,dx,dy,dz,dcopy)

c multiply each k mode by a k square factor
do k = 1, nz
do j= 1,ny
do i =-1,nxs
xkx=2.*3.1416*ktblz(1,i,j,k)/float (nx)
vky=2.*3.1416*ktblz(2,i,j,k)/float (ny)
zkz=2.*3.1416*ktblz(3,1,j,k)/float (nz)
pwr2k=xkx**2+yky**2+zkz**2
if (pwr2k.eq.0) then
pwr2k=1.
endif
c must use array AA to get the correct location
AA(i,j,k)=(1./pwr2k)*AA(i, ], k)
enddo
enddo
enddo

¢ Invers 3D-FFT, complex to real

C .
call sfft3cr(A,t,nx,ny,nz,dx,dy,dz,dcopy)
stop
end
c ____________________________________________________________________________
subroutine inputf(f,nx,ny,nzs,nprocs,procnum,
1 tmp,filen,len)
dimension f(nx,ny,nzs),tmp(*)
character*40 filen
integer procnum
~open(unit=10,file=filen(l:1len),status='0ld’)
do loop = 1l,nprocs
do i =1, nzs
do j=1, nx
read(10,1100) ( tmp(k),k=1,ny)
if (procnum.eq. (loop-1)) then
do k=1,ny
£(j,k,i)=tmp (k)
enddo
endif
1100 format (1x 8 £10.7)
enddo

read(10,1000)
1000 format (/)
enddo
enddo
return
end



meshinit.f Fri Oct 29 08:57:17 1993 1

c**********t*************‘*********************************************

c ——————————————————————————————————————————————————————————————————————
c .
¢ This routine initialize Express and setup ring topology
¢ for physical node and logical node map table, this is
¢ an attempt to make the mesh communication faster on
¢ the Delta. It did make too much difference, probably
c should not use it in the future
c
subroutine meshinit
include ‘parals.inc’
include ’‘simgb3ds.inc’
include '‘express.inc’
dimension ienviron(4)
c initialize Express OS

call kxinit

C get environ variables
call kxpara(ienviron)
me=ienviron(l)
nprocs=ienviron(2)

c setup ring topology. Create physical node and logical
c node map table to enable faster communication, for
c the Delta machine
c both ptable and idx are output
call ring2(ptable, idx<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>