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The generation and propagation of nonlinear plasma waves is studied using

particle-in-cell (PIC) simulations. We concentrate on regimes of interest to iner-

tial fusion and space physics in which wave-particle interactions are important.

Experiments soon to be performed at the National Ignition Facility require the un-

derstanding and control of stimulated Raman scattering (SRS) for their success.

The SRS instability occurs when an incident laser decays into a backscattered

light wave and an electron plasma wave. Recent computer simulations of SRS

indicate that the daughter plasma waves have finite longitudinal and transverse

extent and that they reach large amplitudes. The nonlinear behavior of such

waves determines the growth, saturation, and recurrence of SRS. However, little

attention has been paid to the behavior of plasma waves having these properties,

and their study in SRS simulations is complicated by the large-amplitude light

waves associated with the instability. Most theory and simulation work on SRS

and its daughter plasma waves has been limited to infinite plane waves, often in

the one-dimension limit. This thesis therefore studies isolated electron plasma
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waves over a wide range of parameters in one and multiple dimensions using PIC

simulations. The simulations are performed with the goal of understanding the

wave’s behavior for parameters relevant to SRS, but the normalized parameters

have general applicability to a range of densities and temperatures. Accordingly,

an external ponderomotive driver generates traveling waves, driving them either

continuously to study their peak amplitude and saturation mechanisms, or impul-

sively to study their propagation. Several novel effects are identified and charac-

terized, including nonlinear resonance for driven waves, wave packet etching for

finite-length waves, and localization and local damping for finite-width waves.

Finite-length wave packets are found to erode away at a constant rate due to

particle trapping at the rear edge, and a simple physical model is presented that

accurately predicts the rate over a wide range of amplitudes and wavelengths.

In multiple dimensions, finite width waves are shown to damp along their sides

as resonant particles enter from outside the wave and trap. This local damping

leads to the localization of a wave around its center. These effects, among others,

are related to SRS saturation and behavior when appropriate.

xxvii



CHAPTER 1

Introduction

1.1 Motivation

The National Ignition Facility (NIF) at the Lawrence Livermore National Labo-

ratory commissioned its 192 laser beams in Summer 2009. The large laser facility

will use these beams to compress and heat a capsule of deuterium, tritium and

other materials to temperatures and densities similar to those at the center of

stars. If NIF’s operation goes as planned, the capsule will undergo nuclear fu-

sion in a process called inertial confinement fusion (ICF), releasing considerable

amounts of energy. The experiment has several goals. Self-sustained nuclear fu-

sion reactions have only been achieved on earth with thermonuclear detonations.

NIF will provide a means to study such explosions without the need for large, de-

structive, and politically intolerable nuclear weapons tests. ICF may also lead to

the generation of relatively clean, practically limitless energy production. In addi-

tion, several scientific problems can be studied, including the behavior of matter

at the densities found at the centers of large planets like Jupiter or the stars,

high-energy density plasma physics and especially laser-plasma interactions (the

nonlinear optics of plasmas), and nuclear astrophysics and nucleosyndissertation.

NIF operates by focusing its 192 beams containing about 1.8 MJ of energy

in the ultraviolet at 0.35µm onto a small target in several nanoseconds. Two

different techniques may be used to deliver this energy onto the target. The
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technique to be used in the first experiments is called indirect drive. The capsule

containing the fusion fuel with this method is held inside a small cylindrical can

approximately a centimeter long and half a centimeter in diameter with holes on

either end. The lasers heat the can, or “hohlraum,” as they enter through the

holes and deposit their energy on the inner surface. The heated walls radiate

x-rays with a blackbody temperature of approximately 250 to 300 eV, depending

on the particular design. The spherical capsule inside the hohlraum absorbs the

x-rays, ablating its outer surface. Conservation of momentum with the expanding

outer surface causes the inner capsule material to accelerate inward, resulting in

the necessary densities and temperatures to initiate fusion in the deuterium and

tritium. Once ignited, the fusion reaction burns outward from the center of the

capsule, consuming the deuterium and tritium until the capsule blows apart. The

entire process is referred to as inertial confinement fusion because, in contrast to

magnetic confinement, the fuel’s own inertia is used to hold the capsule together

long enough for significant energy to be released.

A second technique for delivering laser energy to the capsule is called direct

drive, in which the lasers are focused directly on the capsule itself. This technique

is more efficient, since no laser energy is lost in the conversion of ultraviolet

laser light to x-rays in the hohlraum. However, the laser drive must be more

symmetric in the direct drive case. As the capsule is compressed, it can suffer from

hydrodynamic instabilities like the Rayleigh-Taylor instability in which surface

perturbations on the imploding capsule grow as it collapses. Such nonuniformities

have the potential to ruin the experiment by preventing the capsule’s core from

reaching and maintaining the necessary conditions for fusion to occur. To reduce

the instability’s effects, the energy used to compress the target, whether in the

form of x-rays in indirect drive or laser light in direct drive, must be deposited

uniformly with high symmetry. Indirect drive achieves symmetry more easily
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because the capsule is subjected to a more uniform bath of x-rays. Thus, direct

drive presents more symmetry challenges and therefore was not chosen for the

first attempts at ignition.

Successful operation of NIF requires overcoming numerous engineering and

physics problems. A physics problem of particular importance to NIF, in addition

to that of the hydrodynamic instability already mentioned, is the interaction

between the plasma that forms from the gas filling the hohlraum and the incoming

lasers. For both indirect and direct drive the lasers must traverse relatively

long distances of underdense plasma before depositing their energy at the critical

surface. In this case, three laser scattering instabilities can occur that either

reflect or divert the lasers from their intended path and/or generate high energy

electrons. Laser scattering instabilities occur when the incident laser decays into

two or three daughter waves, which can be light waves or resonant plasma modes.

Stimulated Raman scattering (SRS) occurs when the laser decays into a scattered

light wave and a forward going electron plasma wave. It can also have a forward

light wave component, but this version of the instability does not appear to be

as energetically important at NIF. The stimulated Brillouin scattering (SBS)

instability is analogous, but the plasma wave is replaced with an ion acoustic

wave. The third type of instability is the two-plasmon decay (TPD) instability

in which the laser decays into two electron plasma waves propagating at angles

with respect to the incoming laser.

Each of these instabilities is detrimental to NIF’s operation because they can

reduce the incoming laser energy through reflection or absorption, destroy the

symmetry of the energy deposition, and/or generate high energy electrons. The

last point needs clarification. In both SRS and TPD, the daughter plasma waves

reach large amplitudes and trap plasma electrons. In trapping, the electrons
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are accelerated and stream forward deeper into the target. Due to their very

long mean free path, these energetic particles may eventually enter the capsule’s

core where they can deposit their energy and prematurely heat the capsule. If

the heating ignites the fusion reaction too early, the fuel will not be properly

assembled by the compression and the experiment will fail.

In each of the three instabilities, the frequency and wavenumber matching

conditions must be satisfied by the daughter waves, that is, ω0 = ω + ωs and

k0 = k + ks, where the subscript ‘0’ indicates the incident laser quantity, ‘s’

represents the scattered light wave, and ω and k represent the plasma wave or ion

acoustic wave frequency and wavenumber, respectively. For TPD, the scattered

light wave is instead a plasma wave. In fact, for high temperature plasmas the

second decay wave is a hybrid between a plasma wave and a light wave; it has

both longitudinal and transverse components to its electric field [101]. In SRS

and TPD, these conditions indicate that the laser frequency must be greater than

twice the plasma frequency, ωp, since the minimum frequency of both daughter

waves is ωp. Phrased differently, SRS can only occur for plasma densities less

than one quarter of the critical density ncr = mω2
0/4πe

2, while SBS can occur

for any density less than ncr. TPD only occurs for densities near the quarter

critical density. Indirect drive fusion requires the lasers to propagate for several

millimeters through plasma that satisfies these conditions. Accordingly, laser

scattering instabilities represent an important process that must be understood

for ICF and NIF to be successful.

1.1.1 Current Status of NIF

As of the completion of this dissertation, NIF has begun operation at low pow-

ers [106]. The results found have been encouraging, in that the x-ray radiation
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temperature is within the levels predicted by computer models and that good

implosion symmetry has been achieved. Of particular interest is the capability to

fine tune the implosion symmetry by varying the wavelength of the laser beams

relative to each other [107, 108]. In the region of the hohlraum near the laser

entrance holes, all the beams cross. By varying the wavelength of the inner beams

(those that deposit their energy far from the target near the laser entrance hole)

relative to the outer beams (those that deposit their energy nearest the target),

energy can be transferred from one to the other through a resonant scattering

process mediated by an ion acoustic wave. Since the implosion symmetry is de-

termined in large part by where the energy is deposited inside the hohlraum,

this process allows fine control over capsule symmetry. Preliminary data on SRS

indicate reflectivities of approximately 10-30% for the inner beams and less than

5% for the outer beams. However, at the time this dissertation was filed, the

diagnostics were still being calibrated and the location within the hohlraum at

which SRS occurs has not been identified. The total reflectivity integrated be-

tween the inner and outer beams is believed to be less than 10%, which is within

the tolerances. Full power laser shots are anticipated by Summer of 2010 with

possible attempts at ignition by the end of 2010.

1.2 Stimulated Raman Scattering

The main motivation for most of the work in this dissertation comes from the

stimulated Raman scattering (SRS) that occurs in the plasma surrounding an

ICF target (for a general overview of laser scattering instabilities related to ICF

see p. 365-405 of [40]). As mentioned earlier, backward SRS, where an incident

light wave decays into a backward going light wave and a forward going electron

plasma wave, is most important. It generates “hot” or “energetic” electrons
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through the Landau damping and particle trapping of the daughter plasma wave

that can deposit unwanted heat in the target. Further, reflection of the incident

light can reduce the total energy deposited in the hohlraum. The interaction

between the crossing of the reflected light from one set of the NIF beams with

another set can adversely affect the compression symmetry. Considerable work

has gone into understanding the linear growth and nonlinear saturation of SRS

in an attempt to control and mitigate its effects. This dissertation attempts to

add to the existing understanding of SRS by examining the nonlinear behavior

of the daughter plasma waves. In the following, we present a sampling of papers

that contextualize SRS research and motivate this dissertation.

1.2.1 Early Work

The first investigations into the stability of light waves in plasma was done in

the early 1960s. Although not a stability analysis, the work of Dawson and

Oberman [21] set the stage for future work by examining the conductivity of a

plasma when a high frequency transverse wave is present. Even though the ions

are fixed in their analysis, they found that a sinusoidal ion density fluctuation

leads to significantly higher resistivity in the plasma as the transverse field reso-

nantly couples to plasma waves. In 1965 DuBois and Goldman [22] did a similar

calculation, but this time allowed ions to move. They found the possibility of

an instability, now referred to as the “oscillating two-stream” instability [26], in

which the incident light decays into a very long wavelength ion wave, or density

perturbation, and a plasma wave. It can only occur near the critical density when

ω2
p < ω2

0 < ω2
p + 3v2

thk
2.
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1.2.2 Linear Growth of SRS

By the early and mid 1970s the theory had developed sufficiently to consider

general parametric scattering, including transverse waves as one of the scattered

waves. Rosenbluth touched off a wave of research in 1972 [23] when he used the

simple coupled mode equations with only first derivatives in time and space to

study parametric instabilities. By manipulating the two equations describing the

daughter waves, he found a parabolic cylinder equation describing each wave in a

density gradient. The asymptotic solutions of this equation show that there can

be no absolute growth for any scattering in a linear density profile, only convective

growth, for boundaries at infinity. This result is of fundamental importance on

its own, but the technique used in finding it spawned a large amount of research

as other authors explored new problems.

The homogenous growth of SRS was detailed in two papers in 1974 [24] and

1975[25]. These papers derive the linear dielectric function for electromagnetic

waves in a plasma allowing for the presence of Stokes and anti-Stokes waves. The

derivations include ions, which allows for stimulated Brillouin scattering (SBS) as

well. SBS is similar to SRS except that the daughter plasma wave is replaced by

an ion acoustic wave. By finding the roots of the dielectric under varying approx-

imations, they derive the linear growth rates and thresholds for SRS. Forslund et

al. [25] further study the spatial problem. Using the coupled mode equations after

making the slowly varying envelope approximation like Rosenbluth [23], Forslund

et al. calculate both the convective and absolute growth rates for spatial SRS. In

1995, Afeyan and Williams used a variational principle analysis to describe the

TPD instability in arbitrary density profiles. Their work properly described the

more general decay of a laser into a plasma wave and a hybrid wave, which is a

mixture of a light wave and a plasma wave [101].
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1.2.3 Recent Work on SRS

In the last ten or fifteen years, ICF experiments have generated renewed interest

in SRS. In particular, several experiments have been performed in an attempt to

understand the instability in more detail and to compare simplified fluid models

with them. Further, the nonlinear saturation of the instability has been studied

with computers using PIC and other models. The next few paragraphs discuss

recent experiments and fluid calculations, followed by a summary of more detailed

computer work on nonlinear SRS saturation. The experiments and simulations

discussed below are of particular interest here because they highlight some of

the motivation for the work contained in this dissertation. A large number of

experiments have been performed at the Lawrence Livermore and Los Alamos

National Laboratories to study SRS in ICF-relevant regimes. A comprehensive

discussion of the experiments performed at Lawrence Livermore and Los Alamos

National Laboratories can be found in p. 381-405 of [40].

The primary means of predicting and modeling the laser reflectivity in NIF ex-

periments is linear SRS gain calculations along the laser path (again, see [40], [38,

39]). Using the plasma densities and temperatures obtained from hydrodynamic

simulations, the SRS gain, or number of e-foldings, along the laser’s path can be

calculated. However, at NIF the laser beams are smoothed in space through the

use of random phase plates and in time by adding a temporal modulation. To

calculate the linear gain for such complicated lasers the national labs use a code

called pF3D first developed by Berger, Still, Williams and Langdon at Lawrence

Livermore National Laboratory [27]. It solves the paraxial equations for the inci-

dent and scattered light and fluid equations for the plasma. In addition, several

nonlinearities are accounted for, including pump depletion, the Langmuir decay

instability, and self-focusing. Importantly, however, the code does not account
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for self-consistent modifications to the distribution function that lead to reduced

damping and frequency shifts to the plasma wave. It further does not include

effects stemming from electron transport that may cause SRS to move above

threshold as the plasma wave damping changes with the distribution function in

time and space.

That such nonlinearities are important can be seen in the frequency shifts

of Kline [30] and the enhanced scattering of Montgomery [32]. Experimentally,

MacGowan et al. [29] found that SRS occurs but is generally limited to reflecting

less than 10% of the incident light, an amount they say is within the limits allowed

for at NIF. Kline et al. [30] examined the transition from fluid-like behavior of

the SRS plasma wave to kinetic effects by observing how the Langmuir decay

instability (LDI) that occurs at low kλD disappears as kλD increases. LDI is

the decay of a plasma wave into another plasma wave and an ion acoustic wave.

Further, they present the ω, k spectra for both the low and high kλD cases. For

the higher wavenumber case, kλD ≈ 0.34, they observe a broadening in frequency

at the plasma wave number which agrees qualitatively with the results of PIC

simulations. These results can be plausibly explained by a nonlinear frequency

shift due to particle trapping.

The experiment by Montgomery et al. [32] demonstrated that in fact, the

linear gain calculations used to estimate SRS reflectivity levels were far too low

compared to experiment at the low laser intensity range (I ≈ 1−15×1015W/cm2).

In addition, the onset was sudden in intensity indicating that a nonlinear process

was occuring. We discuss the gain calculations in more detail below, but these

results again show that some nonlinear physics must be occurring to generate the

observed higher-than-predicted reflectivities. Vu et al. provided an explanation

for the sudden onset of SRS by suggesting that reductions in the damping due to
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nonlinear particle trapping reduce the threshold for growth, thus allowing SRS

to grow in conditions linear theory would predict are stable [41, 42, 43]. This

“kinetic inflation” process is discussed further below.

Recently, study has focused on large-scale pF3D calculations, like those of

Hinkel et al. [34] that attempt to calculate the gain across a significant path of

a beam through the hohlraum. Such studies find SBS to be important on the

“outer” beams, those that hit the region of hohlraum nearest the entrance hole,

and SRS to be important on the “inner” beams, those that hit deeper into the

hohlraum. The gain calculations have been compared with experimental results

of laser scattering in scaled down NIF targets [33, 35, 36, 37]. These experiments

found that pF3D calculations “agree quantitatively with experimental results

over a broad range of laser intensities...” [37].

Further experiment has also found good agreement with large-scale pF3D

calculations. Glenzer et al [38] found, in the first experiments at the NIF facility

using four full-scale beams, that pF3D reproduced accurately the SBS reflectivity

(SRS was negligible) and x-ray propagation through the hohlraum. These authors

also state that “the findings of this study validate supercomputer modeling ... for

future ignition experiments” [38]. Below, we discuss recent, more detailed PIC

simulations and the apparent disconnect between the kinetic PIC simulations and

the fluid model solutions like those used in pF3D.

1.2.4 PIC Simulations of SRS

In the previous section, we discussed large scale fluid, paraxial simulations of laser

scattering and some experiments that seem to agree with their results. Before

going on, we note that the agreement found between the two is based on reflec-

tivities averaged over typically hundreds of picoseconds of laser interaction. As
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we will see below, more detailed PIC simulations of SRS show that the instability

grows and saturates repeatedly on a time scale of several picoseconds. However,

the PIC simulations are computationally intensive, having to resolve both the

laser frequency and wavelength. For example, a large pF3D calculation requires

a time step of about 0.4ps and a grid size of the order of a laser wavelength,

according to Glenzer et al [38]. A PIC simulation, on the other hand, must

resolve the laser frequency and wavelength, requiring approximately 4 orders of

magnitude difference in the time step and one more for the grid size. Thus, PIC

simulations are limited in size and scope, but they remain the only method of

observing the kinetic physics of SRS in multi-dimensions at the time and space

scales characteristic of the instability.

Thus, recent PIC simulations have studied kinetic, particle trapping effects

for SRS simulations at kλD ≈ 0.25 − 0.35, something they are well suited to

do but that is neglected by the fluid and paraxial models discussed above. It is

the plasma waves of these PIC simulations that motivate the nonlinear plasma

wave studies that constitute the body of this dissertation. However, the study

is very basic in nature and could have wide applicability. There are generally

three plasma wave nonlinearities that have been studied recently in relation to

SRS: nonlinear trapped-particle sidebands [50] and frequency shifts [41, 42, 43],

and “inflation” due to nonlinear changes in the damping [44]. The following few

paragraphs attempt to provide an overview of the recent work on this subject

with an eye toward motivating the work presented in later chapters.

1.2.4.1 Nonlinear Frequency Shifts as SRS Saturation mechanism

Trapped particles can lead to a nonlinear reduction in the damping and frequency

of a plasma wave. As mentioned above, the reduction in the damping can re-
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duce the SRS threshold, allowing growth to occur when it would otherwise not

be expected. The possibility that trapped particle frequency shifts will lead to

a detuning of the plasma wave with the incident and scattered light was first

proposed by Vu et al. [41, 42, 43]. That is, as the instability grows, the daughter

plasma wave eventually reaches a large enough amplitude that significant num-

bers of particles become trapped in the wave’s potential wells. Such a shift was

first proposed by Morales and O’Neil in 1972 [59]. However, the waves found

in SRS simulations are of far too high an amplitude for the theory’s predictions

to strictly apply, forcing Vu et al. to apply the theory despite its inapplicabil-

ity. Using a reduced PIC (RPIC) model in which the envelope approximation is

made for the transverse wave to allow a much larger than usual time step [100],

they present evidence that for certain parameters the frequency shift is respon-

sible for SRS saturation. They find reasonable agreement between the frequency

shift measured in the RPIC simulations and a simplified model for SRS using

the Morales and O’Neil frequency shift. B. Winjum [51] has also performed sim-

ulations showing that for high kλD the nonlinear frequency shift indeed plays a

significant role in the saturation. Significant frequency shifts are also seen in the

simulations by Yin et al. [47] and the experiments [30] mentioned earlier.

Motivated by the potential for the frequency shift to saturate SRS, several au-

thors have studied the theory of nonlinear frequency shifts. Rose and Russell [61]

find, for the driven wave case, a similar shift as Morales and O’Neil. Their result

is the same, in fact, except for a few percent change in the numerical constant in

the expression for the shift. However, this theory still uses a Taylor expansion of

the distribution function, so it also suffers from strict amplitude limitations. To

circumvent these limitations, recently Benisti and Gremillet [62, 63] and Lind-

berg et al. [64] use the adiabatic approximation for the trapped particle orbits to

calculate the frequency shift of a growing wave at amplitudes larger than those
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applicable in Morales and O’Neil and Rose and Russell. Unfortunately, these

authors cannot provide a simple expression for the shift, so a rather lengthy com-

puter computation is required to estimate it, a fact that limits the usefulness of

these results in mesoscale models such as pF3D. Furthermore, and more impor-

tantly, all of the these theories are based on 1D periodic wave trains so the shifts

depend only on the instantaneous wave amplitude.

In two dimensions, the kinetic nonlinear frequency shift yields a new effect

first observed by Yin et al. [45, 46]. By simply extending the 1D frequency shift

result to multiple dimensions, they argue that a finite-width plasma wave with

a larger amplitude along the center relative to the edges will have a larger shift

along the center. As the relative phase shift accumulates, the wave fronts “bow.”

Eventually a trapped-particle modulational instability [66] causes the wave to

“self-focus.” This process causes the plasma wave to be so narrow that SRS

coupling can no longer occur and the instability saturates. This interpretation of

bowing and localization is disputed in a later section of this dissertation.

1.2.4.2 Sidebands as Saturation Mechanism

Brunner and Valeo in 2004 [50] proposed nonlinear trapped particle sideband

instabilities as a mechanism for SRS saturation. In their paper they found that

the growth of plasma wave sidebands caused the break up of the main plasma

wave. As a result, the coupling between it and the transverse waves was destroyed

and the instability quenched. The term “sidebands” here means plasma waves

whose frequency and wavenumber are slightly shifted from the main wave with

(ω − ∆ω)/(k − ∆k) ≈ ω/k. Through a coupling of the trapped particles, the

sideband waves grow. The beat pattern between the main wave and the side-

bands might eventually disrupt the trapped particle vortices and hence disrupt
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the SRS coupling. There is a large body of work on sideband instabilities, but the

primary source in the Brunner and Valeo paper is the model of Kruer, Dawson

and Sudan of 1969 [73]. In their model the trapped particles are treated as one

large macroparticle. With this simplification, they found the complex frequencies

of the sideband waves. As the trapped particles phase mix, the Kruer, Dawson,

and Sudan model breaks down, but Tsunoda and Malmberg used computer sim-

ulations in 1989 [74] to show that this simple model works reasonably well even

as the trapped particles phase mix.

Sideband growth is a common feature of PIC simulations of SRS and nonlinear

plasma waves. We discuss them in more detail in a later chapter, but note here

that Winjum observes them in many of his SRS simulations [51]. However, they

seem to have lost favor recently as a saturation mechanism. Winjum finds that

they predominantly grow after SRS saturation, while no particular mention of

sidebands as a saturation mechanism has occurred in the literature since Brunner

and Valeo [50]. Accordingly, we do not attempt a detailed study, but we discuss

them in a later chapter as they are observed.

1.2.4.3 Kinetic Inflation of SRS

In addition to positing that the nonlinear frequency shift saturates the SRS

instability, Vu, DuBois and Bezzerides [42, 44] found that higher reflectivities

than would have been expected using convective gain calculations in the strongly

damped regime are observed in their RPIC kinetic particle simulations. Further-

more, the reflectivity rapidly increased at a threshold intensity. They termed this

effect “kinetic inflation” and suggested that it was due to the nonlinear damping

reduction associated with the trapped particles [58, 59]. This effect was also pre-

dicted by Morales and O’Neil. The idea is that if a plasma wave generated by
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SRS in the strongly damped regime is large enough that the bounce time is less

than the decorrelation time from collisions (or sideloss in multiple dimensions)

then the damping can be reduced. A sudden onset of the reflectivity would then

result as the instability transitions from a stongly to a weakly damped regime.

SRS reflectivities in PIC simulations are indeed larger and occur at lower inten-

sities than linear theory would predict. Vu et al. go on to present a detailed

comparison of a simplified model that includes losses of trapped electrons out of

the sides of a 2D or 3D laser speckle and diffusion in velocity space. We do not

dwell on these results here, but simply use their “inflation” result to motivate

the use of PIC codes for studying the details of nonlinear plasma wave behavior.

This dissertation concentrates primarily on the behavior of the daughter

plasma wave that occurs during SRS. The other laser scattering instabilities are

also important, but they are not considered here. Benjamin Winjum, another

UCLA student, has studied the SRS interaction, concentrating on the entire be-

havior of the instability including both electromagnetic waves. It is clear from

his work that the daughter plasma waves are driven to large amplitude and are

finite in both length and width. Little work has focused on plasma waves of this

type, so this dissertation concentrates on understanding them in isolation to re-

duce the complexity involved in three-wave SRS interactions. By driving plasma

waves with an external, ponderomotive driver in computer simulations, a better

understanding of their behavior can be achieved that can then be applied to the

fully self-consistent SRS.
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1.3 Infinite Plane Waves

1.3.1 Linear Plasma Waves

Considerable work has been done to understand plasma waves in unmagnetized

plasmas, both in the linear amplitude limit and at high amplitudes. In the pio-

neering work of Landau [1] in 1946 it was shown by solving the linearized Vlasov

equation using the Laplace transform that collisionless damping of plasma waves

is possible. In doing so, Landau derived the “kinetic” dielectric function whose

roots in the complex plane give the frequency and damping of plasma waves.

Although Landau solves both the initial value problem and the spatial bound-

ary value problem, most subsequent nonlinear study has been concerned with

the mathematically and physically simpler initial value problem. Landau’s pa-

per did not discuss the physical mechanism that leads to the damping of plasma

waves, but simply found that it occurred and at what rate. A full 15 years later,

Dawson [2] produced a simple physical model that demonstrated the mechanism

leading to linear Landau damping. Previous authors [3] had attempted to ex-

plain Landau damping using a particle trapping argument. However, as Dawson

pointed out in his paper, trapping is a nonlinear effect, and it therefore cannot

be the cause of the linear Landau damping. In 1962, one year later, Dawson [4]

used computer simulations of a “sheet model” to lend credence to the theory of

Landau. The first experimental verification of Landau damping came in 1965 by

Malmberg, Wharton, and Drummond [5].

Dawson’s physical picture of Landau damping consists of breaking the distri-

bution function into two parts: the nonresonant bulk plasma and the resonant

particles. He calculates the “energy” contained in the nonresonant plasma and

equates it to that in the resonant plasma. Dawson’s calculation starts from the
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conservation of energy equation that results for the linear Vlasov-Poisson set of

equations in the rest frame of the plasma. On the whole, the resonant electrons

gain energy at the expense of the wave, resulting in exponential damping. It

should be pointed out that the particle velocity range that separates the res-

onant from nonresonant particles changes as a function of time in the linear

problem, so that many more particles are resonant at early times than at later

times. Strictly speaking, the damping is only exponential in the asymptotic, late-

time limit when the resonant width shrinks. In this limit and when averaged over

a wavelength, the resonant particles going slower than the wave’s phase velocity

tend to be accelerated, while those going faster tend to be decelerated. Because

of the slope of the Maxwellian distribution at the phase velocity, there are more

particles going slightly slower than slightly faster, leading to the wave’s damping.

By breaking up the distribution function into two groups of particles and treating

them separately, Dawson’s result gives an intuitive understanding.

1.3.2 Nonlinear Plasma Waves

1.3.2.1 Fluid Limit

In the fluid limit, the ratio of the plasma wave phase velocity to the electron

thermal velocity tends toward infinity. In this case, there is no Landau damping

or trapping effects. As the wave amplitude increases, harmonics form and the

wave’s frequency shifts positively. In the late 1950s and early 1960s, several

authors examined frequency shifts in the cold plasma limit for one-dimensional

waves [7, 8]. They found that in the absence of relativistic effects, or equivalently

when the phase velocity is small compared the the speed of light, there can be no

frequency shift in a cold plasma. A few years later, several authors found that

including an adiabatic pressure term due to finite temperature leads to a positive
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frequency shift [9, 10, 11, 12, 13]. These authors use a perturbative expansion of

the field amplitude to calculate the shift at second order in the amplitude (from

the third order wave equation), although they are somewhat contradictory in their

results. The paper by Dewar and Lindl in 1972 [11] resolved these differences.

As discussed previously, the subject of nonlinear frequency shifts were pro-

posed as a saturation mechanism for stimulated Raman scattering [41, 42, 31, 47,

61]. Accordingly, Winjum, Fahlen, and Mori revisited fluid frequency shifts to

bring attention to them and to generalize the results from over 30 years ago [14].

We summarize and reproduce these results in a later section, and extend them

to consider nonlinear diffraction in multiple dimensions.

1.3.2.2 Kinetic Waves

The linear theory described above is valid for small amplitude waves. The mean-

ing of “small” here must be examined further. Consider a fixed amplitude trav-

eling wave whose electric field is given by E(x, t) = E0 sin(kx − ωt). A particle

in such a field will satisfy

d2x(t)

dt2
+ ω2

B sin(x(t)) = 0, (1.1)

after transforming to a frame moving at vφ = ω/k, where ωB =
√
eEk/m is the

bounce frequency. This equation is equivalent to the nonlinear pendulum, and

gives two types of solutions referred to as trapped and untrapped. Untrapped

particles are those whose solutions x(t) increase or decrease monotonically (in

the wave frame). These are equivalent to a pendulum rotating in a full circle

either clockwise or counter-clockwise. The trapped particles are those whose so-

lutions oscillate around a fixed point and are bounded, like the pendulum swing-

ing back and forth. The line in phase space that separates the two classes of

solutions is called the “separatrix,” and is given by v(x) = ± cos(kx/2) in the
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phase velocity frame. Particles whose initial conditions put them outside the

region in phase space defined by the separatrix are untrapped, while those inside

are trapped. Particles near the center of the regions defined by the separatrix

are deeply trapped, meaning that they oscillate nearly sinusoidally at ωB. Less

deeply trapped particles oscillate anharmonically with periods that increase from

2π/ωB as they approach the separatrix. Returning to our definition of small,

recall that the linear phenomenon of Landau damping applies as long as the par-

ticle trajectories do not stray too far from their linearized orbits. Such is the case

if the wave damps away before any particle starts to execute trapped orbits, that

is, if γL � ωB. We therefore define “small” amplitude waves as those that do

not trap particles during their “lifetime”.

Before continuing on to describe the effects of trapped particles on the normal

modes of the system, that is, those whose frequency and wave number satisfy the

linear, kinetic dispersion relation, we discuss BGK waves. These waves represent

exact solutions to the one dimensional Vlasov and Poisson equations first found by

Bernstein, Greene, and Kruskal in 1957 [56]. The paper shows that any wave form

with any phase velocity can be generated by properly prescribing the trapped

particle distribution functions. These waves suffer no damping, but they may be

susceptible to sideband or other instabilities. We will see below that later authors

showed how such waves can be created. Historically, it is interesting to note that

these fully nonlinear solutions were found before a reasonable physical description

of linear Landau damping was published or any experiment had demonstrated

the wave-particle interactions typical of plasma wave behavior.

In 1965, O’Neil, following Dawson’s argument from 1961, again split the distri-

bution function into resonant and nonresonant, but then calculated the individual

trajectories of the trapped particle using the complete elliptic integral solutions.
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Comparing the energy change in this case shows that at early times, when the

particle orbits are still closely approximated by their linear trajectories, the wave

Landau damps. As the particles begin to trap, however, the damping oscillates as

the particles slosh in the wave’s potential wells. After a few bounces, the damp-

ing stops altogether, apparently leading to a steady state wave. This analysis

indicated that large-amplitude plasma waves might naturally evolve into BGK

waves. The analysis is valid to second order in the perturbed velocity ∆v, so the

amplitudes for which it is valid are limited.

In 1968, Dawson and Shanny [57] studied the effects of large amplitude waves

on the behavior of the normal modes of the plasma. Again, they broke the dis-

tribution function into separate pieces. Rather than calculate the exact trapped-

particle trajectories as O’Neil did three years earlier, they simply assumed that

the final nonlinear distribution of a plasma wave that traps particles is one that

is flat in the resonant region defined by −vT < v < vT , where vT = 2ωB/k,

and Maxwellian elsewhere. (Simulations indicate that in fact the spatially aver-

aged distribution function only flattens from approximately 0 < v < vT due to

the spatial variation of the separatrix.) They then find the change in particle

energy in going from an initial Maxwellian in this region to the final, flattened

distribution and compare it with the total wave energy. For a given wave phase

velocity, a wave whose amplitude is small enough that the energy change due to

the flattening is larger than the total wave energy will Landau damp. Otherwise,

sufficient wave energy will remain after the trapping process stops to maintain

the wave. Dawson and Shanny then compute the damping rate at early times,

finding it to be quadratic in time, but this calculation is flawed, both in its as-

sumptions and because of algebraic errors. Indeed, the calculations in this paper

are quite rudimentary, but they help to illuminate the essential physics of particle

trapping.

20



Perhaps the greatest flaw in the papers up to this point is the arbitrary split-

ting of the distribution function into trapped and untrapped particles. This

problem was finally resolved in 1972 by Morales and O’Neil [59]. The paper cal-

culated the effects of particle trapping by using the elliptic integral trajectories

for all particles and subtracting the well-known linear wave solution. In this way,

there is no arbitrary cutoff between resonant and nonresonant particles; all are

treated correctly. This paper also calculates the modifications to the distribution

function to second order in v, allowing the trapped particle frequency shift to be

calculated too. The last point that needs to be considered from this work is that

the conservation of energy and momentum equation are given, showing that the

change in damping is due to momentum conservation for the particles and the

change in frequency is due to energy conservation. Thus the frequency changes

at approximately twice the rate that the damping changes, and the change is pro-

portional to
√
E which itself is proportional to the number of trappe particles.

The calculations of O’Neil [58] and Morales and O’Neil [59] are not fully self-

consistent, since the amplitude variation is not considered in the particle orbit

trajectories. Therefore only waves large enough that the total wave energy is

large compared to the energy taken by the trapped particles. At the same time,

the Taylor expansions used in the calculation require that the changes to the

distribution functions remain small, or equivalently, that the amplitude is small.

Morales and O’Neil limit the amplitude to eE/mωpvth � v3
thω/v

3
φωp, with vφ >

4vth and ωB � γL. For a wave with kλD = 0.25, vφ = 4.42vth and γL = 0.0022ωp,

thus requiring the amplitude to satisfy 0.00002 � eE/mωpvth � 0.012. This

range is much lower than often observed in Raman scattering simulations [47, 48].

The quantities used here are the phase velocity vφ = ω/k, the plasma wavenumber

k, the electron thermal speed vth =
√
kTe/m, the Debye length λD = vth/ωp, and

the Landau damping rate γL.
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The Morales and O’Neil theory was experimentally verified in 1976 by Vidmar,

Malmberg and Starke [20]. In this work, the spatial problem was considered, in

which a transmitter at one location generates a wave that travels down the device

and whose wavenumber shifts as it propagates. This is in direct analogy with the

initial value problem described above, in which the wave’s frequency shifts in time.

The experimental results agree with the theory “quite remarkably” provided that

the initial damping used in the calculation is the amplitude-dependent damping

found previously by other authors (see discussion in Vidmar [20] for references).

This amplitude-dependent damping is required because the wave amplitudes used

in the experiment do not satisfy the limits specified by Morales and O’Neil, and

therefore the damping is larger than predicted. Taking this into account yields

good agreement with the theory, in particular the
√
E scaling of the wavenumber

shift.

These few papers mentioned above represent a small fraction of the total num-

ber of papers written on the subject of nonlinear plasma waves, but they contain

many of the main concepts. Three further papers of interest are those of Oei and

Swanson [17], Sugihara and Kamimura [16] and Canosa and Gazdag [15]. All

three approximated the amplitude of the transition from linear Landau damping

to trapped particle oscillations. Oei and Swanson used adiabatic theory to ap-

proximate the particle orbits, while the other two used numerical solutions of the

Vlasov equation. All find similar ratios for γL/ωB where the transition occurs;

Oei and Swanson find γL/ωB = 0.63, while the others obtained γL/ωB = 0.77. In

practice, these two are essentially the same. Basically, an undriven wave evolves

to a nonlinear undamped mode if it has not damped away within a bounce time.

In any case, these values will be used as a general guide in later chapters of this

dissertation.
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Much work has been done on so-called nonlinear Landau damping which oc-

curs for amplitudes large enough that the first few terms of the Taylor expansion

of the distribution function underestimate the number of trapped particles. At

very large amplitudes, the damping can be greater than that predicted by Lan-

dau. (This is the damping that must be used in the experimental work of Vidmar

et al. mentioned above.) The nonlinear damping increases are not of particular

relevance for this dissertation, mostly because they do not contain new physics,

but we cite a few here for completeness [15, 18, 19, 20].

Before moving on, we make a brief digression to put some of the work pre-

sented in Chapter 2 in the context of the experimental work of Vidmar [20] de-

scribed above. In their experiment, Vidmar et al. validated the
√
E dependence

of the wavenumber shift predicted by Morales and O’Neil [59]. In Chapter 2,

show that besides the negative shift due to trapped particles there is a positive

shift due to harmonics proportional to E2. The positive shift is important for

small values of kλD. A general theory that includes harmonics and trapped par-

ticles is not yet at hand. However, the scalings and signs of the shifts are very

different. Furthermore, there is no contradiction with the experimental results

of Vidmar. In their work, 0.17 . kλD . 0.24 and the amplitude ranges from

0.007 . eE/mωpvth . 0.1 for kλD ≈ 0.17 to 0.01 . eE/mωpvth . 0.14 for

kλD ≈ 0.24. For the lower values of kλD considered, the estimated shifts are

so small that verifying the scaling is not feasible. For the higher values of kλD

considered, the kinetic shift is approximately 10-500 times larger than the fluid

shift, thus rendering any E2 contribution to the scaling too small to have any

observable effect. The parameters in which the fluid shift might be observed

would be for kλD ≈ 0.1 and for eE/mωpvth ≈ 1. For this case, the kinetic shift is

negligible while the fluid shift is not. These effects are described in more detail

in Chapter 2.
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1.3.3 Finite-Length Wave Packets

There has been very little work on the propagation of finite-length nonlinear

plasma waves, that is, wave packets. Those papers that have dealt with finite-

length waves typically ignore particle trapping by requiring either very short

packets, very low amplitude, or envelopes that vary slowly enough that adia-

batic theory applies. A common term for the damping associated with particles

traversing finite-length waves is transit-time damping. Commonly [72, 71, 70],

this damping is calculated using the Born approximation for the particle orbits.

This approximation consists of solving for the particle orbits assuming they move

through the fields at constant velocity. The calculation is not self-consistent, but

it often works very well in certain circumstances, as seen in Fig. 1 of Morales

and Yee [72]. In their paper, they consider a wave with a short spatial envelope

approximately 10λD long and having a temporal oscillation (non-propagating).

They do not consider traveling wave packets, but stationary spikes in the field

that oscillate in time. Using the Born approximation, they found that these fields

tend to give energy to the particles as they traverse the field spikes, resulting in

a high energy tail to the distribution function.

Short and Simon [71] used the approximation to find the change to Landau

damping due to short wave packets. They found a dramatic increase in Landau

damping for very short packets, with the damping approaching the usual infinite

homogeneous result of Landau as the packet length increases. Robinson [70]

used the approximation to show how the packet energy can be moved around

in the packet through particle effects, but the calculation is limited to very low

amplitudes and therefore does not apply for SRS-relevant waves.

Other authors have dealt with larger amplitude wave packets, but they fo-

cused on simply finding the correct particle trajectories through the wave and
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did not address the effect the particles have on the wave. Fuchs, Krapchev, Ram,

and Bers [67] used numerical calculations to find the final velocity of a parti-

cle that crossed a fixed-ampitude packet as a function of its initial conditions.

Much of the focus of this work was to determine the range of velocities over

which the behavior of the particles is stochastic. For the particles that behave

stochastically, they found a quasilinear diffusion coefficient to describe the par-

ticle distribution after interaction with the packet. Tanaka [55] also studied the

transition to stochastic behavior, although he used an iterative solution to the

electron equation of motion.

Interestingly, Bruhwiler and Cary [68, 69] were able to reproduce the numer-

ical results of Fuchs et al. [67] using adiabatic theory by recognizing that the

conserved action is different in the packet case than in the temporal case. The

Hamiltonian varies slowly with the coordinate rather than time, thus allowing

a transformation of the equations of motion that yields the same results as the

numerical work of Fuchs et al. The use of adiabatic theory requires that the wave

amplitude vary slowly with either time, in the temporal problem, or with space,

as in our finite-length case. The packets observed in SRS simulations and studied

here have envelopes that vary too quickly in space for the adiabatic invariant J

to be considered constant, however, so the above results do not apply.

The papers discussed above consider the effects of localized fields on resonant

particles, but they do not consider how the interaction affects the fields. Although

Short and Simon [71] do find the wave damping due to the interaction, they do

not consider the spatial dependence of the damping, nor do they consider how the

packet’s profile may change as a result of the spatial dependence. Two papers

discuss the modification to the field due to the particle interaction. Denavit

and Sudan [52] present a model and simulation results that show wave packet
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lengthening. In their model, resonant particles enter the packet and trap. For

sufficiently short packets, the trapped particles can be treated as a single bunch

in a fashion similar to the sideband model of Kruer, Dawson, and Sudan [73].

When these bunches of trapped particle leave the packet, they can generate new

waves in front of the packet, depending on the phase at which they detrap. If

they leave with a velocity higher than the phase velocity, the packet lengthens,

while it does not in the opposite case. Qualitatively, the bunches act like a beam

that can excite waves. In 1977, Sato et al. [54] found experimental evidence for

the lengthening predicted by Denavit and Sudan.

In 1973, Ryutov and Khudik [53] showed that plasma wave packets can shrink

from the rear edge. This effect is similar to the wave “etching” [65] described

in Chapter 3, but they do not provide an expression for the rate at which the

packet etches, and their calculation is suspect for several reasons. They expand

the distribution function to first order and use adiabatic theory to calculate the

particle orbits. They then use conservation of energy to calculate the rate of

energy loss at the rear edge of the packet. However, they predict that the rear

edge will quickly steepen so that the adiabatic invariant J is no longer conserved.

Further, as shown by Bruhwiler and Cary [68, 69], the action that is conserved

in the spatial case is different than the conserved action when the amplitude in-

creases in time. Thus, Ryutov and Khudik do not correctly calculate the particle

orbits, but they do correctly point out that wave packets erode from the rear.

1.3.4 Langmuir Turbulence and Collapse

Plasma waves with spatial gradients or perturbations to their envelopes have a

ponderomotive force that can push plasma away from it, leading to local density

modifications. Since the ponderomotive force scales with the inverse mass of the
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particle feeling the force [85], the plasma electrons primarily feel the force. As

they are pushed away from the wave, the space charge electric field that results

slowly drags the ions toward them. The resulting density depression lowers the

plasma frequency, which then concentrates wave energy. A feedback mechanism

leads to instability as the concentrated energy further digs a density depression.

In one dimension, a modulational instability results, while a self-focusing insta-

bility develops in two or more. In three dimensions, if the nonlinearity is propor-

tional to the amplitude squared then the wave will “collapse” until a higher order

nonlinearity stops the process. Eventually, the assumptions leading to the model

equations break down as the wavenumber and amplitude increase. Kinetic damp-

ing, particle trapping, and transit-time damping become important at this stage.

Langmuir collapse, as the process is often called, was first described by Zakharov

in 1972 [86] with the now-famous Zakharov equations. Since then, much work has

been done to better understand these essentially fluid equations. Although this

dissertation finds that the predictions of Langmuir turbulence and collapse are

not important for the conditions considered, the following briefly describes some

of the work done on the subject to provide some context. A more comprehensive

bibliography can be found in, for example, the review paper of Robinson [87].

Since the ponderomotive force that drives Langmuir turbulence depends on

the slope of field envelope, and because the process of collapse leads to narrower

waves on its own, most papers that consider Langmuir turbulence in two or three

dimensions do so with very narrow waves, on the order of a wavelength. Further,

since the Zakharov equations are essentially fluid equations, they only apply at

small wavenumber, kλD � 1. In fact, many papers concentrate on solitons, or

other such local field structures that do not have well-defined wave trains, rather

than waves. These are not of particular relevance to this dissertation and are

thus not considered.

27



Being nonlinear in nature, most work on the Zakharov equations has been

through their numerical solutions. Three dimensional solutions were published

in the late 1980s by Newman, Robinson and Goldman [89, 88] in which Lang-

muir collapse is observed. Further assumptions to the Zakharov equations lead

to a nonlinear Schrodinger equation that also can model collapse [96]. Solutions

to the Schrodinger equation in multiple dimensions were published in 2001 [90].

Attempts to model kinetic effects with Langmuir collapse, primarily the damp-

ing and kinetic effects associated with the resulting ion waves, have resulted in

fluid damping terms being added, as in [91] for example, and with quasilinear

approximations [92]. To study the results of the quasilinear diffusion model in

one dimension, Sanbonmatsu et al. used a reduced PIC simulation that agreed

reasonably well with numerical solutions. An attempt to compare the results of

numerical Zakharov solutions with PIC results in two dimensions was done by

Newman et al. in 1990 [95]. Unfortunately, the PIC simulations used a periodic

box that was too small to contain the nonperiodic structure under study. With

the particles now interacting with the wave repeatedly, the simulations results

cannot be considered valid.

Despite the large literature on Langmuir turbulence and collapse, we do not

consider them further. The waves discussed in this dissertation evolve on shorter

time scales than the ions can respond. Several simulations performed for this

dissertation have tested the effects of ion motion and found them to be negligi-

ble in all relevant cases of interest, justifying their neglect in the body of this

dissertation.
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1.3.5 Outline of dissertation

Beyond the three effects described above, PIC simulations of SRS in one and two

dimensions show several features and complexities that are generally not well

understood. One such feature is the bursty nature of the reflectivity in time.

The instability grows, saturates, and repeats on a subpicosecond time scale. The

resulting plasma waves are of large amplitude and finite length. Such waves

can be seen in, for example, Fig. 5 of Ref. [48] and in [51]. The simulations

presented in Ref. [48] are done with a Vlasov-Poisson code, rather than PIC, but

they nevertheless have many of the same kinetic effects. The particle-trapping

theories mentioned above, on the other hand, consider an infinite plane wave.

These wave packets propagate forward, allowing SRS to recur in the relatively

quiescent region left behind. Finite-length wave effects are studied in more detail

later in this dissertation and are presented in Ref. [65]. As trapped particles

detrap and stream forward once they have reached the packet’s front edge, they

can distort and flatten the distribution function. This effect may reduce the

damping in places far from the original unstable region and lead to “inflation”

across speckles.

Simulations of SRS also show the instability growing in one region of space

and saturating, with the daughter plasma wave convecting away from the region

where it initially grew. Much recent work has been devoted to the growth and

saturation of the instability [41, 42, 47, 43, 44, 48, 50, 62, 64], but little has

focused on the effects caused by the wave’s finite length. The third chapter of this

dissertation is therefore devoted to understanding the behavior and propagation

of large-amplitude, finite-length plasma wave packets.

In recent multi-dimensional PIC simulations, a plasma wave with a finite

transverse extent is seen to localize in the transverse direction [45, 46, 51]. Lin
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et al. conjectured that the localization is due to plasma wave self-focusing driven

by the negative frequency shift caused by kinetic effects. Chapter 4 is devoted

to understanding the causes of localization. We find that it is due to localized

damping associated with trapped particles entering the wave from the sides and

not to self-focusing.

When several plasma wave packets exist nearby one another, scattering from

the forward wave can enhance and sustain the rear packet following behind [51].

Wave packets with finite width can interact in a similar fashion, reversing the

localization and generating enhanced scatter and plasma wave growth on the

packet’s sides. As we will see below, resonant particles traveling sideways rela-

tive to the packet can gain energy, potentially modifying the distribution in the

transverse direction as well as in the forward, longitudinal direction. Inter-packet

“communication” and modifications to the distribution function, as briefly de-

scribed here, are important kinetic effects that may alter the behavior of SRS

in unpredictable ways. That is, these are effects that cannot be captured with

simplified meso-scale physics models but that may dramatically change the pre-

dicted scattering levels. These effects require deeper inspection, the beginning of

which is attempted in this dissertation.

The remainder of this dissertation is organized as follows. Chapter 2 considers

driven plasma waves in one dimension, including frequency shifts and nonlinear

resonance. The aim is to determine if the process can be described by simple

phenomenological models that could then be added to reduced models like in

pF3D. Chapter 3 examines finite-length wave packets, showing that they grad-

ually “etch” away as they propagate. It also briefly examines the spectrum of

energetic electrons that leave the packet. Chapter 4 studies plasma waves in

multiple dimensions with a focus on the localization and local damping of such
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waves. The final chapter summarizes the dissertation and presents concluding

remarks and potential avenues for future research.
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CHAPTER 2

Driven Plasma Waves in One Dimension

Stimulated Raman scattering has been studied with PIC simulations for many

years. Initially the simulation studies were in one dimension with few particles

per cell and high laser intensities, while recently the studies have transitioned

to multi-dimensions, lower laser intensities and many particles per cell. It con-

tinues to garner much attention due to its implications for NIF’s operation and

for IFE in general. Understanding the saturation mechanisms and how the vari-

ous nonlinearities associated with the instability interact is of particular interest.

Electromagnetic simulations of stimulated Raman scattering (SRS) implicate sev-

eral mechanisms for the saturation, including nonlinear frequency shift detuning,

wavebreaking, sideband instabilities, wave convection, and others as discussed in

the introduction. Several of these effects are often present at the same time, lead-

ing to debate over which dominates. The simulations presented in this chapter

aim to clarify the situation by simulating only the plasma wave using an elec-

trostatic, periodic PIC code with an externally-imposed ponderomotive driver.

This allows study of the plasma wave’s saturation without the added complexity

of convective, localized instability, pump depletion, simultaneous frequency and

wavelength modulation, Raman or Brillouin rescatter, and plasma wave decay

instabilities.

A further goal of this chapter is to clarify and test the idea of using kinetic

terms in phenomenological models of plasma wave behavior. Such models are of-
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ten used to simulate the large space and time scales of SRS in NIF-scale plasmas.

Specifically, some work has been done to add the kinetic frequency shift to the

enveloped simulation code pF3D used to study laser scattering instabilities at

NIF [27, 28]. The model and PIC simulations presented in this chapter study in

detail the validity and consequences of adding kinetic based terms to phenomeno-

logical models like that used in pF3D. First, a simple model including only the

fluid frequency shift and the asymptotic kinetic frequency shift of Morales and

O’Neil[59] is presented and compared with a wide range of simulations. Subse-

quently, we extend the model to include damping and a time-varying coefficient

to the kinetic shift term. We will find that both models give qualitative insight

into the behavior of driven waves, but do not provide quantitative predictions

of the saturation amplitude even in the simple periodic, one-dimensional case.

Chapters 3 and 4 discuss novel effects associated with finite length and width

waves that further complicate attempts to generate simplified phenomenological

models.

Another goal of this chapter is to enhance the understanding of driven plasma

wave growth and saturation in a simplified, controlled environment. Before con-

sidering the continuously driven case, we derive a fluid frequency shift and present

simulation results to compare with the theory. Moving on to continuously driven

waves, we describe the wave behavior and note some general observations from

the simulations. Following the observations, we present a driven wave model that

shows how the response of a nonlinear plasma wave varies with driver frequency.

Driven waves are shown to have a nonlinear resonance curve that results from the

positive fluid frequency shift derived below and the well-known kinetic shift due

to trapped particles. We then present a comprehensive set of simulations that

examine nonlinear resonance and compare it with the model.
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2.1 Fluid Frequency Shift

2.1.1 Derivation

This section reproduces and summarizes the results presented in a paper by B.J.

Winjum, J.E. Fahlen, and W.B. Mori [14] on nonlinear frequency shifts in large-

amplitude plasma waves in the fluid limit. As mentioned in the introduction

to this thesis, previous authors have studied nonlinear, fluid frequency shifts [9,

10, 11, 12, 13] in warm plasmas. In the following, we present similar results

in a coherent fashion and extend them to include wavenumber shifts with no

frequency shift and both frequency and wave number shifts such that the phase

velocity remains constant. Finally, we find the wave equation for the electric field

accurate to second order for use later in this thesis.

We calculate the frequency shift using the nonlinear plasma fluid equations.

We expand these in powers of a “smallness” parameter and collect the terms into

a wave equation for the electric field at each order. This provides the harmonic

amplitudes and, at second order, a term that gives secular growth. The approxi-

mation requires that the solution at second order be smaller than the first order

terms, so the secular growth indicates that the solution breaks down. To correct

this problem, a frequency shift is allowed that cancels the secularity, making the

solution valid.

To begin, we write Euler’s equation, Ampere’s law and Gauss’ law:

(∂t + V ∂x)V = − e

m
E − v2

0

2n2
0

∂xn
2, (2.1)

∂tE − 4πenV = 0, (2.2)

∂xE + 4πe(n− n0) = 0. (2.3)

where V is the fluid velocity. We have used the adiabatic equation of state,
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which gives the pressure as p = (kT0/m)(n3/n2
0), where m is the electron mass,

k is Boltzmann’s constant, n is the plasma density, n0 is the background ion

density, and T0 is the electron temperature. We also define v0 =
√

3kT0/m for

convenience. We now expand each variable in terms of the smallness parameter

that we later set to one,

n = n0 + εn1 + ε2n2 + ε3n3, (2.4)

E = εE1 + ε2E2 + ε3E3, (2.5)

V = εv1 + ε2v2 + ε3v3. (2.6)

For the remainder of this section, we assume all waves go as cos(
∫
dxk −

∫
dtω)

or sin(
∫
dxk −

∫
dtω) and normalize time and space as t̄ = −

∫ t
dt′ω(t′) and

x̄ =
∫ x

dx′k(x′);

∂t = −ω∂t̄ = −(ω0 + εω1 + ε2ω2)∂t̄, (2.7)

∂x = k∂x̄ = (k0 + εk1 + ε2k2)∂x̄. (2.8)

At first order we have the following equations:

−ω0∂t̄v1 = − e

m
E1 −

v2
0

n0

k0∂x̄(n1), (2.9)

−ω0∂t̄E1 − 4πen0v1 = 0, (2.10)

k0∂x̄E1 + 4πen1 = 0, (2.11)

which can be combined to form the wave equation for the field at first order:

(ω2
0∂

2
t̄ − v2

0k
2
0∂

2
x̄ + ω2

p)E1 = 0. (2.12)

We choose the solution to be

eE1

mω0vφ
=
vosc
vφ

cos(x̄− t̄), (2.13)
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where we introduce vosc = eE1/mω0 as a first-order amplitude. This gives the

expected dispersion relation

ω2
0 = ω2

p + v2
0k

2
0. (2.14)

The other equations for v1 and n1 give the usual linear results given by

v1

vφ
=

vosc
vφ(1− α)

sin(x̄− t̄), (2.15)

n1

n0

=
vosc

vφ(1− α)
sin(x̄− t̄), (2.16)

where α = v2
0/v

2
φ.

Continuing to second order, the resulting wave equations have driving terms.

For E2, we have

(ω2
0∂

2
t̄ − v2

0k
2
0∂

2
x̄ + ω2

p)
eE2

mω0vφ
− 2ω2

0

vosc
vφ

(
ω1

ω0

− αk1

k0

)
cos(x̄− t̄)

= ω2
0

v2
osc

v2
φ

(
3 + α

1− α

)
sin[2(x̄− t̄)]. (2.17)

There is no secular growth in the second order wave equation because there are

no driving terms on the right-hand side for the cos(x̄ − t̄) term. Similar cos

terms also arise in the equations for v2 and n2, from which we conclude that

k1 = ω1 = 0. Thus, there is no first order frequency or wavenumber shift. The

solutions for each fluid quantity at second order are given by

eE2

mω0vφ
=

v2
osc

v2
φ

3 + α

6(1− α)2
sin[2(x̄− t̄)], (2.18)

v2

vφ
= −v

2
osc

v2
φ

1

6(1− α)2

(
3 +

3 + 5α

1− α
cos[2(x̄− t̄)]

)
, (2.19)

n2

n0

= −v
2
osc

v2
φ

3 + α

3(1− α)3
cos[2(x̄− t̄)]. (2.20)

We now infer that the order parameter ε is proportional to the amplitude as in

ε =
vosc
vφ
∝
∣∣∣∣v1

vφ

∣∣∣∣ , ∣∣∣∣n1

n0

∣∣∣∣ . (2.21)
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The harmonic ratios are given by∣∣∣∣n2

n1

∣∣∣∣ =
1

3

vosc
vφ

3 + α

(1− α)2
, (2.22)∣∣∣∣E2

E1

∣∣∣∣ =
1

6

vosc
vφ

3 + α

(1− α)2
. (2.23)

These ratios are significantly larger than those found by Rose and Russell [61].

Moving to the third order wave equation, we finally find the secularity that

leads to a frequency shift. The field is given by

(ω2
0∂

2
t̄ − v2

0k
2
0∂

2
x̄ + ω2

p)
eE3

mω0vφ
− 2ω2

0

vosc
vφ

(
ω2

ω0

− αk2

k0

)
cos(x̄− t̄) =

−ω
2
0

6

v3
osc

v3
φ

(15α + α2)

(1− α)3
cos(x̄− t̄) +

ω2
0

2

v3
osc

v3
φ

(
(6 + 9α + α2)

(1− α)3

)
cos[3(x̄− t̄)]. (2.24)

The term on the right side proportional to cos(x̄− t̄) generates the secular growth.

By choosing the appropriate ω2 and k2, the growth can be eliminated, giving the

condition

ω2

ω0

− αk2

k0

=
1

12

v2
osc

v2
φ

(15α + α2)

(1− α)3
. (2.25)

We see that as the amplitude increases, the plasma self-consistently generates

harmonics and “stiffens”, leading to a higher resonant frequency compared to

the linear case. By stiffen we simply mean that large amplitude fluid waves have

a higher frequency than lower amplitude waves in analogy with a hypothetical

vibrating rod that becomes more rigid as it vibrates more strongly. In the initial

value problem, k2 equals zero and the we can write the dispersion relation as

ω2 = ω2
p + v2

0k
2(1 +

5

2
W 2), (2.26)

where

W =
vosc

vφ(1− α)
. (2.27)
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In stimulated Raman scattering, one must consider the case where the phase

velocity remains constant and both the frequency and wavenumber shift together.

In this case, if both shifts are small, then they are approximately equal and given

by

ω2

ω0

' k2

k0

' 1

12

v2
osc

v2
φ

(15α + α2)

(1− α)4
. (2.28)

To better understand the source of the nonlinearity, we can track the contri-

butions to the frequency shift given in Eq. 2.25 from the convective derivative

V ∂xV , the current nV , and the pressure. We find that the 15α term in the nu-

merator of Eq. 2.25 can be rewritten as (10c + 17j + 3cj)/2, where the subscript

indicates a contribution from either the convective (c) derivative or the current

(j). The only contribution coming from the pressure is the α2 term in the numer-

ator of Eq. 2.25 which is smaller than the convective and current nonlinearities

by α. However, for cold plasma, α→ 0 and so there is no frequency shift. Thus

all three nonlinearities contribute to the shift.

We now would like to obtain an equation for the fundamental component of

the wave, which we expect to have a nonlinear term that is second order in the

wave amplitude, given by

(∂2
t − v2

0∂
2
x + ω2

p)E ∝ |E|2E. (2.29)

The above derivation provides such a term, the frequency shift, so we have

(∂2
t − v2

0∂
2
x + ω2

p)E = −2ω0δωE, (2.30)

with
δω

ωp
=

15

4

v4
th

v4
φ

∣∣∣∣ eE

mωpvth

∣∣∣∣2 . (2.31)

To extend this derivation to multiple dimensions, we simply assume that the

nonlinear frequency derived earlier will apply as a local nonlinear term in multiple
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dimensions, so the nonlinear wave equation becomes

(∂2
t − v2

0∇2 + ω2
p)E = −2ω0δωE. (2.32)

In Chapter4, we discuss some of the consequences of this equation and use it as

a basis for understanding the more complicated kinetic effects discussed there.

2.1.2 Relation to Quasilinear Theory and Second-Order Instabilities

The frequency shift derived above is second order in the wave amplitude, which

leads to several questions as to how it relates to other plasma wave theories and

instabilities. First, we discuss the relation to quasilinear theory. We begin by

expanding the distribution function in the same manner as for the density above,

f = f0 + f1 + f2..., and then inserting it into the Vlasov equation, yielding

∂tf2 + v∂xf2 =
e

m
(E1∂vf1 + E2∂vf0) (2.33)

at second order and

∂tf3 + v∂xf3 =
e

m
(E2∂vf1 + E1∂vf2 + E3∂vf0) (2.34)

at third order. The frequency shift comes from the two nonlinear terms on the

right side of Eq. 2.34. Both E2 and f2 must be solved simultaneously using

Ampere’s law at second order, given by

∂tE2 = 4πe

∫
vf2dv (2.35)

The simultaneous solution of these equations yields identical harmonic ratios as

the fluid theory presented above, but the frequency shift is different, depending

on the f0 chosen in the calculation. The frequency shift is calculated as before

also by finding the wave equation at third order and canceling with a frequency
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shift the terms giving secular growth. The shift calculated using a waterbag and

a Maxwellian is given by

δωwaterbag =
1

4

v2
osc

v2
φ

3 + 7α2

(1− α2)3
ωp (2.36)

and

δωMaxwellian =
1

4

v2
osc

v2
φ

3 + 10α2

(1− α2)3
ωp. (2.37)

Both of these expressions give a frequency shift when there is no temperature,

as can be seen by letting α ∝ vth → 0, in contrast to the expression derived

above using the fluid equations. The difference between these expressions and

those resulting from the fluid calculation above is likely because the expansion

of the distribution function fails. As the peak of the distribution in velocity

varies in space due to the wave, at some locations of (x, v, t) we find that f2 is

not necessarily |E| smaller than f1. The technique used to find the shift is only

valid when this is true, so the technique breaks down for these equations. For

this reason, we use the fluid calculation’s results for the remainder of this thesis.

Reconciling these differences is an area for future work. Furthermore, as seen

below, the PIC simulations are in agreement with the fluid calculation.

We now consider how this second order frequency shift relates to two pro-

cesses that occur due to second order nonlinear terms. The first is the Langmuir

decay instability, which occurs when an electron plasma wave decays into another

electron plasma wave and an ion acoustic wave [102, 103, 104, 105]. The posi-

tive frequency shift may detune the instability, but this detuning is small. For

typical parameters considered below, kλD = 0.1, and the ion wavenumber that

gives the maximum growth is kics ≈ 0.0042. The threshold for the instability

is proportional to the electron damping rate, which for these low wavenumbers

is exponentially small, so the fluid frequency shift at threshold is exponentially

small itself. Even at the relatively large amplitudes considered below, the fre-
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quency shift is approximately δω ≈ 0.0001ωp. In general, the fluid shift is small

compared with kics. In addition, the growth rate for the instability is, for typical

cases considered below, approximately γLDI/ωp ≈ 0.001. With the noise ampli-

tude being much smaller than the main wave signal in our simulations, it will

take much longer than the duration of a typical simulation for the instability to

grow appreciably.

The second process is self-focusing or collapse, which is caused by the pon-

deromotive force associated with the wave envelope digging a density depression

that enhances the ponderomotive force. This can be modeled with the non-

linear Schrodinger equation [85] including a density depression δn/n0. After

long periods of time, the density depression reaches a steady state in which the

electron pressure is balanced by the ponderomotive force. When this occurs,

δn/n0 ≈ (eE/mωpvth)
2/4 [85]. This term is usually much larger than the term

associated with the frequency shift due to harmonics. Therefore once the density

depression begins to form, the nonlinearity associated with the frequency shift

is negligible. This can be seen by comparing the coefficients in front of the |E|2

terms, which is approximately 4(kλD)4 for the fluid nonlinearity calculated above

and 1/8 for the density depression, where kλD � 1 for the waves considered here.

However, for the timescales of the simulations considered here, the density de-

pressions do not form and play no significant role in the results. We discuss the

nonlinear Schrodinger equation and density modifications again in Chapter 4.

2.1.3 Fluid Shift Comparison with Simulation

To validate the above fluid theory, we have performed a number of 1D PIC

simulations in which a traveling wave driver is used to impulsively generate a

wave. The simulation code BEPS developed by Viktor Decyk at UCLA was used.
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Figure 2.1: Magnitude of the FFT of the time data for a run with kλD = 0.1

and ωD/ωp = 1.0099 that ran for tωp = 1000. The dashed line is the FFT of the

data, while the solid curve is the FFT of the data padded with 1,000,000 zeros

after the end of the data. The driver amplitude is eED/mωpvth = 0.5 and the

peak amplitude reached by the wave is eE/mωpvth ≈ 2.3.

The driver is on for approximately two wave periods and then shut off at toffωp =

10 to allow the wave to propagate freely. This technique is used again later when

we consider waves in multiple dimensions. These simulations have a box length

of 1024 cells, with each cell one Debye length long and containing 4000 particles.

Since the waves are driven to large amplitude relative to the thermal velocity,

eE/mωpvth can reach 3 and some particles reach relatively large velocities, v/vth

approximately 10 in some cases. Therefore, the time step is chosen to be ∆tωp =

0.025, which is 1/4 the usual choice. We do this to help maintain accuracy in the

particle pusher, since otherwise some particles may travel up to one cell per time

step. Because the theory is under the fluid approximation, we restrict ourselves

to high phase velocity waves in which kinetic effects cannot occur due to the finite

number of particles in the simulations.
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Figure 2.2: Harmonic ratios as a function of kλD. The y-axis is the harmonic

ratio divided by vosc, |E2/voscE1|. The solid curve is the theory prediction and

the points are measured from the simulations.

The measurement of the harmonic ratios is straightforward, but the frequency

shift is somewhat more difficult due to its small size. The simulations are run

for tωp = 1000, or about 160 wave periods when kλD = 0.1 and ω = 1.0099ωp.

Thus the frequency resolution is about 0.006ωp. The frequency shift expected

at eE/mωpvth = 2, a fairly large amplitude, is δω/ωp = 0.0014, several times

smaller than the expected frequency resolution. Further, an FFT of the discrete

data gives a resolution of ∆ω/ωp = 0.006 as well, as seen in the dashed line of

Fig. 2.1. To get a smoother curve, we pad the data with 1,000,000 zeros after the

end of the simulation time data. This increases the frequency resolution of the

FFT to ∆ω/ωp = 2.5×10−4. Of course, it does not increase the actual frequency

resolution, but does make the plot smooth, as seen by the solid curve in Fig. 2.1.

To measure the shift, we choose as the frequency the point corresponding to the

peak of the padded data. The wave amplitude is measured by the rms of the

time history of the wave.
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Figure 2.3: Harmonic ratios (a) and frequency shift (b) for a wave driven impul-

sively at kλD = 0.1 and ωD = 1.0099ωp with a range of amplitudes. The solid

curve is the theory prediction and the points are measured from the simulations.

The harmonic ratios as a function of wavenumber are shown in Fig. 2.2. Since

the ratios depend on the amplitude, which may be different in each run shown

on the plot, the actual quantity plotted is |E2/voscE1|. In Fig. 2.3a the harmonic

ratio is plotted as a function of amplitude for kλD = 0.1. The harmonic ratios

depend linearly on the wave amplitude, so the slope of the line in Fig. 2.3a

gives the value of the coefficient. The slope of the curve in the plot is within

approximately 16% the slope predicted by the theory. The frequency shift for

the same cases is shown in Fig. 2.3b. The theory predicts that it scales with the

square of the amplitude, so that its square root is linear in the amplitude. Using

the same data, the measured slope of
√
δω vs. E is within about 19% of the

theoretical value. Thus, the frequency shift is in reasonable agreement with the

simulations.

In the fluid calculation for the frequency shift, the pressure was taken to be
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Figure 2.4: Comparison of the pressure term used in the frequency shift calcula-

tion with the simulation for kλD = 0.1 and peak amplitude of eE/mωpvth = 0.12

for (a) and eE/mωpvth = 1.2 for (b). The red line is (∂xn
3)/n with n = 1+n1+n2

and the blue curve is (∂xp)/n as measured in the simulations.

the one dimensional adiabatic gas law p = n3 (in the electrostatic units of the

calculation). The simulations make no such assumption and they can be used to

check if such an equation of state is accurate. In Figures 2.4 and 2.5 we show

a comparison between the measured pressure in the simulations and p = n3.

Figure 2.4 shows a comparison between (∂xp)/n measured in the simulations and

the pressure term from the theory, (∂xn
3)/n, where n = 1 + n1 + n2, for two

amplitudes with kλD = 0.1. The phases are chosen arbitrarily. Figure 2.5 shows

a scatter plot of the cube root of the pressure versus the density at every location

and time for the same simulation as shown in Fig. 2.4b. Since the adiabatic

pressure is given by p = n3, we expect the cube root of p to be linear in the

density, as shown in the figure. These figures demonstrate that, when kλD � 1,

the adiabatic pressure term approximates the pressure in the simulations very

well.
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Figure 2.5: Scatter plot of the cube root of the pressure vs. the density for the

same run as in Fig. 2.4b.

Figure 2.6 shows the same type of plot but for two runs having kλD = 0.3 and

kλD = 0.4 and peak amplitudes of eE/mωpvth = 0.23 and eE/mωpvth = 0.15,

for a) and b) respectively. In this case, the pressure is no longer p ∝ n3, and is

in fact very complicated. Understanding in detail the simulation results for the

pressure term in the kinetic regime is an area for future research.

The frequency shift applies for fluid plasma waves when kλD → 0, and it

is small. For the wavenumbers used in the simulations of Fig. 2.2 and 2.3, the

comparison between theory and simulations for the harmonic ratio and nonlinear

frequency are both very good. At the lowest amplitudes shown in Fig. 2.3, the

shift becomes too small to measure. At the highest amplitudes, particles begin

to trap, introducing a different nonlinearity and rendering the comparison with

the fluid theory derived here inappropriate. Thus the range of amplitudes over

which the shift can be measured at shorter wavelengths becomes too small to

have a meaningful comparison. In the following section on driven plasma waves,
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Figure 2.6: Scatter plot of the cube root of the pressure vs. the density for two

runs having kλD = 0.3 for a) and kλD = 0.4 for b). The peak amplitudes are

eE/mωpvth = 0.23 and eE/mωpvth = 0.15 for a) and b) respectively. Note the

scale change on the axes.

we examine more carefully the transition in wave behavior with amplitude and

wavelength from one where fluid theory is reasonable to one where kinetic effects

dominate.

2.2 Driven Waves

The simulations presented in this section are similar to those above, except that

in the following the driver remains on for the duration of the simulation. In

SRS, the overall motivation for studying such waves, the ponderomotive driver

results from the beat between the pump laser and exponentially growing scat-

tered light. Instead of using an exponentially growing driver, as would most

closely resemble the driving force in SRS, we use a constant amplitude driver for

simplicity. This generates a more controlled wave that can be readily compared
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with simple models. The driver amplitude was chosen by estimating the pondero-

motive driver amplitude in a typical electromagnetic SRS simulation. Its value

is eED/mωpvth = 0.00113, and it ramps linearly from zero to its maximum value

over the first 10ω−1
p of the simulations. Although many parameters are varied in

the simulations presented in this chapter, the driver amplitude is held constant

for the remainder of this chapter. The number of particles per cell 8192. At the

end of this chapter, we show the results of varying the number of particles per

cell.

The simulations in this chapter model plasma wave that can be broadly cate-

gorized as either ‘fluid’ and ‘kinetic’. Generally speaking, the difference between

the two is the degree to which the fluid plasma wave description is adequate

and, relatedly, whether trapped particles play an important role in the wave’s

evolution. Fluid waves have high phase velocities, therefore the trapping width,

∆v = 2ωB/k = 2
√
eE/mk, with ωB the trapped particle bounce frequency,

and hence the wave amplitude, must be large before particles are trapped. One

method to distinguish fluid from kinetic waves is whether the total frequency shift

is positive or negative for wave amplitudes typically observed in the 1D simula-

tions. A positive shift indicates fluid waves while a negative shift indicates kinetic

waves. Thus, the simulations presented here range from fluid (kλD ≈ 0.02−0.20)

to kinetic (kλD > 0.25− 0.35), with the intermediate range being somewhat in-

determinate depending on the amplitude.

The use of a driver also allows one to study the resonant width of the plasma

wave response which is another way to inter frequency and damping shifts. The

absence of trapped particle effects, like trapped particle frequency shifts, sideband

instabilities, and distribution function flattening, means that fluid wave evolution

is simpler and more easily understood in terms of harmonic oscillator equations.
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The fluid regime has nonlinear frequency shifts due to harmonic generation, non-

linear resonance, and recurrence in growth and decay of the wave. We therefore

use the fluid case as a reference for understanding the more complex kinetic case.

Throughout this chapter, fluid waves will therefore be used as a foundation from

which the kinetic effects can be understood.

2.2.1 Observations

Figure 2.7 shows the typical electric field response for a driven plasma wave in

the fluid limit where kλD = 0.02. The wave amplitude grows but then decreases

as its frequency shift causes it to get out of phase with the driver. Once the

driver and response are more than π/2 out of phase, the wave begins to decrease

in amplitude. This results in a beat pattern for the wave with a period of about

π/∆ω. The expected frequency shift at such long wavelengths is extremely small,

so the beat pattern is also at a very low frequency. That such a behavior occurs

is expected, since a continuously driven wave will eventually reach an amplitude

large enough to exhibit nonlinearites that shift its resonant frequency and cause

it to exchange energy with the driver. A simple harmonic oscillator with no

damping models the initial secular growth of the wave well. That is, the slope is

approximately F/2, where F = 0.0011 is the driver amplitude in the simulations.

Figure 2.8 shows the amplitude of a fluid wave in which a larger frequency shift

is expected. Here, kλD = 0.16 and the linear resonant frequency is ωL = 1.03ωp.

Initially, the secular growth is again approximately F/2 as predicted by a simple

harmonic oscillator with no damping. As the driven wave’s amplitude increases,

its frequency shifts positively as harmonic generation becomes important. There-

fore, a wave driven at the linear resonant frequency will become detuned with the

driver as the amplitude grows. However, a fluid wave driven at a frequency that
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Figure 2.7: Electric field vs. time: kλD = 0.02, ωd = 1.0ωp. The rough edges of

the envelope are artifacts of the picture.

is slightly higher than the linear resonant frequency can reach greater amplitudes

as the frequency of the wave shifts closer to that of the driver. Thus, an initially

non-resonant wave becomes nonlinearly resonant. Figure 2.8 shows this clearly.

The driver in this case is ωD = 1.035ωp, with ∆ω = ωD − ωL = 0.005ωp. The

wave amplitude grows secularly. Near ωpt ≈ 1000 the rate of increase decreases

because the wave was driven away from its resonance. As the wave gets then

the nonlinear shift brings the driver into resonance and the wave grows more

rapidly. Eventually the wave growth saturates and begins to decrease. Despite

its low kλd, this wave reaches high enough amplitude to trap some particles, in

contrast to the wave shown in Fig. 2.7. As a result, the distribution function is

irretrievably changed. Accordingly, the wave amplitude does not return to zero

as it did in the previous figure. The trapping is not large, however, and in this

case does not dominate the behavior.
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Figure 2.8: Magnitude of the electric field at the driver wavenumber vs.

time showing initial growth followed by additional nonlinearly resonant growth:

kλD = 0.16, ωd = 1.035ωp.

That the fluid wave becomes nonlinearly resonant for driver frequencies slightly

greater than the linear resonant frequency is evidence for a positive frequency

shift. Further evidence is presented in Fig. 2.9. A windowed Fourier transform

is used to calculate the frequency versus time data shown in the plot. The ini-

tial frequency is close to ωD, but it rises to ω ≈ 1.045 at the peak. Comparing

this with Fig. 2.8, it is seen that the nonlinear frequency overshoots the driver

frequency and results in the decreasing amplitude.

Figure 2.10 shows the nonlinear resonance pictorially for both the fluid case,

as just described, and the analogous kinetic case. The phase velocity of the

waves is marked against a decreasing Maxwellian distribution function. The fluid

waves exist far from the bulk of the distribution and therefore their interaction

with particles is negligible. Kinetic waves, on the other hand, are located near the

51



Figure 2.9: Frequency vs. time for a wave with kλD = 0.16, ωd = 1.035ωp, as

shown in Fig. 2.8. A windowed Fourier transform is used to generate the plot.

bulk of the distribution, so particle interactions can dominate. If the pump phase

velocity for a fluid wave lies above the linear phase velocity, the positive frequency

shift of these waves allows the nonlinear phase velocity to become resonant. The

opposite is true for kinetic waves, where the dominant frequency shift is negative.

Nonlinear resonance occurs in this case for pump phase velocities below the linear

resonance.

Increasing the wavenumber of the driver such that kλD > .2 brings several

new important effects due to particle trapping. The frequency shift becomes

negative, and the distribution function is flattened, as phase space vortices form

from the trapped particles. Figure 2.11 shows the amplitude response of two

kinetic waves at the driver wavenumber for two different driver frequencies at

kλD = 0.3 that are both shifted to compensate for negative kinetic frequency

shift. Both waves have kλD = 0.3 with ωL = 1.127ωp, but the driver frequencies
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The blue line in the background is the distribution function. The arrows represent

phase velocities of the wave: linear means the phase velocity given the linear

resonant frequency, actual mean the nonlinear resonant frequency, and pump is

the driver frequency.

are ωD1 = 1.12ωp and ωD2 = 1.095ωp. While both driver frequencies are below

the linear frequency, they show dramatically different behavior. The curve in

Fig. 2.11a shows a behavior that one might expect from a nonlinear resonance.

The wave initially grows secularly and then saturates as the driver detunes from

the nonlinear wave. The initial growth in both cases is again well represented by

a simple harmonic oscillator, but this time only if Landau damping is included

phenomenologically. The initial secular growth for tωp < 300 is approximately
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tF∆ω/2
√
γ2
L + ∆ω2, where ∆ω = ωD − ω. The behavior in Fig. 2.11b is dra-

matically different. The main peak in this case is offset in time relative to that

of the peak of the plot on the left, which appears to indicate that the frequency

is gradually changing as the distribution function changes such that a more ideal

resonance occurs. We call this a nonlinear kinetic autoresonance. We describe

later the changes to a simple model that are required in order to qualitatively

reproduce this effect.

That the electron phasespace changes dramatically through four stages during

a kinetic simulation is illustrated in Fig. 2.12 in which time increases from a) to

d). While this figure is made from actual simulation data, it is representative

of the stages seen in all kinetic simulations. The comparison with Fig. 2.11a is
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also purely representative; the data do not correspond to the same simulation,

but rather come from a more strongly driven case. The reason for this is that

in many cases the phase space plots are difficult to interpret without watching

a movie of them. When the wave’s amplitude is small and the phase velocity is

less than about 4vth, the trapped particles are often buried inside the Maxwellian

distribution and are therefore difficult to see in phase space plots. The phase space

plots shown in Fig. 2.12 are chosen because they clearly show the characteristic

effects of interest.

Figure 2.12a corresponds to the initial growth phase of the wave, t < t1, where

t1 is marked on Fig. 2.11a. The trapped particle vortices are clearly periodic and

well defined. After the wave amplitude reaches its first peak, the amplitude

decreases with each wave period. This causes the particles that were only just

trapped in the previous period to become untrapped and stream forward. If the

amplitude decreases rapidly, then the majority of the previously trapped particles

become untrapped and the wave structure is destroyed (Fig. 2.12b, t1 < t < t2).

Also present in this stage is the growth of sidebands around the main wavelength.

The sidebands, along with the decreasing wave amplitude, destroy the phase space

vortices (Fig. 2.12c, t1 < t < t3). The wave amplitude can increase again, due to

continual detuning with the driver, as seen in the fluid runs, or due to a nonlinear

resonance or even an autoresonance, and will again trap particles. However, once

the phase space rings (bump-on-tail) are destroyed in the previous two stages,

they do not return. Figure 2.12d, for t > t3, clearly shows the wave and its

trapped particles in the phasespace, but the previously empty vortices are now

filled in.

The phasespace plots clearly indicate that, unlike fluid waves, kinetic waves

irreversibly modify the distribution function (Fig. 2.13). As the wave amplitude
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Figure 2.12: Electron phasespace. The figure is intended to be representative

of the different stages seen in most kinetic simulations. The times t1, t2 and t3

correspond to those in Fig. 2.11, but the parameters are different.

reaches a local maximum and decreases, the trapped particles stream forward,

retaining the flattening of the distribution function around the phase velocity.

This also implies that the frequency will not shift back to its value prior to wave

growth as it does in the fluid case. Figure 2.14 demonstates this clearly. In

neither Fig. 2.14a or b does the frequency return to its original value. Compare

these plots with the fluid case, Fig. 2.9, in which the frequency falls after the

peak to approximately its initial value before increasing again at the end of the

simulation. Figure 2.14 also helps to explain the oscillations after the first peak

of Fig. 2.11a. The oscillations occur with a frequency of about 0.02ωp, which

corresponds to the difference between the wave frequency (1.1ωp) and the driver

frequency (1.12ωp) for times after the first peak. The same is approximately true

for the nonlinearly resonant case shown in Fig. 2.11b, although it is more difficult

to identify a particular wave frequency in this case, as seen in the frequency plot

of Fig. 2.14b. In addition, the sudden drop in frequency between ωpt5000 and

6000 in Fig. 2.14b occurs when the wave dramatically increases in Fig. 2.11b.

During this time the distribution function gradually flattens over a wider region

in velocity space, but does not appear to the eye to change significantly at the
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distribution function for a kinetic run.

moment of saturation.

Sidebands (Fig. 2.15) are waves generated to either side of the main wave

k at ksb = k ± ∆k. They result from trapped particles in the main wave cou-

pling to the sideband waves and transferring energy from the trapped particles

to the sidebands. The wavenumber of the sidebands can be estimated using the

Kruer, Dawson and Sudan model [73], although the calculation relies on idealis-

tic assumptions, primarily that all the trapped particles are represented as one

macroparticle. This assumption is clearly not satisfied in the simulations, as seen

in Fig. 2.12. Tsunoda and Malmberg [74] do numerical solutions for a generaliza-

tion of the KDS model and observe similar results, both to the idealized theory

and to the simulations presented here. Although we do not intend to discuss

sidebands in detail, we do note that these models find that the frequency and

wavenumber separation between the main wave and the sidebands are propor-

tional to the bounce frequency, which itself is proportional to the square root of

the amplitude.
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However, sideband instabilities, as discussed in the Introduction, have been

suggested to be a saturation mechanism for SRS [50]. Accordingly, we examine

them briefly here, although in general we do not find them to be of much im-

portance, either for the long-time behavior of the wave or for the development

of phenomenological models. As an example, sidebands can be seen clearly in

Fig. 2.15 to either side of the main wave at kλD = 0.3. Harmonics of the main

wave and sidebands are visible in plot b) as the wave gets large. Figure 2.16 shows

the sum of the y-lineouts of Fig. 2.15 over the lower sidebands for the same two

driver frequencies. By comparing these plots to those in Fig. 2.11, it is clear that

the majority of sideband growth for a) occurs after the global maximum of the

amplitude at t ≈ 400ωp (Fig. 2.11a). The sideband growth stops at t ≈ 600ωp,
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Figure 2.15: Fourier transform in space of electric field e|E(k, t)|/mωpvth vs. time

for kλD = 0.3 and ωL = 1.127ωp. The driver frequencies are a) ωD1 = 1.12ωp

and b) ωD2 = 1.095ωp. Sidebands develop in each case after the first peak in

amplitude and after subsequent major peaks.

which corresponds to the wave minimum. The same is true for Fig. 2.16b, al-

though the growth continues more slowly after the wave minimum. Thus, the two

plots suggest that sidebands do not cause the plasma wave’s saturation. Rather,

sidebands are present after a driven wave reaches a maximum which is sufficiently

large.

Further evidence that sidebands do not saturate the wave is shown in Fig. 2.17.

In the simulations used for this figure, a wave is driven with kλD = 0.257 and

∆ω = −0.015. The initially nonresonant wave grows, then detunes with the

driver and decreases in amplitude around tωp < 1000 at the very left edge of

the plot. Once the wave amplitude decreases, the sideband at kλD = 0.233
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grows as particles trapped earlier in time stream forward. The wave continues

to grow, and around tωp = 9000 it has a second phase of significant growth

due to nonlinear autoresonance. Once this peak forms, particles again detrap,

leading to sideband growth at kλD = 0.184. While some sideband growth does

occur before the main wave reaches a local maximum, the majority of it occurs

afterward. Also of interest is that the sideband growth occurs for different modes

depending on the amplitude, as expected. The initial growth occurs at a smaller

separation in k than does the later growth, since the separation is amplitude

dependent. Although the simulations performed for this thesis seem to indicate

that sidebands do not saturate the wave, further work should be done to confirm

this in general.

2.3 Frequency Shift and Nonlinear Resonance Model

To better understand the nonlinear resonance described above, we use a phe-

nomenological, nonlinear harmonic oscillator model to examine how nonlinear

frequency shifts and damping affect driven waves. Phenomenological models have

been generated to provide less computationally demanding predictions of SRS be-

havior over long spatial and temporal scales. An example is the code pF3D [27] in

which the laser fields, plasma electron and ion densities and longitudinal fields are

solved for using coupled wave equations that include phenomenological Landau

damping and collisions. A variety of nonlinear couplings are allowed, including

the laser scattering instabilities SRS and SBS. Some attempts have been made to

augment such models with nonlinearities representing the frequency shift associ-

ated with particle trapping [28]. The term used to model trapping is the asymp-

totic frequency shift result of Morales and O’Neil [59], with the term scaling with√
|E| as found in their work, although not necessarily the same coefficient. As

61



we will show, it is not easy to form an accurate nonlinear model for the envelope

of a plasma wave in the kinetic regime.

In the following, we first present a standard 1D model for a driven harmonic os-

cillator with a cubic nonlinearity (a quadratic frequency shift) without damping.

This is reasonable when kλD is sufficiently small, that is, in the fluid limit. This

simple model allows analytic results for the resonance curve and detailed compar-

ison to simulations. We then augment this model with a negative frequency shift

that scales with
√
|E|. We still neglect damping so that analytical results can

be obtained. This is reasonable since the asymptotic damping rate approaches

zero. The simulation results do not agree with the predicted resonance curves

most likely due to the fact that the real frequency shift is not proportional to the

instantaneous value of
√
|E|. Later, we describe a more complicated nonlinear

wave equation that includes damping. This model has some fitting parameters

which we vary to fit the simulations results. We include this more complicated

model to help illustrate why it is challenging to use a phenomenological model

to describe a kinetic plasma wave.

We start with the nonlinear wave equation derived previously with an addi-

tional driving term, given by

∂2
tE − 3v2

th∂
2
xE + ω2

pE + 2ωδωE = FeiωDt, (2.38)

where F is the driver amplitude and ωD is the driver frequency. We can remove

the spatial dependence by assuming

E = E(t)eikx. (2.39)

Using the dispersion relation, we replace ω2
p + 3v2

thk
2 with ω2, obtaining

d2E

dt2
+ ω2

(
1 + c|E|2

)
E = FeiωDt, (2.40)
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where c = 2δω/ω|E|2 is defined so that c|E|2/2 is proportional to the frequency

shift derived previously. For c = 0, there is no frequency shift and the model is

the usual simple harmonic oscillator. For c 6= 0, there is a frequency shift as the

amplitude increases. This model includes the fluid frequency shift, but neglects

the trapping-induced kinetic shift for simplicity. We add a kinetic term later in

analogy to the fluid term. This equation has been studied in detail [76, 77], and

is similar to the well known Duffing Equation (see [78] for example). We assume

a solution

E = a(t)ei(ωt+θ(t)), (2.41)

where a is a slowly varying function of time and dθ/dt = θ̇ represents the fre-

quency shift of the response. Inserting this solution into Eq. 2.40 yields[
ä+ 2i(ω + θ̇)ȧ+ a(iθ̈ − 2ωθ̇ − θ̈) + cω2a3

]
(cos θ + i sin θ) (2.42)

= FeiωDt,

where ∆ω = ωD − ω is not the frequency shift but the difference between the

driver frequency and the linear resonant frequency of the plasma. Collecting the

real and imaginary terms and dropping the second time derivatives of a and θ,

we have the two equations given by

−2ωaθ̇ + cω2a3 = F cos(θ −∆ωt) (2.43)

and

2ωȧ = −F sin(θ −∆ωt). (2.44)

Multiplying the first equation by cos(θ −∆ωt) and the second by sin(θ −∆ωt)

and summing the results gives

−2ωaθ̇ sin(θ −∆ωt) + cω2a
3 sin(θ −∆ωt) + 2ωȧ cos(θ −∆ωt) = 0. (2.45)

63



Integrating by parts and using Eq. 2.44, we find

d

dt

(
2ωa cos(θ −∆ωt) +

2ω2∆ω

F
a2 − cω3

2F
a2

)
= 0, (2.46)

which then yields

cos(θ −∆ωt) =
ωa

F

(cω
3
a2 −∆ω

)
. (2.47)

Since a(0) = 0, the constant of integration is zero. Inserting Eq. 2.47 into Eq. 2.43

gives the following expression for the frequency response:

θ̇ =
1

2
∆ω +

3

8
cωa2. (2.48)

However, measuring the instantaneous frequency of a driven wave in the sim-

ulations is difficult. A simpler way to compare the model with the simulations is

to find the peak amplitude for a given ∆ω and sweep over the driver frequencies,

that is, to generate the resonance curve for the system. To do so, we first consider

the behavior of the nonlinear harmonic oscillator. The response of a simple har-

monic oscillator, c = 0, driven off resonance is to grow, detune with the driver,

and return to zero, with frequency ∆ω/2. For positive frequency shifts, c > 0, as

the amplitude increases, the resonant frequency increases. If the driver frequency

is greater than the linear frequency ω, that is, ∆ω > 0, then as the frequency

shifts the system becomes “more resonant,” leading to a larger peak amplitude

than it would have reached without the shift. As the amplitude continues to in-

crease, the system’s response frequency may shift past the driver frequency. The

largest amplitude the system can reach happens for a driver frequency chosen

so that, as the frequency shifts with the increasing a(t), the nonlinear resonant

frequency at the peak amplitude just equals the driver frequency. We refer to this

driver frequency as the “cutoff” frequency, ωcutoff . That is, the peak amplitude

reached by the system as a function of driver frequency occurs for ωD = ωcutoff .
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To find ωcutoff , set θ̇ = ∆ωcutoff , where ∆ωcutoff = ωcutoff − ω. That is,

the frequency shift of the system is equal to the difference between the cutoff

frequency and the linear frequency. In this case, Eq. 2.48 becomes

∆ωcutoff =
1

2
∆ωcutoff +

3

8
cω|amax|2, (2.49)

where amax is the maximum amplitude the system can attain. To find it, we see

from Eq. 2.47 that the maximum amplitude will happen for cos(θ −∆ωt) = ±1.

This gives
ω

F

(cω
4
|amax|2 −∆ω

)
|amax| ± 1 = 0, (2.50)

from which we can find a2
max to insert into the equation for the cutoff frequency.

This yields

∆ωcutoff =
3cω

4

(
± 2F

cω2

)2/3

, (2.51)

with the sign chosen such that the term inside parenthesis is positive, since c

could be negative. The roots of Eq. 2.50 as a function of ∆ω give the desired

resonance curve, while ∆ωcutoff marks a transition in the behavior of that curve.

The results so far are well known and have been discussed in detail in the

literature, see [76, 77] for two cases very similar to that considered here. In

the following we add a second nonlinearity proportional to the square root of the

amplitude, as motivated by the kinetic shift calculated by Morales and O’Neil. We

find that this nonlinearity is qualitatively similar to the quadratic shift described

below, in that the response to the driver is larger for ∆ω 6= 0, with the sign

depending on the sign of the nonlinearity’s coefficient.

To attempt to include a term representing the kinetic, trapped particle fre-

quency shift, we rewrite c as cf and add to Eq. 2.40 a term proportional to ck
√
|E|.

Although adding a kinetic-like term to a fluid equation is an approximation, we

are simply attempting to mock-up the effects of a negative shift that scales with
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√
|E| in our simple phenomenological model in analogy with [28]. Following the

same arguments as before, we replace Eq. 2.50 with the new equation given by

ω

F

(
cfω

4
|amax|2 +

2ckω

5

√
|amax| −∆ω

)
|amax| ± 1 = 0. (2.52)

The cutoff frequency is now given by

∆ωcutoff =
3

4
cfω|amax|2 +

3

5
ckω
√
|amax|. (2.53)

Equations 2.52 and 2.53 must be solved simultaneously. The simplest method is

to insert Eq. 2.53 into 2.52, eliminating ∆ωcutoff and solving for amax. We then

find ∆ωcutoff using Eq. 2.53. However, due to the large number of roots, it is

easier to simply solve Eq. 2.40 including the kinetic term numerically using the

fourth order Runge Kutta scheme with ∆t = 0.01, and that is what is shown in

the following plots.

Figures 2.18, 2.19, and 2.20 show the peak amplitude reached by a wave as a

function of ∆ω for 0.1 < kλD < 0.46. When kλD > 0.2 the wave amplitude grows,

saturates, and decays multiple times before this peak is reached (see Fig. 2.11b).

The sets of plots are grouped by those that the above model predicts will have

a positive cutoff frequency (Fig. 2.18, 0.1 < kλD ≤ 0.2) and a negative cutoff

frequency (Fig. 2.19, 0.2 < kλD ≤ 0.36). Figure 2.20 shows simulations with

0.4 ≤ kλD ≤ 0.46 that do not seem to have a cutoff frequency. The data is

collected in Fig. 2.21, which shows the cutoff frequency as a function of kλD

compared with the simulations. The coefficients for the frequency shift terms are

those calculated from the either the fluid theory given above or in the kinetic

theory of Morales and O’Neil [59]. Even though the agreement with the model is

not especially good, much understanding of driven plasma waves can be gained

by learning how the model fails.

We have assumed that there is no damping in our model, as is consistent with
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using the asymptotic expression for the kinetic frequency shift. However, if we

were to assume a phenomenological damping equal to Landau damping, we would

find a bandwidth for the linear response proportional to that damping. Since γL

is such a strong function of the wavenumber, for kλD . 0.2, the bandwidth

associated with the damping is essentially zero. At the higher range of kλD ≈

0.35, we find that the bandwidth associated with Landau damping would be on

the same order as the bandwidth that results from the frequency shifts, though

it would be smaller than the measured bandwidth.
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Figure 2.18: Resonance curves for several values of kλD such that the phenomeno-

logical model predicts a positive ∆ωcutoff . The points represent the maximum

normalized electric field attained by the wave throughout the simulation vs.

(ωD − ωL)/ωp for the specified driver wavenumbers.
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Figure 2.19: Resonance curves for values of kλD such that the phenomenological

model predicts a negative ∆ωcutoff . The points represent the maximum normal-

ized electric field attained by the wave throughout the simulation vs. (ωD−ωL)/ωp

for the specified driver wavenumbers.

Because of a nonlinear resonance, the plasma waves can reach very large

amplitudes. Both the fluid and kinetic frequency shifts used in the model are

perturbative calculations and therefore may not hold for such large amplitudes.

Further, neither are applicable at the large values of kλD, with the fluid shift

breaking down as soon as particle trapping occurs, kλD > 0.2, and the kinetic

for kλD > 0.25. The kinetic shift is also calculated in the initial value problem,

rather than the driven wave problem considered in the simulations. Rose and

Russell [61] do provide a driven-wave kinetic shift, but its value is within several
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percent of the Morales and O’Neil result used here and therefore represents an

insignificant change.

The simulations in all four cases shown in Figure 2.18 reach a smaller ampli-

tude than the model predicts. One reason might be because the model ignores

any damping, which does occur despite the fact that Landau damping is negligible

because the large amplitudes do trap some particles eventually. The predicted

cutoff frequencies are reasonable, but in the first three cases they are system-

atically too small. In the kλD = 0.2 case, the two shifts compete and, in the

simulations, produce a negative cutoff frequency compared to the positive pre-

diction of the model. The simulation response is also fairly wide, indicating that

the competition between the two shifts occurs for a range of wavelengths.
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Figure 2.20: Resonance curves for values of kλD such that the phenomenological

model predicts a negative ∆ωcutoff . In contrast to the simulations in Figs. 2.18

and 2.19, these high values of kλD do not show the same type of behavior. The

points represent the maximum normalized electric field attained by the wave

throughout the simulation vs. (ωD−ωL)/ωp for the specified driver wavenumbers.
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Figure 2.21: Cutoff frequency for a variety of kλD for the theory and from the

simulations.

Figure 2.19 shows cases in which the kinetic shift dominates the fluid shift.

The simulations tend to find a more negative cutoff frequency than predicted.

This is partly due to the autoresonance effect described earlier when describing

Fig. 2.11. The amplitudes for the first two cases are too low, as in the fluid

case described above, but at the shorter wavelengths the amplitudes are in better

agreement. In the last plot, the cutoff frequency is approaching the plasma fre-

quency, indicating that the waves substantially modify the distribution function.

The simulations shown in Fig. 2.20 show the highest values of kλD for which the

simulations significant responses were seen. However, the driver frequencies in

this case begin to approach the plasma frequency. These simulations do not seem

to show a cutoff frequency.

The general trend gathered from the three figures discussed is as follows. At

long wavelengths the plasma responds strongly to the driver over a relatively

small range of frequencies. The harmonic content is high and the waves do not
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significantly modify the distribution function. As the phase velocity decreases,

kinetic effects seem to “soften” the plasma, since the response is at lower ampli-

tude and the frequency response broader. At the lowest phase velocities (highest

kλD) considered here, the plasma becomes so soft that it responds weakly to a

wide range of driver frequencies. This is consistent with a large damping rate.

In all simulations, the calculations under-predict the magnitude of the res-

onant frequency. To obtain better agreement with the simulations, the model

should use the more recent calculations for driven wave frequency shifts, as in for

example [62, 63, 64]. These theories predict enhanced frequency shifts over the

extrapolated Morales and O’Neil result used here. Unfortunately, the calcula-

tions do not provide simple formula for the shifts, rather they require numerical

solutions to coupled, nonlinear differential equations to obtain the shifts. As a

result, no such simple expression for the shift is known, so these theories can-

not be used straight-forwardly in the simple model presented above. A topic for

future work would be to use these newer calculations to better understand the

simulations presented here.

The simulations presented above indicate that a phenomenological model with

terms representing a fluid and kinetic frequency shift may provide a qualitative

understanding of the wave’s behavior, but it cannot as yet make quantitative pre-

dictions even in 1D periodic simulations. Attempts to predict SRS reflectivities

using such models may help to understand the overall behavior of the instability,

but care should be taken to assure that the results they give are validated against

other theories or experiments. As we show later, finite length and finite width

effects make the use of phenomenological descriptions even more challenging.
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2.3.1 Phenomenological Model Including Damping and Time Varying

Frequency Shifts

The model presented above neglects damping, and assumes that the asymptotic

expression for the kinetic frequency shift holds at all times instantaneously. In

these simulations, the wave amplitude often changes significantly over a trapped

particle bounce period, and the amplitudes are large, making the expression

from Morales and O’Neil [59] wholly inappropriate. Furthermore, once a wave’s

amplitude begins to decrease trapped particles stream between buckets such that

the zeroth order f0 changes. Here, we briefly present a phenomenological model

that incorporates damping and time varying frequency shifts. The model has

four parameters that can be independently varied, although we do not attempt to

derive values for these coefficients as done above. Here, we simply choose values

with the intent of showing that, given sufficient freedom, a phenomenological

model can be found that can be tuned to give qualitatively similar results to the

simulations. The model equation is given by

d2

dt2
E + γ

d

dt
E (2.54)

+ ω2
(

1 + b0(1− e−t/τ2) + bf |E|2 + bk
(
1− e−t/τ

)√
|E|
)
E = F sin(ωDt),

where γ is the damping coefficient, bf and bk are the fluid and kinetic frequency

shift coefficients, and τ represents the time constant that reduces the the kinetic

frequency shift in time. We have also included a parameter τ2 that represents

a time over which the distribution function might reorganize itself such that

ω2 → ω2(1 + b0). However, in this work we have set b0 = 0 for each case. By

varying γ, bf , bk, and τ we can qualitatively reproduce the simulations results

shown in Fig. 2.11. Figure 2.22 shows the numerical solution of Eq. 2.54 for

the same linear resonant frequency and driver frequencies as shown in Fig. 2.11.
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Figure 2.22: Solution of the model equation with damping and time-dependent

kinetic frequency shifts. The parameters are bk = −0.18, τ = 1000, bf = 0.2

and γ = 0.0004 for kλD = 0.3 and ωD = 1.12 in a) and ωD = 1.095 in b), as in

Fig. 2.11.

The other parameters are bk = −0.18, τ = 1000, bf = 0.2 and γ = 0.0004.

These parameters are chosen arbitrarily, and are related to their corresponding

values as bf = 6.4cf , bk = 3.3ck, and γ = γL/38. The parameter τ (and τ2) has

no theoretical analog. The model solutions have qualitatively similar features,

including the nonlinear resonance leading to the delayed, large peak in Fig. 2.22b.

Even though reasonable agreement can be found with such a model, its phys-

ical basis is dubious, and its predictive value limited. Small changes in the pa-

rameters yield large changes in the results, and the assumption for the from of

a time-varying frequency shift is arbitrary. As shown above, simply using the

asymptotic expressions for the fluid and kinetic frequency shifts is inadequate

in a phenomenological model. Here, we have shown that modifying the model

may yield similar results to the simulations, but doing so requires considerable

arbitrariness to the new parameters while comparing the solutions to the simu-
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lation results. Clearly, this is not a recipe for robust estimation of plasma wave

behavior but it may point toward an area for future work.

2.4 Filtering

Computer simulations allow unphysical modifications to reality that may help

to illuminate the physics being simulated. One such modification is to filter the

self-consistent electric field in order to prevent certain phenomena from effecting

the particles’ evolution. In the following, the wave harmonics or sidebands are

filtered at every time step. In detail, the electric force is determined from the

particles at each time step. Before pushing the particles, the force is filtered in

k-space to remove either the sidebands or the harmonics. The inverse transform

of the force is then calculated and the particles pushed. The cycle repeats for

the duration of the simulation. In this filtering procedure, the electric field is

allowed to absorb energy from the particles at all wavenumbers, but the filtered

wavenumbers will never return that energy to the particles.

As described previously, harmonic generation causes the fluid frequency shift.

Simulations in which the harmonics have been filtered out should show no fluid,

or positive, shift. This is seen clearly in Figs. 2.9 and 2.23, which show the

frequency content of the electric field versus time for two identical simulations,

the only difference being that the harmonics are filtered in 2.23. Figure 2.9

retains the wave harmonics and shows an obvious, positive shift. Figure 2.23, in

which the harmonics are filtered, on the other hand, shows no frequency shift as

expected.

Sidebands, caused by previously trapped particles streaming forward, are ob-

served in the simulations whenever the wave amplitude reaches its first peak, for
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Figure 2.23: Frequency vs. time for kλD = 0.16 and ωD = 1.035ωp. The fre-

quency is calculated using a windowed Fourier transform. The electric field is

filtered such that the wave harmonics are not present and therefore there is no fre-

quency shift. Compare with the identical run without filtering shown in Fig. 2.9.

example at t = t1 in Fig. 2.11. The sidebands destroy the phasespace vortices and

modify the distribution function, resulting in a change in the resonant frequency.

In the following we discuss results from simulations in which the sidebands were

filtered. Two different runs are examined: kλD = 0.3 and a) ωD = 1.12ωp and

b) ωD = 1.095ωp. In case a), the filtering ranges from kλD = 0.2 − 0.29 for the

lower sideband and kλD = 0.32 − 0.37 for the upper, while for case b the range

is kλD = 0.2 − 0.29 for the lower sideband and kλD = 0.32 − 0.4 for the upper.

Despite the filtering, sidebands can still be seen in the electric field. However,

the instability cannot grow because the field at the sideband wavenumbers cannot

affect the particles.
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The major effect of the sidebands is the modification to the distribution func-

tion, shown in Figs. 2.24 and 2.25. Figure 2.24 shows how the phasespace changes

when the sidebands are filtered out. At early times, the phasespace is indistin-

guishable from the first two plots of Fig. 2.12. After the first minimum, t > t2,

however, the vortices do not fill in and they can be seen clearly even much later

in the run. Figure 2.25a shows that the flattening at the phase velocity becomes

a small bump when the sidebands are filtered. This is a general trend among

all runs with sidebands filtered and it can be understood by realizing that, since

the phasespace vortices remain stable through much of the run, the particles

stay concentrated along the outer edge of the vortices as they stream forward.

Figure 2.24c shows this most clearly, although it is also apparent in Fig. 2.24d.

Figure 2.25b does not display such a prominent bump as Fig. 2.25a, but this is
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Figure 2.24: Electron phasespace from a simulation similar to that shown in

Fig. 2.12, but with the sidebands filtered out. Plots a) and b) are nearly identical

to those from runs with sidebands, but in c) and d) the phasespace vortices

remain in contrast toFig. 2.12c and d where they disappear. Plot c) also shows

the concentration of particles at the top of the vortices that gives rise to the bump

in the distribution function seen in Fig. 2.25. In d), the vortices can still clearly

be seen; had the sidebands not been filtered, the vortices would be completely

filled.
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Figure 2.25: Distribution functions summed over entire simulation box from sim-

ulation data for kλD = 0.3 and a) ωD = 1.12ωp, ωpt = 1600 and b) ωD = 1.095ωp,

ωpt = 6000.

because the wave amplitude without sidebands at this time is much lower.

We are now in a position to understand the dramatic differences between

the wave amplitudes with and without sidebands (Fig. 2.26). As the distribution

function changes, so too does the resonant frequency and the nonlinear resonance

with the driver. The distribution in the simulation of the higher driver frequency

without filtering, the solid line in Fig. 2.25a, is flat around the phase velocity. In

the otherwise identical run in which the sidebands are filtered (the dashed curve),

there is a significant bump around the phase velocity. Since the sidebands cannot

grow due to the filtering, the bump on the tail does not flatten. The sidebands

lead to a more stochastic response of the trapped particles.

The frequency shifts of the waves are also different between cases with and

without the filtering. One way to calculate the shifts is to find the root of the

kinetic dielectric in which the distribution function is the instantaneous one found
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in the simulations. The procedure is presented in Appendix A. The results

are shown in Fig. 2.27, in which the instantaneous resonant frequency minus

the driver frequency is plotted for the two runs both filtered and unfiltered,

as discussed above in Fig. 2.25. Nonlinear resonance occurs when the wave’s

frequency shifts to be near the driver’s for a substantial period of time so that

the wave can grow significantly. Figure 2.27a show this for the case that does

not show a large nonlinear resonance. In both the filtered and unfiltered runs

the frequency quickly shifst below the driver frequency, producing little nonlinear

growth. After the first peak of the wave, the sidebands destroy the phase space

vortices and flatten the distribution, yielding a lower frequency wave than the

case in which the sidebands have been filtered out.
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Figure 2.26: Magnitude of electric field at the wavenumber of the driver:

kλD = 0.3 and a) ωD = 1.12ωp and b) ωD = 1.095ωp. The sidebands clearly

change the behavior of kinetic runs by changing the resonant frequency (see

Fig. 2.27). The initial growth phase is unchanged but the behavior after the first

peak (at t ≈ 400ωp in both) is dramatically changed.
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The second plot, Fig. 2.27b, shows a case in which the unfiltered run reaches a

large nonlinear resonance. Its resonant frequency does not shift to be lower than

the driver’s until late in the simulation, leading to the large growth observed in

Fig. 2.26b. In the filtered case, the wave’s frequency does not shift as dramatically

because the sidebands that would have formed after the smaller peaks at early

times have not significantly changed the distribution function. Therefore the

wave does not reach a large nonlinear resonance until much later if it ever does

(the simulation was not run long enough to allow the filtered case to reach its

peak).

Filtering of the harmonics or the sidebands in the few cases shown above yields

a novel way to examine the effects of both nonlinear processes. Filtering the
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Figure 2.27: Frequency vs. time for kλD = 0.3 and a) ωD = 1.12ωp and b)

ωD = 1.095ωp. The frequency is the root of the linear, kinetic dielectric where

the distribution function is determined by fitting Hermite polynomials to the sim-

ulation data. Twenty terms are used in the fit for both a and b. See Appendix A

for details. The sidebands reduce the trapped-particle frequency shift.
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Figure 2.28: Plots of |eE(k)/mωpvth| where kλD = 0.2945 is the wavenumber of

the driver. The numbers indicate the number of particles per cell used for that

particular simulation. The driver frequency was ω = 1.08775ωp, slightly below

the linear resonant frequency.

harmonics eliminates the positive, fluid frequency shift derived at the beginning

of this chapter as expected. Filtering the sidebands shows how their modifications

to the distribution function changes the later behavior of the wave. In general

however, filtering is difficult to use because it causes other, nonphysical effects

to occur that are hard to interpret. These effects were small in the cases shown

here, but often they muddle the results of the runs and make filtering in general

less useful than the results presented here would suggest.

2.5 Number of Particles per Cell and Convergence

As the number of particles used in a PIC code increases, the results should

eventually converge to those of a Vlasov simulation. Generally, a few thousand

particles per cell in one dimension is thought to be reasonable, and the results
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of the majority the simulations in this thesis do not change in a significant way

when the number is doubled. However, we did find that some characteristics of

the nonlinear autoresonance effect did depend on the number of particles. For

example, Fig. 2.28 shows the amplitude versus time for a wave with kλD = 0.2945

and for a wide range of particle numbers between 4096 and 65,536. The figure

shows that the peak amplitude reached in each case is approximately the same,

but the time it takes to reach this peak varies considerably.

Figure 2.29 shows that the time it takes to reach the peak scales linearly with

the number of particles used in the simulation. The number of trapped particles

per wavelength for the amplitudes of the first peak in each simulation, located at

about tωp < 500 at the very left edge of the plot, varies from about 40 for the case

having 4096 particles per cell to about 640 for the case having 65536. However,

only about 14% of those are located above the phase velocity. Since the kinetic

frequency shift depends on the details of phase mixing of the particles, each case

shows subtle differences in how the frequency reaches its final shifted value. The

peak amplitude is very sensitive to the frequency. As shown in Fig. 2.19, a change

in the driver frequency of only 0.27% can result in a threefold change in the peak

amplitude reached by the wave.

Figure 2.30 shows the frequency vs. time for the runs having 8192, 32768,

and 65536 particles per cell, from left to right. In each case, the plasma initially

responds at the driver frequency of 1.08775ωp. The wave amplitude gradually

increases, and the frequency in each case eventually shifts to the same value.

Because the number of particles contained within the trapping width varies in

each case, the details of how the frequency shifts also changes slightly. After

saturation, the shift is approximately the same in each case, so the peak wave

amplitude is also approximately the same. We still do not completely understand
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Figure 2.30: Frequency vs. time for three of the runs shown in Fig. 2.28. From left

to right, the number of particles per cell is 8192, 32768, and 65536. A windowed

Fourier transform was used with a window in time of 1000ω−1
p is used in the FFT.

why the time at which the frequency rapidly decreases scales with the number of

particles. Understanding this is an area for future research.
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2.6 Summary

The results presented in this chapter focus primarily on the frequency shifts asso-

ciated with driven plasma waves and how these shifts affect the wave’s behavior.

We first derived a nonlinear frequency shift due to harmonic generation and

found that it matches well with the simulations. We studied the harmonics and

frequency shifts of impulsively generated waves. We then presented the general

characteristics of driven-wave simulations, including nonlinear resonance with the

driver. To better understand the waves, we presented a simple harmonic oscilla-

tor model that includes both the fluid and kinetic shifts and then compared the

results with a large number of simulations. We find that the model qualitatively

explains some of the wave behavior, but it is quantitatively lacking and it does

not explain a nonlinear autoresonance. We also presented a phenomenological

model that includes a time delay for the kinetic shift. This model can qualita-

tively show nonlinear autoresonance but it is still lacking in the ability to make

quantitative predictions. Finally, the results of wave filtering were shown and the

technique was used to help understand both sidebands and nonlinear resonance.

The results of this chapter demonstrate the challenges of developing a wave equa-

tion for plasma waves that included phenomenological nonlinear frequency shifts

and damping rates. They also demonstrated the power and utility of today’s

particle-in-cell codes for numerical experiments.
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CHAPTER 3

Wave Packet Etching

3.1 Introduction

Historically, plasma waves have been assumed to be infinitely long because such

waves are simpler to treat theoretically. While some work has been done on

finite-length wave packets as discussed in Chapter 1, usually the waves are as-

sumed to be much longer than a wavelength and any edge effects are ignored

since they are far from the center. Simulations of SRS, however, indicate that

plasma wave packets are common and that their edge effects and convection

speeds are important. For example, Fig. 3.1 shows the longitudinal electric field

for a self-consistent electromagnetic PIC simulation of SRS performed by Ben-

jamin Winjum [51]. The laser, not shown, enters from the left and propagates

to the right. We are not concerned with the details of SRS here, but the figure

clearly shows the formation of several wave packets that propagate after each

burst of SRS saturates. The time between these bursts is related to the packet’s

propagation speed. The figure also shows that the rear edge of each packet rises

abruptly, rather than gradually, and appears to move at a constant rate that is

larger than the group velocity, which can be seen as the diagonal striations mov-

ing up and to the right in the figure. This chapter studies in part the nonlinear

velocity and local damping of the rear edge of plasma wave packets similar to

those in the figure.
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Figure 3.1: Electromagnetic SRS simulation performed by B.J. Winjum using

OSIRIS. The longitudinal electric field is plotted versus time and space for a run

with a laser intensity of 2.8 × 1015Wcm−2., plasma temperature of 3keV, and

density of 0.11ncr. The resulting plasma wave has kλD = 0.34.

In addition to the nonlinear velocity of the plasma wave packets and their local

damping, in this chapter we also analyze the velocity distribution of the particles

accelerated by the wave. These particles stream forward out of the wave once they

detrap, and in ICF experiments, these “hot electrons” can preheat the ICF target

and disrupt the experiment. By characterizing their energies as a function of the

wave amplitude, some insight can be gained on the production and transport of

the hot electrons.

Much of the work presented here on wave packet etching is taken from a paper

by J.E. Fahlen, B.J. Winjum, T. Grismayer, and W.B. Mori that was published

in Physical Review Letters in June 2009 [65].
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3.2 Wave Packet Etching

Plasma wave packets generally move at the wave’s group velocity, vg = ∂ω/∂k =

vφ + 2
√

2vthRe [Z ′(s)/Z ′′(s)], as this is the speed at which energy moves. Here

s = Ω/
√

2kvth, Z(s) is the plasma dispersion function, Ω = ω + iγL satisfies

ε(Ω, k) = 0, and vφ = ω/k is the phase velocity. The kinetic group velocity is

calculated from ∂ω/∂k = −Re[(∂ε/∂k)/(∂ε/∂ω)] and is plotted below in Fig. 3.6.

We will show in the following that the finite length of the packet combined with

particle-trapping effects leads to a faster apparent speed due to etching of the

back of the wave packet.

Figure 3.2 presents three different cases of finite length waves and the etching

effect. Each plot shows the electric field vs. t and x for kλD = 0.2, 0.3, and 0.4.

The waves are driven externally over 30 wavelengths at the left edge of the box

and propagate to the right. Etching is only barely noticeable in Fig. 3.2, but can

be clearly seen in the other two plots as the decreasing slope (increasing velocity)

of the back edge of the packets. Figure 3.4 shows a lineout of E at tωp = 160

for a run with kλD = 0.325 as an example of the field envelope while etching is

occurring. A time progression of the phase space is shown in Fig. 3.3. The details

of the phase space are described below, but this figure is intended as a reference

for the remainder of the chapter.

Assume that, for this discussion, the wave packet envelope is a flat top many

wavelengths long with a short rise a few wavelengths long on either side. By

“short” we mean the amplitude varies quickly enough that the adiabatic invariant

J for the trapped particles in not constant. Such packets are often generated in

kinetic simulations of SRS [47, 48, 51]. As seen in the phase space figures, particle

trapping is significant, so a transit-time damping calculation [72] in which the

particle’s are taken to move in their straight-line orbits will fail. Figure 3.5
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presents the electron phase space from a sample particle-in-cell (PIC) simulation,

described below, for such a packet, with a) the rear and b) the front of the packet

at the same time. For the packets considered here, vφ � vg, so particles with

vφ− vT < v < vφ + vT stream into the wave packet from behind and can become

trapped, where vT = 2
√
eE/mk is the trapping width. Each wave period, since

vφ � vg, a new potential well emerges at the rear edge of the packet. Particles

that enter at the appropriate velocity and phase will trap in this well. During
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Figure 3.2: The electric field in units of e/mωpvth for three different examples

of etching are shown for a) kλD = 0.2, b) kλD = 0.3, and c) kλD = 0.4. For

each case, the driver shuts off at a different time and the waves reach different

amplitudes, showing that etching occurs for a wide variety of parameters. Case a)

shows little or no etching, case b) shows significant etching and some lengthening

of the wave due to detrapped particles, while case c) shows very strong etching

and strong lengthening. The etching in b) is evident by the different slope of the

back of the packet relative to the front. In case c), however, the lengthening is so

dramatic that only a comparison with the group velocity indicates that etching

occurs. In each case the wave is initially 30λ long. The number in plots a) and

b) indicates the factor by which the color scale is different from plot c).
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Figure 3.4: Electric field at tωp = 160 for a wave with kλD = 0.325 and driver

amplitude eED/mωpvth = 0.03.

approximately the first quarter of the bounce time (τB = 2π
√
m/eEk) after the

new well forms, more particles are accelerated than decelerated and the wave

loses energy at approximately the linear Landau damping rate [59]. The linear

Landau damping rate is appropriate, despite the large peak amplitude, because

resonant electrons moving at approximately vφ are only in the first few buckets

for a fraction of a bounce time. Figure 3.5(a) depicts this process in the potential

wells labeled ‘1’ and ‘2’, which are referred to as ‘buckets’ in the following.

After τB/4, the resonant particles begin to give their energy back to the wave

as they ride up the far side of the potential well, as can be seen in bucket ‘3’

in Fig. 3.5(a). The buckets, and hence the particles trapped in them, move at a

speed of vφ−vg in the packet’s frame, so that by the time the energy in each bucket

begins to flow back to the wave, it has moved a distance dlin = τB(vφ − vg)/4

into the packet. Each bucket effectively transports energy from the rearmost

wavelength of the packet into the interior. The damping ceases as the trapped

particles traverse the packet and phase mix [59], so only the rearmost part of

the packet Landau damps. Each new phase front continues this process, allowing
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Landau damping to continually damp, or etch away, the wave energy at the rear

of the packet.

We will now estimate the etching rate, vetch. We normalize all times and fre-

quencies to ω−1
p and ωp, respectively, velocities to vth, position and wave number

to λD and its inverse, and electric field to e/mωpvth. As a wave Landau damps,

it loses energy according to
dW

dt
= −2γLW, (3.1)
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Figure 3.5: Phase space for a packet with kλD = 0.3 and length 30λ moving to

the right at tωp = 135. Plot a) is the left side of the packet, plot b) is the right.

In a), the newly trapped particles enter the rear of the packet. The sideband

beat pattern begins to break up the phase space vortices about 6 wavelengths

into the packet. In b) detrapped particles stream forward ahead of the packet.

The sidebands have not yet reached the front of the packet. Dark blue represents

no particles.
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where W = 1
2
λE2Re

[
∂(Ωε)
∂Ω

]
is the energy in a wavelength and Re

[
∂(Ωε)
∂Ω

]
≈ 2.

Thus, the amount of energy each new bucket loses to Landau damping while

it is less than dlin away from the rear edge (assuming a rapid spatial rise) is

∆Wlost = 1
2
λE2

0

(
1− e−2γLτB/4

)
Re[∂(Ωε)

∂Ω
], where E0 is the wave amplitude, and λ

is the wavelength. The rear edge loses ∆Wlost every wave period, so on average

dW/dt = ∆Wlost/τ , where τ = λ/(vφ − vg) is the period in the wave frame. We

can estimate the etching rate by finding the time ∆t required to etch away the

field energy in a length dlin, written as 1
2
E2

0Re[∂(Ωε)
∂Ω

]dlin = (dW/dt)∆t, giving

vetch = dlin/∆t = (vφ − vg)
(
1− e−γLτB/2

)
(3.2)

≈ 1

2
(vφ − vg)γLτB (1− γLτB/4 + ...) . (3.3)

For long wavelength waves, k → 0, no particles trap and the wave packet prop-

agates essentially unchanged. As k increases, vetch becomes nonzero at k ≈ 0.2

and the back of the wave etches away more quickly. When k approaches 0.3,

the dependence of vetch on the amplitude becomes significant, i.e. γLτB/2 & 1.

Here, the etching rate increases sharply at low amplitude, since dlin increases

accordingly, but the model breaks down when vetch approaches vφ. Continuing

the argument, we can estimate the time it will take for the entire packet to etch

away as τp = l/vetch, with l being the initial length of the packet. We can also

estimate the total packet energy as a function of time as Wtot = 1
2
E2

0(l − vetcht)

for 0 < t < τp. In order for this model to be valid, the wave packet must exist

long enough to etch, so the amplitude must approximately satisfy τBγL < 1 so

that it does not immediately Landau damp away.

To verify the simple model above, we performed many 1D PIC simulations

over a range of wavelengths, from k = 0.2 to 0.4, separated by 0.025. The

simulations are done using a 1D, electrostatic particle-in-cell code with 4096 cells

and 8192 simulation particles per cell. The grid spacing is ∆x = 1 and the time
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step ∆t = 0.2. Either of two types of external, traveling wave drivers generate

the packets. The first has a flat-top envelope 30λ long and a short rise 1-2λ long

on either side, the other has a Gaussian-like shape of varying widths w. In both

cases the driver is on for about two wave periods, and the spatial variations are

such that the adiabatic conditions, τB � 2λ/vφ for the flat top and τB � w/vφ

for the Gaussian pulse, are not satisfied. For each wavenumber, we also varied the

driver amplitude ED by up to a factor of 100. The waves driven at k = 0.3, for

example, shown in Fig. 3.7, have ED = 0.002− 0.2, resulting in peak amplitudes

E ≈ 0.0087− 0.65. The lower amplitude limit is set by the conditions above that

τBγL < 1 or vφ > vetch, whichever is higher. For each simulation, we chose a

driver envelope and a particular k and ω such that 0.2 < k < 0.4 and ε(Ω, k) = 0.

We expect no etching for k < 0.2 since there is no wave-particle interaction for

this case in the simulations, while for k > 0.4 other effects quickly destroy the

wave before etching can occur. For the simulation in Fig. 3.5, kλD = 0.3 and a

flat top spatial envelope 30λ long was used.

A comparison of the simulation results with the model shows good agreement

with both the k and amplitude dependence. Figure 3.6 shows the etching rate

for several runs whose amplitudes are relatively large (eE/mωpvth ≈ 0.1), as

observed in SRS simulations [51], and where we expect the etching rate to be

insensitive to the amplitude. Figure 3.7 shows good agreement between Eq. 3.3

and the simulations over a large range of amplitudes for k = 0.3. This choice

of k allows etching velocity measurements over a wide range amplitudes because

neither of the above restrictions are severe. The electric field of the very low

amplitude waves is actually below the level of the random statistical fluctuations

of from the particle noise. To circumvent this, we post-processing the data by

subtracting the field of an identical run with the driver turned off. Using this

subtraction technique we were able to clearly measure the etching rate for all
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(vetch−vg) vs. kλD, with the rear-edge velocity measured from the simulations and

where the calculations are made including the appropriate particle shape factor

for the simulations. Each simulation has approximately the same amplitude

eE/mωpvth ≈ 0.1. The points labeled ‘Fl’ are from a run using fFl, which is

described below.
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Figure 3.7: Velocity of the rear edge of the packet (vetch) and vg vs. amplitude

measured from the simulations for kλD = 0.3. The low amplitudes are limited

by τBγL < 1 and are observed using the subtraction technique described in the

text.
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amplitudes in the figure. The technique is described in more detail below. A

comparison of the packet lifetime also gives reasonably good agreement with the

simulations, as shown in Fig. 3.9(a). The model predicts that the wave will etch

away by tωp ≈ 700, which is in good agreement with the simulation. Figure 3.9(b)

shows the same run with a periodic driver for comparison. In this simulation the

sideband instability breaks up the wave, but about 50% of the initial wave energy

remains in the field at the end of the periodic simulation.

3.3 Flattened Distribution Function

The appearance of linear Landau damping in Eq. 3.3 implies that the etching

rate could be reduced by initializing the plasma with a flattened distribution

function. Since Landau damping depends on the slope of the distribution function

at the phase velocity, etching would cease should the damping rate go to zero.

A flattened distribution function effectively does just that. However, since we

have finite-amplitude waves, rather than the infinitesimal waves of linear Landau

theory, we must flatten the distribution not just at vφ, but also within the trapping

width on either side of vφ. By doing so, we effectively start the wave with phase

mixed particles, meaning that just as many particles are giving momentum to

the rearmost bucket of the wave as are taking it. Therefore the back edge of the

packet does not damp or etch away.

Figure 3.8 shows a typical Maxwellian distribution (fM) and an artificially

flattened one fFl = fM(v+vdM)+ n1√
2πvth1

e−(v−vd)2/v2th1 . As shown, the flattening is

achieved by adding a second Maxwellian distribution with vth1 ≈ vT and vd ≈ vφ.

The density of the second population is chosen to give the correct flattening. To

ensure that there is no net drift of the plasma, the background distribution fM

is given a slight drift vdM = n1vd/n0 so that the average particle velocity is zero.
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The results of one such simulation are shown in Fig. 3.6, showing the etching rate

is small. In order to measure the etching rate, we need to calculate the kinetic

group velocity, as we did above, but including the second population. Strikingly,

the calculation shows that the second population, despite having a density only

0.4% of the total, causes vg to nearly double. The packet in the simulation does

move much faster than it would without the flattening, but is slightly slower

than the vg calculation would suggest. This accounts for the measured vetch in

the flattened case being negative. We can confirm that etching does not take

place by seeing whether the rear edge moves at the same speed as the front edge,

provided that Denavit and Sudan lengthening is not significant. This is indeed

the case.

The simulations of the plasma wave packets show other characteristics of

driven waves. For a given driver amplitude, as k increases the peak amplitude
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Figure 3.8: Maxwellian and the artificially flattened distribution function used for

the simulation plotted in Fig. 3.6, with n1 = 0.004n0, vth1 = 0.47, vd = 3.77vth.
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reached by the wave tends to decrease. As shown in Fig. 3.7, waves with k = 0.3

and driver amplitudes ranging from ED = 0.002− 0.2 result in waves with peak

amplitudes ranging from E = 0.0087 − 0.65. However, waves at k = 0.4 driven

with the same range of amplitudes reach a much narrower range of amplitudes.

The condition for observing complete Landau damping given by Canosa and

Gazdag [15] of γL/ωB > 0.77 gives a lower limit for the amplitude at E = 0.03,

so we will not observe etching for smaller amplitudes. Further, for this amplitude

vetch = 2.9, while vφ = 3.1, so the phase velocity is nearly equal to the etching rate,

meaning the model presented above breaks down. The largest driver amplitude

results in a wave with amplitude E = 0.38, only 60% the amplitude reached

by the wave with k = 0.3 driven at the same amplitude. However, this large
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Figure 3.9: Spatial and temporal average of the normalized electric field energy

in units of (e/mωpvth)
2. Plots (a) and (b) show constant density simulations

with a driver having kλD = 0.325 and amplitude eED/mωpvth = 0.01 lasting for

tωp = 50: (a) has a finite-length driver (30λ) with a flat top, while (b) is periodic

throughout the box. At tωp = 800, the wave in (a) has little energy left, while

the infinite wave in (b) still has nearly 50% of its initial energy.
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Figure 3.10: Amplitude vs. time and space for a run with k = 0.4 and large driver

ED = 0.2. The wave appears to move at the phase velocity as large kinetic effects

dramatically alter the behavior. The simulation box is 1024 long, although only

the first 800 are show here. The top, left corner of the plot shows the particles

beginning to wrap around the periodic box, invalidating the results in that region.

amplitude results in a very nonlinear wave in which other effects besides etching

dominate, as shown in Fig. 3.10.

For the simulations at low amplitude, the wave’s field (for any kλD) is below

the thermal fluctuations of the plasma, despite the large number of particles.

In order to observe the field clearly, we use a “subtraction” technique whereby

we subtract the field of an identical run with the driver turned off [109]. This

cancels the thermal fluctuations and reveals the wave clearly. The subtraction

technique assumes that the particle trajectories deviate only slightly from their

unperturbed orbits. Large deviations can occur when trapping occurs and when

discrete particle interactions cause random deviations to the orbits. For large

numbers of particles per cell, the technique gives clean results for long simulation

97



times. The usefulness of the subtraction technique is illustrated in Fig. 3.11.

3.4 Midsection of Packet: Sidebands

The middle section of the wave packet, far from remaining constant, suffers side-

band instabilities that destroy the trapped-particle phase-space vortices travers-

ing the packet. Visible in Fig. 3.9a and b as the striations propagating at approx-

imately the group velocity, the sidebands break up the wave and allow trapped

particles to stream from one bucket to the next. The beginning of this effect,

and the modulation to the main wave, is also apparent in Fig. 3.5a in the range

175 < x/λD < 400.
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Figure 3.11: Amplitude vs. time and space for a run with k = 0.3 and a small

driver ED = 0.001 showing the subtraction technique, where a) is the actual

simulation, and b) is the simulation after subtracting the identical thermal run.

Particles have begun to wrap around the periodic box, so this run is not valid

after tωp ≈ 150.

98



Figure 3.5a displays in space the sequence of particle trapping that is usually

considered in the temporal, or initial value, case. In buckets 1 and 2, the wave

Landau damps as the particles are accelerated. Buckets 3 through 5 show the

particles sloshing in their buckets until they phase mix (buckets 6 and after).

However, by bucket 6 or 7, sideband modulations have altered the phase space to

the point that the particles are no longer contained within their original bucket

and stream into adjacent buckets. A second sideband modulation is evident

shortly before x/λD = 375, but at the time of this plot, the sidebands have not

moved far enough into the packet to be visible at the right side of the packet

(Fig. 3.5b).

In time the sidebands will render the central section of the packet’s phase

space a chaotic jumble of trapped and detrapped particles. However, the packet’s

rear remains clear of sidebands and continues to etch away at the rate calculated

above. This is because the trapped particles must execute at least a few bounces

before the sidebands can become significant. Despite the inevitable growth of

sidebands and their effects, the wave will still etch away in time τp.

3.5 Importance for SRS

In SRS simulations, as the instability saturates plasma wave packets propagate

forward and etch away, although the continuous presence of the driving laser

and scattered light complicates the dynamics. However, etching is still apparent

and can be seen in, for example, Fig. 5 of Ref. [48]. To see that etching may

be a significant effect in SRS at NIF-like conditions, an f/4.5 to f/8 beam will

give a speckle length of 4500 to 15000λD for 3ω0 light. A typical packet 100λ

long with kλD = 0.3 will take about 6000 to 19000ω−1
p to cross a speckle, while

τp ≈ 2000ω−1
p . Evidently, the packet will completely etch away long before it can
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cross the speckle, although continued scattering will likely affect the propagation.

3.6 Front Side of the Packet: Lengthening

At the front of the packet, particles initially trapped at the rear leave, having

traversed the wave at about vφ. These detrapped particles drive plasma waves in

front of the packet at lower k, an effect that can be seen in Fig. 3.5b and Fig. 3.9a

to the right of the line labeled ‘vg’ [52]. Denavit and Sudan describe the effect in

similar terms as the trapped-particle sideband instability [73]. The trapped par-

ticles in each bucket are treated as one macroparticle. For the wave packet case,

this is satisfied for very short packets only a few wavelengths long. Depending

on the phase that the macroparticle leaves the packet at, which itself depends on

the amplitude and length of the packet, the particle can act qualitatively like a

beam, driving longer wavelength waves in front of the packet. Since the packet

continually ‘pumps’ particles forward, it can continue to drive waves in front of

itself, thereby causing the packet to lengthen. Denavit and Sudan demonstrate

with simulations that packets with a length such that the macroparticles exit

at the high velocity part of their trapped-particle orbit drive waves, while those

whose particles leave at the low velocity part of their orbit do not.

We have reproduced some of the simulation results in [52], but they generally

consider short packets, only several wavelengths long. An example that exagger-

ates the effect is shown in Fig. 3.12. Short packets drive very well defined waves in

front of them since the trapped particles have not phase mixed and therefore exit

the wave as a relatively coherent bunch. For the wave packets considered here,

and for those observed in SRS simulations [48, 41, 42, 50, 47, 51], phase mixing

and the disruption of phase space due to sidebands cause a constant stream of

particles to exit the packet. Consequently, the forward waves are not very well
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defined in our simulations, although we have observed them in all the simulations

we performed.

3.7 Detrapped Particles: Fast Electrons

In addition to generating waves in front of the packet, detrapped particles are

of interest because their presence in ICF experiments can be detrimental. These

particles, often referred to as ‘hot’ or ‘fast’ electrons, can carry energy into the

target core, prematurely heating it with potentially serious consequences. Here,

we examine in detail the speeds at which these particles travel and their distri-

bution in velocity space.

Figure 3.13 shows the kinetic particle energy as a function of space and time

for a run with kλD = 0.3 and eED/mωpvth = 0.15. The packet is initially about
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Figure 3.12: Gaussian-shaped packet clearly showing the lengthening described

by Denavit and Sudan. The packet has k = 0.2, FWHM= 1.2λ, and a relatively

high amplitude driver of E = 0.19 to exaggerate the effect for the figure. The

color map is saturated to make the relatively small amplitude waves that result

from particle detrapping easily visible.
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25λ long. The resulting peak wave amplitude of eE/mωpvth ≈ 0.57 is large, but

appropriate for SRS-driven waves. At early times the wave driver generates a

wave that traps particles. The phase velocity is obvious here, although a line is

drawn at the appropriate slope for emphasis. As the trapped particles traverse

the wave, they reach the far end and stream ahead at a distribution of speeds

that are on balance greater than the phase velocity. For this large amplitude, the

trapped particles carry away a significant fraction of the wave energy, while the

packet remains and etches. This is apparent a later times toward the left of the

plot.

To provide a comprehensive picture of the detrapping speeds, several mea-

surements were taken for a range of wave amplitudes and wavelengths. For each

simulation, we took three velocity measurements for the detrapped particles to

estimate the range of speeds. A typical ‘slow’, ‘average’, and ‘fast’ measurement

was made, each designated as a cross in Fig. 3.14, by which we mean that the mea-

surements attempted to estimate the range of velocities found in the amorphous

distribution of particles emerging from the packet. The slow measurement is esti-

mated as the steepest slope associated with the detrapped particles in Fig. 3.13,

and the fast measurement is the shallowest slope. The average measurement

is taken along the middle of the distribution of detrapped particles, as shown

in the figure. These three data points were then averaged, and the results are

presented in Fig. 3.14 (the diamonds). The solid lines are ±vT as function of

amplitude in the phase velocity frame. The measured detrapping speeds appear

to be proportional to the upper curve in all three cases. That they are slower

may be attributed to a loss of energy to the wave as the particles travel through

the decreasing packet envelope.

To explain, imagine a packet whose envelope varies slowly enough that the

102



Average detrapping speed

v φ 

500 1000 1500 20000

100

200

300

x/λD

tω
p

0

1000

2000

3000

En
er

gy
 (m

v 
 ) th2

v  
  +

v
et

ch
   

 g v g

Fast detrapping speed

Slow detrapping sp
eed

Figure 3.13: Particle energy as a function of time and space showing the bulk

particles sustaining the wave and the energetic detrapped particles streaming

ahead. The results of a thermal run have been subtracted. The difference between

the slower phase velocity and the detrapped particle velocity is made clear by the

lines drawn on the figure. kλD = 0.3, eED/mωpvth = 0.15, and the peak wave

amplitude is eE/mωpvth ≈ 0.57. The slope of the average detrapping speed is

taken from the data in Fig. 3.14a at the appropriate amplitude.

adiabatic invariant J of every particle that traverses it is constant. Each particle

moving throught the packet will then gain energy as the wave envelope increases,

and lose energy as it decreases. Particles traversing the packets considered here

do not have constant J since the envelope varies too quickly, but they will still

lose some energy in a similar manner as they exit the wave packet.

Figure 3.15 shows the phase space and distribution functions associated with

the wave shown in Fig. 3.14. The upper plot is the phase space, with the packet

ranging from about 350 < x/λD < 850, while the lower two plots are the average

distribution function taken over the specified range in units of λD. The colored

bars in the upper plot are to show where the averaged distribution functions were
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Figure 3.14: Solid lines are plots ±vT in the phase velocity frame. Crosses are

measurements of three speeds in the detrapped particles at various times and

places for each amplitude with an attempt to measure a range of velocities. See

Fig. 3.13 and discussion. The diamonds are the average of the three measure-

ments. Detrapped particles emerge from the wave packet with speeds propor-

tional to the trapping velocity. The flat top driver 30λ long was used for these

simulations.

taken. The red and blue curves are taken from approximately within the packet,

while the others are taken over various ranges of detrapped particles. Within

the packet, the distribution function is flattened around the phase velocity, with

similar distributions in both the red and blue sections. As the particles stream

forward, the higher speed particles out run the slower ones, leading to a beam-

like distribution. The orange curve is nearly flat, the purple curve has nearly

detached into a beam, while the turquoise distribution is clearly beam-like.

An interesting feature of Fig. 3.15 is that the detrapped particle density is

higher in the green section than in either the red or blue. This is because, for

such a large amplitude wave, the number of particles within the trapping width

initially is larger than the flux of particles into the rear of the wave within the
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Figure 3.15: The top figure is the phase space for the same run shown in Fig. 3.13

at tωp = 240. The bottom two are averaged distribution functions taken over the

range indicated at the same time. The color coded bars in the phase space plot

indicate the range over which the distribution functions are taken.

resonant width. That is, there are two different phases of particle trapping in the

wave. Initially, resonant particles located within the wave are trapped, carried

through the wave, and ejected at the front edge. After these particles leave,

the number of trapped particles is determined by the flux of resonant particles

entering the rear edge. We can estimate the number of particles in each case as

follows. The number of particles within the trapping width in one wavelength
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can be estimated by

NT0 =

∫ λ

0

dx

∫ vφ+vT cos(kx/2)

vφ−vT cos(kx/2)

dvf0(v), (3.4)

where f0(v) is the usual Maxwellian distribution function n0√
2πvth

e−v
2/2v2th . The

range of the velocity integration is the upper and lower boundaries of the separa-

trix, defined by vφ ± vT cos(kx/2). The flux of particles entering the rear of the

wave is similarly approximated by

Γ =

∫ λ

0

dx

λ

∫ vφ+vT cos(kx/2)

vφ−vT cos(kx/2)

dvvf0(v + vg). (3.5)

The flux must be calculated in the wave packet frame. An exact calculation

of the number of particles entering the rear of the wave must account for the

exact particle trajectory, since as the wave phase varies some particles entering

the wave within the trapping width may not trap. However, an exact solution

is not known when the adiabatic approximation cannot be made for the particle

trajectories. We therefore approximate this effect by integrating the velocity over

the spatially-varying separatrix and averaging over one wavelength. The number

of particles entering the wave in one period is then then NΓ = Γ2π
ω

. For the

case shown in Fig. 3.15, we calculate NT0/N0 ≈ 0.058, while NΓ/N0 ≈ 0.003, or

NT0/NΓ ≈ 19, where N0 is the number of particles in a wavelength, n0λ. A rough

comparison of the red curve with the green curve in Fig. 3.15 indicates that a

factor of about 20 difference between the two, after summing over the trapped

particles, is in reasonable agreement.

3.8 Density Gradients

Wave packets propagating in a density gradient behave in much the same way

as their homogeneous counterparts, except that vφ and vg change. A packet’s vφ
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when propagating up a density gradient will eventually become too high to trap

particles and etching will stop. After reaching cutoff (vφ → ∞), the packet will

reflect and propagate down the gradient. Now, its decreasing phase velocity leads

to etching and the packet’s demise.

To be more specific, one requires an estimation of the packet’s speed and

position as a function of time. For the following, the subscript ‘i’ denotes initial

conditions of the wave packet, with ε(Ωi, k(xi)) = 0, and we renormalize time and

frequency to ωp0, the plasma frequency at xi. Assume a linear density gradient,

ω2
p(x) = (1 + α(x− xi)), with α the inverse of the density scale length, and that

the packet is short enough relative to the density scale length that k changes little

over the length of the packet. In the fluid approximation, the group velocity is

vg = 3vφ = 3k/ω. Since k =
√
ω2 − ω2

p/
√

3, we have

vg =
3√
3

√
1−

ω2
p

ω2
. (3.6)

Inserting the expression for ωp(x) above, we get a single equation for the group

velocity given by

vg =
3√
3

√
1− 1

ω2
(1 + α

∫ t

0

vg(t′) dt′). (3.7)

Solving for xg(t) =
∫ t

0
vg(t

′) dt′ gives

xg(t) = −3

4

α

ω2
t2 + vgit+ xi. (3.8)

Equation (3.8) actually overestimates the packet position since the fluid group

velocity diverges from the kinetic group velocity as k increases. Still, it agrees

reasonably well with the simulations and with Fig. 3.16a.

A change in the packet behavior occurs, whether going up or down a gradient,

when vetch(k) first becomes significant, which we define as occurring at k? ≈ 0.2.
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Packets moving through the gradient may cross this threshold, depending on ki,

xi, and α. Four cases arise, two for the sign of α and two for whether ki is

greater or less than k?. For α > 0, if ki < 0.2, the packet will eventually reach

its cutoff and reflect. If ki > 0.2, the wave will etch until it reaches x(t) = x?,

where x? satisfies k(x?) = k?. We can use Eq. (3.8) to estimate the time τm the

packet requires to reach x?. Using the fluid dispersion relation for waves in a

linear gradient as defined above, we have ∆x = x? − xi = 3(k?2 − k2
i )/α. Using

Eq. (3.8), τm can be estimated with ∆x. For τm > τp, the packet will move into

a region where it is a fluid-like wave with no etching. Eventually it will reach its

cutoff and propagate back down the gradient, as described next.

For α < 0, packets either start with ki > 0.2 or propagate with little change
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Figure 3.16: Spatial and temporal average of the normalized electric field

energy in units of (e/mωpvth)
2 with a Gaussian driver (FWHM = 4λ0,

eED/mωpvth = 0.06, duration tωp = 15). In (a), a wave with kiλD = 0.2 ac-

celerates down a density gradient of α = −1.95x10−4/λD, while in (b) and (c)

the wave has kλD = 0.2 and 0.26, respectively, and the density is constant. At

tωp ≈ 700, the wave in (a) has kλD ≈ 0.26.
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until they reach x?, where they etch away after about τp. Figure 3.16a shows

a short packet propagating down a relatively steep density gradient. A slight

curve is apparent, showing the increase of vg as the packet accelerates down the

gradient. Initialized with ki = 0.2, this packet is just about to begin etching.

By t = 700, the packet’s phase velocity has decreased (k ≈ 0.26), leading to

more rapid etching. We compare this behavior with that shown in Fig. 3.16b

and c. These two runs have no gradient, but are initialized with k = 0.2 (d)

and k = 0.26 (e), corresponding to the wave’s k in the density gradient case at

t = 0 and t = 700, respectively. With k = 0.2, little etching occurs, allowing the

packet to propagate for a relatively long time, but k = 0.26 leads to its quick

destruction. In the above discussion, vetch is treated as a constant function of k,

even though it is in fact strongly dependent on k, even more so than vg. A more

accurate set of guides acknowledging the k dependence vetch can be derived in

analogy with the above discussion.

3.9 Finite Particle Number Effects

In many of the above simulations, the finite number of particles used means that

there are often no particles at or above the phase velocity of the wave. Even in a

real plasma, one can always choose a kλD such that this is true, though the value

at which it occurs will typically be much lower. We therefore might expect that

the Landau damping rate used in the calculation of the etching rate is not valid

for these cases, since its use implies a smooth Maxwellian distribution containing

an infinite number of particles. However, the excellent agreement between the

simulations and the calculated etching rate indicates that the Landau damping

accurately models the energy loss at the rear edge of the packet. This section

attempts to understand and explain the apparent contradiction that the Landau
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damping rate calculated using an infinite number of particles applies even for

waves having very few or no particles near the phase velocity. This discussion is

not only relevant to understanding how Vlasov theory can be studied using PIC

codes, but also to addressing the fundamental question of when Vlasov theory

accurately models a real plasma that contains a finite number of particles.

The distribution function in the simulations follows a continuous Maxwellian

distribution closely until the outer wings at high velocities, where it becomes

spiky. For the two cases typically considered in plasma theory, this usually does

not matter. The first, fluid theory, is modeled well with the finite-particle-number

simulations since the theory and the simulation both have no wave-particle in-

teractions. Only bulk distribution effects are important here since vφ � vth.

The theory is not even sensitive to the shape of the distribution, since the fluid

equations derived with a Maxwellian or a water-bag distribution are the same, if

the thermal velocities are chosen appropriately. The other case, Vlasov-kinetic

theory, can also be modeled with simulations, provided that a sufficient number

of particles is used to ensure that the distribution is nearly Maxwellian within

the trapping range −vT < v − vφ < vT . (A further condition on the number of

particles is that the background noise level is below the signal to be observed, a

condition that can require huge numbers of simulation particles per wavelength in

some cases. Use of the subtraction technique reduces the constraints considerably,

but many particles are still required for it to be useful.)

However, for a given number of particles, we can always choose a wave whose

phase velocity is high enough that effectively no particles can be found from

0 < v − vφ < vT (the upper half of the trapping width), but is low enough that

significant numbers of particles can be found in the range −vT < v − vφ < 0

(the lower half). This can occur for relatively small amplitude waves with a
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lower phase velocity, or for large amplitude waves with a high phase velocity.

As a guide for understanding this, we can compute the ratio of the distribution

function evaluated at vφ − vT and at vφ, which yields R = e(vφvT−v2T /2). For

vT � 1/vφ, this is nearly 1, which, as a side note, is related to the validity of the

Taylor expansion of the distribution function used in, for example, linear Landau

damping theory, O’Neil [58] and Morales and O’Neil [59]. For larger amplitudes,

the ratio R can be significant, which justifies the use of Vlasov-kinetic theory even

though the simulations may actually have no particles above the phase velocity.

As an example, a wave with k = 0.25 and E = 0.2 gives R ≈ 442. With

60000 particles per wavelength, generally considered to be a large number in SRS

simulations, we expect on average 0.5 particles within a wavelength at or above

the phase velocity. Effectively, there are no particles above the phase velocity.

On the other hand, there are about 360 particles in the range −vT < v− vφ < 0.

In fact, about 64% of the trapped particles in this case can be found in bottom

20% of the trapping width, −vT < v − vφ < −vT + 0.2vT , a testament to how

fast the Maxwellian distribution falls off.

In light of this observation, it can be appropriate in certain situations to treat

all the trapped particles as though their initial velocities were vφ − vT . Dawson

and Shanny [57] do this when calculating the initial, non-exponential damping

of a large-amplitude wave. Further, it means that even though a simulation may

not have enough particles to smoothly reproduce a Maxwellian near the phase

velocity, it can still be used to test kinetic theories that rely on it. This is why

the measured etching rate for the low values of k still agrees well with the theory,

despite the fact that there are initially no particles at the phase velocity. The

approximation requires that the amplitude be large enough that f(vφ − vT ) �

f(vφ), but not so big that the Taylor expansion of the distribution function around
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vφ dramatically underestimates the value of f at vφ−vT . That is, we require that

fexact(vφ−vT )/fTaylor(vφ−vT ) = evφvT−v
2
T /2/(1+vφvT ) be not too much more than

1, where fTaylor is the first two terms of the Taylor expansion of f at vφ. However,

we can rewrite this as RTaylor = fexact(vφ − vT )/fTaylor(vφ − vT ) = R/(1 + vφvT ).

While RTaylor increases with vT , it does so more slowly than R, but not so much

that there is a middle ground for the approximation. That is, we we cannot have

RTaylor ≈ 1 while R� 1, a fact that would suggest that the use of linear Landau

damping for these cases is inappropriate.

However, it is clear from the simulations that using linear Landau damping

in the expression for the etching rate works well, despite the above observations

which suggest that we should have concerns. Continuing the above example,

with k = 0.25 and E = 0.2, we have vT ≈ 1.8 and vφ = 4.4, yielding R ≈ 548

and RTaylor ≈ 62. Despite this obvious failure to satisfy the conditions for linear

Landau damping, the measured etching rate is still very close to the calculated

rate. A more complete description of Landau damping that includes nonlinear,

large-amplitude effects would clarify the apparent contradiction, but it appears

that the correction to Landau damping must be small for the amplitudes found

in our simulations.

3.10 Summary

In this chapter we presented work on the nonlinear behavior of plasma wave

packets in one dimension. It was found that the center of a wave packet reached

a nonlinear steady state in which the amplitude does not change. The rear edge,

in contrast, continuously damps away as new particles enter and begin to trap.

A simple model was presented that accurately predicts the etching rate measured

in the simulations for a wide range of amplitudes and wavelengths. The effect
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also occurs in density gradients, and it was shown that a plasma wave packet

moving either up or down the gradient will eventually etch away regardless of

its initial wavelength and amplitude. The distribution and average velocity of

the detrapped particles was also characterized and found to be proportional to

vφ + vT .
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CHAPTER 4

Multi-Dimensional Plasma Waves

The nonlinear theory of multi-dimensional plasma waves is not well developed.

Recent simulations of SRS indicate that multi-dimensional effects, such as trans-

verse localization of the plasma wave, may present important saturation mecha-

nisms [45, 46]. For example, Benjamin Winjum has performed full electromag-

netic simulations of SRS in two dimensions and found localization and inter-

packet behavior to be important. Figure 4.1 shows the longitudinal electric field

from one of his SRS simulations in which localization occurs. Motivated by these

simulations, we present in this chapter the evolution of plasma waves in multiple

dimensions using particle-in-cell (PIC) simulations. The plasma waves are driven

in a similar manner as was done for the one-dimensional studies except that vari-

ous transverse profiles were used. An emphasis is given to identifying the physical

mechanisms of wave localization, an effect that occurs exclusively for kλD & 0.2

where kinetic effects are important. To provide context and motivation for some

of the kinetic, localization effects, this chapter first considers fluid waves. As

in the previous chapters, we simplify the study of such waves by driving them

externally using PIC simulations. This allows observation of the behavior with

carefully controlled parameters and conditions.

In addition to helping understand the wave behavior in the context of SRS,

we also intend to find what parallels can be drawn between 1D and 2D plasma

waves. The fundamental physics processes of nonlinear waves in 1D dimension
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are fairly well understood, so understanding what effects are similar and what

effects are different or new is important. For example, particle trapping in 1D is

well understood, at least in the relatively large amplitude case when the wave’s

amplitude can be assumed constant in calculating the particle orbits. In this

case, exact solutions for the particle trajectories are known, and simple relations

can be derived, like the trapping width and bounce time, that allow a detailed

understanding of the wave’s behavior. In 2D, however, exact solutions are not

possible, and such simple relations cannot be found, except in the fairly trivial

case of a non-filamenting plane wave. The particle orbits in 2D are examined in

more detail in several of the following sections, but we use the general concepts

of particle trapping and the trapping width and bounce time in analogy with the

1D case, keeping in mind that such relations are not exact but are useful.

4.1 Simulation Parameters

Before examining the simulations results, we briefly describe the codes and nu-

merical parameters used in this chapter. An electrostatic, Darwin, and electro-

magnetic simulation code were used for the simulations presented in this chapter,

each of which was written and provided by Viktor K. Decyk. All three are spec-

tral codes, which means that the fields are found in Fourier space rather than

with finite-difference operators in real space. The electrostatic code solves Gauss’

Law for the electric potential and field at each timestep. The electromagnetic

code breaks the electric field into a longitudinal and transverse component, where

∇× EL = 0 and ∇ · ET = 0. Gauss’ Law is used to find EL and Ampere’s and

Faraday’s Laws are used to find ET and B. The Darwin code uses the Darwin

approximation [98] to solve for the electric and magnetic fields. The approxima-

tion eliminates electromagnetic radiation by dropping ET from Ampere’s Law.
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The advantage to using the Darwin code is that the Courant condition does not

need to be satisfied since there is no radiation in the code but it includes current

generated magnetic fields and the resulting induction electric field. For problems

in which radiation is not important and does not occur, the Darwin code requires

significantly fewer timesteps. Radiation is not important for the electrostatic

waves studied here, so the Darwin code is useful because it will accurately model

the return currents and fringe magnetic fields associated with finite width plasma

waves in two dimensions. For a more in depth discussion, see Appendix B.

The simulation parameters are as follows. The grid spacing is always the

Debye length, and the timestep in the electrostatic and Darwin codes was ∆t =

E1-field 
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Figure 4.1: Longitudinal electric field at three times from an OSIRIS simulation

performed by Benjamin Winjum showing localization and inter-packet packet be-

havior. The localization can be seen at the left edge of the center plot. The scat-

tered light from forward packets to the right strongly influences the behavior of

the trailing packets. The parameters for this run are n = 0.128ncr, vth = 0.0776c,

and a focused intensity of I = 2.5× 1015W cm−2.
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0.2ω−1
p and ∆t = 0.025ω−1

p in the electromagnetic runs. The grid size was typ-

ically 256x2048 or 256x4096 depending on how long the simulations were run

for. Since periodic boundaries were used, the transverse dimension must be large

enough that no particle can interact twice during the simulation. Typically, 2500

particles per cell were used, although this number was varied to test the conver-

gence. The number of particles was chosen to adequately reduce the noise to low

enough levels that small amplitude waves could be observed using the subtraction

technique [109]. Ions were not included in any of the runs shown below because

they are not expected to contribute to these waves and the test simulations in-

cluding them yielded no significant differences from the runs without them. A

short subsection is devoted to ion motion below to justify neglecting ions more

quantitatively.

As in the previous chapters, an external, traveling wave driver was used to

generate the waves in the x-direction. For each simulation, we chose a kλD and

found the corresponding frequency that satisfies the kinetic dielectric. The driver

is generally on for about two wave periods. We also chose between four transverse

profiles: 1) a plane wave, 2) a rectangular profile with half-widthW , 3) a Gaussian

profile given by E0e
−y2/2W 2

, or 4) a super Gaussian profile given by E0e
−y4/2W 4

,

where the width W was also chosen from the start. The driver’s transverse field

component is chosen so that the driver is curl-free, which is done by assuming

an electrostatic potential for the driver and finding its field components from the

potential. Aside from creating the wave, the driver can generate a small current

when averaged over a wavelength that depends on the local driver amplitude.

Thus the current is largest in the center of the wave, and decreases on the sides.

A return current that depends on vth/c, a parameter chosen at the start, also

forms as a result of the driver current when either the Darwin or electromagnetic

code is used. For the simulations shown here, we choose vth/c = 0.1, which is
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similar to the the high temperatures expected in ICF plasmas. With this choice,

the return current along the center of the wave is sufficiently strong that there is

no net current associated with the driver. Therefore the current can be ignored

for the runs shown in this chapter. For more detail, again see Appendix B.

4.2 Fluid Waves

We begin by discussing plasma waves at the low kλD limit, where the phase veloc-

ity is large compared to the thermal velocity, Landau damping is negligible and

particle trapping does not occur. In this case, the plasma fluid equations provide

a good approximation to the wave behavior. At large amplitudes, the dominant

nonlinearity is harmonic generation and the concomitant positive frequency shift

described in a previous chapter and in Ref. [14]. While the shift has been derived

only in the 1D limit, we anticipate that it will occur locally in a qualitatively

and quantitatively similar fashion in multiple dimensions for typical values of W ,

that is, kW � 1. Before moving on to the PIC simulations, we describe a linear

fluid plasma wave equation that we use to compare with the PIC results. Since

the behavior of this equation is well understood, we use it as a foundation from

which to identify new effects beyond those of linear fluid theory.

The fluid plasma wave equation was derived in Chapter 2 and is given by

∂2ψ

∂t2
− 3v2

th∇2ψ + ω2
pψ = 0 (4.1)

when the amplitude is small enough that the frequency shift term is negligible.

Below we add this term and examine its effects. With appropriate initial values

and periodic boundary conditions, we can solve this numerically using simple

finite difference schemes. To compare with the simulations, we must also account

for the finite-particle shape factor, which in practice means replacing the ω2
p term
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in the dispersion relation with ω2
pe
−(kλD)2 ≈ ω2

p − v2
thk

2 [79], such that the disper-

sion relation ω2 = ω2
pS

2(k)+3v2
thk

2 ≈ ω2
p+2v2

thk
2. Thus we replace the 3 with a 2

in Eq. 4.1 to compare with the simulations. Inserting ψ = ψ0(x, x⊥)e−i(kx−ωt) and

dropping ∂2/∂x2ψ in favor k∂/∂x, we find that plasma waves satisfy the paraxial

wave equation ∇2
⊥ψ0 + 2ik ∂ψ0

∂x
= 0, where ω2 = ω2

p + 3k2v2
th. We therefore expect

low amplitude fluid plasma waves to diffract similar to beams of light waves. If

we instead think of this in the time domain we have ∇2
⊥ψ0 − 2iω ∂ψ0

∂t
= 0

Figure 4.2 shows the initial condition and final value of the amplitude for the

solution of Eq. 4.1 with the 3 replaced with a 2. At late time, the wavefront

bending associated with diffraction can be seen. The wave is initialized with

ψ(t = 0) = e−y
2/2W 2

.

Since a plasma wave satisfies the paraxial equation, we expect a Rayleigh

length in accordance with light waves. Below, we generalize the paraxial equation

to include nonlinear frequency shifts. For now, however, the fluid wave equation

solutions can guide our understanding of the PIC simulations and provide a basis
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Figure 4.2: Amplitude of the solution to Eq. 4.1 for W = 100λD and kλD = 0.1.
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from which to find novel results.

4.2.1 Fluid Nonlinearities - PIC Simulations

As discussed previously, the solution to the plasma fluid equations that are correct

to second order in the field amplitude includes harmonics and frequency shifts.

The shift in 1D was found to depend on the amplitude squared, and we will

assume for this chapter that the shift in 2D is proportional to the local amplitude

squared. We generally consider waves with a Gaussian transverse profile, so the

center of the wave accumulates a positive phase shift relative to the wave’s edges.

The wavefront bowing or bending acts in a similar manner to the bending due

to diffraction as seen in Fig. 4.2. Thus, a large amplitude fluid plasma wave will

suffer wavefront bowing that increases in time as the phase shift accumulates,

leading to an enhanced expansion of the wave over Gaussian diffraction. As the

amplitude of the wave is increased beyond very low, linear values, we expect the

expansion rate to increase from the linear diffraction rate to the enhanced rate

due to frequency-shift induced bending.

Figure 4.3 shows the progression in time of a PIC simulation with a Gaus-

sian driver of width W = 300λD and kλD = 0.1 that is shut off at tωp = 10,

allowing the wave to freely propagate. The wavefront bowing is clearly visible,

with the relative phase shift accumulating between each successive time interval.

By tωp = 150 the bending is apparent, but has occurred much quicker than it

would have were diffraction the primary mechanism, as can be seen by comparing

with Fig. 4.2 at tωp = 150. Figure 4.4 shows a zoomed in image of the field at

a later time of tωp = 350, with the aspect ratio stretched by a factor of two to

exaggerate the bending. In addition to the difference in the time required to

bend the wavefronts, Gaussian diffraction yields a wave whose transverse pro-
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Figure 4.3: Longitudinal electric field from a PIC simulation for W = 300λD and

kλD = 0.1, eED/mωpvth = 0.5 and a peak amplitude of eE/mωpvth = 2.25 at

three different times. The wavefront bowing is only slightly visible, demonstrating

the subtlety of the fluid shift’s bending.
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file remains Gaussian throughout. Since Eq. 4.1 is linear, Gaussian diffraction

causes the wavefronts to bend uniformly, independent of their local amplitudes.

The bending due to the fluid frequency shift depends, in our assumptions, on

the local amplitude squared, leading to variations in the degree of bending across

the wavefronts. This can be seen by inspection of the PIC simulations results

in Fig. 4.3 at later times, where the sharpest bending occurs slightly above and

below the central wave axis.

To better understand the widening of the wave due to the frequency shift, we

examine the nonlinear plasma wave equation derived in Chapter 2, given by

∂2
tE − 3v2

th∇2E + ω2
pE = −2ωδωE. (4.2)

The fluid frequency shift is given by

δω =
ω

12

(
eE

mωvφ

)2
15α + α2

(1− α)3
≈ 15

4
ωp(kλD)4

(
eE

mωpvφ

)2

= δωcE
2, (4.3)

with α = 3v2
th/v

2
φ and δωc = 15

4
ωp(kλD)4 defined for conciseness [14].
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Figure 4.4: Ex at tωp = 350 for kλD = 0.1, Gaussian profile W0 = 300λD.
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We consider the x component of the field for simplicity and assume the solu-

tion as follows:

E = E0(x, y, t)ei(kxx−ωt) + c.c., (4.4)

Substituting Eq. 4.4 into Eq. 4.2, we find

∂2
tE0 − ω2E0 + ω2

pE0 + 3v2
thk

2
xE0 − 3v2

th∇⊥E0 (4.5)

−3v2
th∂

2
xE0 − 2ikx∂xE0 − 2iω∂tE0 = −2ωδωE0,

having written only those terms going as ei(kxx−ωt) and recognizing that with this

notation the frequency shift is now δω = 1
2
δωc|E0|2. Letting ∂2

xE0 � k2
xE0 and

∂2
tE0 � ω2E0, and recognizing the linear dispersion relation, we find

2iω (∂t + vg∂x)E0 = −3v2
th∇2

⊥E0 + 2ωδωE0, (4.6)

where vg = 3v2
thk/ω. This equation is equivalent to Eq. 109.13 of Ref. [80],

although it is for a plasma wave instead of a light wave in a nonlinear dielectric.

For a light wave, 3v2
th becomes c in both the first term on the right and in the

definition of vg. The first term on the right gives the usual Gaussian diffraction.

For positive frequency shifts, the second term on the right provides enhanced

diffraction. Since the new diffraction term is nonlinear, it causes the wave’s

profile to change.

We now show that energy flows in the direction perpendicular to the wave

fronts, starting with vg = ∇kω. Using the fluid dispersion relation, we readily

find

vg =
3v2

th

ω
k. (4.7)

Being the gradient of the phase, k is perpendicular to the lines of constant phase.

To show that energy flows in the direction of the group velocity, we seek an

equation describing energy flow, starting with the electrostatic analog of Poynt-
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ing’s theorem, given by
1

2
∂tE

2 +∇ ·P = −j · E, (4.8)

where P = φ (j + ∂tE) represents the electrostatic component of the Poynting

vector and φ is the potential [81]. We note that it is often believed that P =

cE×B→ 0 in the electrostatic limit. However, in this limit c→∞ and B→ 0

so that their product does not necessarily vanish. We now use the linearized fluid

equations to include the effects of the plasma particles, which enter through the

j · E term. These are

∂tv1 = −E1 − 3∇n1, (4.9)

∇ · E1 = −n1, (4.10)

and the continuity equation

∂tn1 +∇ · v1 = 0. (4.11)

Here we use electrostatic units, with velocity normalized to vth, density to n0,

and electric field to e/mωpvth. Inserting these equations into −j · E, we find

−j · E =
1

2
∂t(v1 · v1 + 3n2

1) + 3∇ · (n1v1). (4.12)

Putting the two energy expressions together, we find

1

2
∂t
(
E · E + v1 · v1 + 3n2

1

)
+∇ · (P + n1v1) = 0. (4.13)

Since we have used the linearized fluid equations without damping to find this

expression, there is no energy source or sink. Were we to include damping, it

would appear as a contribution to −j · E on the right side. The group velocity

is obtained by the ratio of the averaged term in the divergence term (the energy

flux) and the time derivative term (energy density), given by

vg =
〈P + 3n1v1〉

〈E · E/2 + v1 · v1/2 + 3n2
1〉
. (4.14)
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Continuing the calculation, we find in the linear limit that P = φ (j + ∂tE) = 0

by construction since j+∂tE = 0, as can be seen by inserting the linear quantities

into the expression for it. If we assume E1 = E0 cos(kx − ωt), then we have

n1 = −kE0 sin(kx − ωt) and v1 = 1
ω
E0 sin(kx − ωt)(1 + 3k3). Since j1 = v1,

we can see that applying the dispersion relation ω2 = 1 + 3k2 yields P = 0.

Further, inserting these expressions into the expression for vg above, we find that

vg = 3k/ω = 3/vφ, as expected. We can further see that vg points in the direction

of k by writing Euler’s equation as

∂tv1 = −kφ− 3kn1. (4.15)

We showed previously that vg ‖ v1 in the linear limit when P = 0, so we now

can see that vg ‖ k points in the direction normal to the wavefronts. Again, this

is strictly true only for linear, high-phase velocity waves.

Below, we present plots of the −j · E deposited from the particles in the

simulations. The plots contain both damping effects and the energy flow effects

associated with the divergence term given above (P + n1v1). The two effects

can be distinguished in the plots because a contribution to the deposited −j · E

that comes from energy flow will show up as negative in one region of space and

positive in an adjacent region. The is true because as energy flows, it must leave

one region and move into another. Contributions from damping, on the other

hand, will simply be negative, with no nearby region being positive. This will

become clearer when examining the plots below. In summary of the above results,

we expect P to be very small, energy to flow in the direction of the wavefronts,

even when they become curved, and for the −j · E deposited in the simulations

to include components due to energy flow (focusing) and energy loss (damping).
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4.2.1.1 Density Modifications and Frequency Shifts from the Pon-

deromotive Force

Before continuing, we briefly justify the neglect of the effects caused by ion density

modifications. Since the wave has a transverse profile, there is a ponderomotive

force associated with it given by

Fp = − 1

2ω2
∇E2 = ŷE2

0

y

ω2W 2
e−

y2

W2 , (4.16)

where the force points in the y direction. For this subsection, we again use

electrostatic units, so that force is normalized with 1/mωpvth, velocity to the

electron thermal speed and time to the electron plasma frequency. This force will

push electrons outward from the wave center, leaving a space-charge electric field

that balances the ponderomotive force, or −E + Fp = 0. Taking the divergence

of each side, and relating ∇ · E = −δn, then yields

δn = − 1

ω2W 2
E2

0

(
1− 2y2

W 2

)
e−

y2

W2 . (4.17)

Inserting this into the dispersion relation allows an estimation of the frequency

shift associated with this density modification, with δw = δn/2ω. The ratio of

this shift to the fluid shift above is given by

δω

δωfl
=

2

15

1

W 2k4
, (4.18)

where δωfl refers to the fluid frequency shift derived in Chapter Two. For kλD =

0.1, we find that the wave must be much wider than approximately 36λD ≈ λ/2

for the frequency shift to be negligible. This is generally true for the waves

discussed here.

Eventually, the electric field caused by the ponderomotive force acting on the

electrons will move the ions, digging a density depression that will further shift

126



the frequency. To estimate this effect, we start with Euler’s equation for the

electrons, given by

∂tve = −E−∇ne + Fp. (4.19)

The electrons eventually reach a steady state with the space charge field and the

ponderomotive force, giving

E = −∇ne + Fp. (4.20)

Now, if we assume the ions are cold, they satisfy

∂tvi = −m
M

E = −m
M
∇ne +

m

M
Fp. (4.21)

Next, we take the time derivative of the ion continuity equation,

∂t (∂tni +∇ · vi) = 0, (4.22)

and assume quasineutrality, ne ≈ ni, we can insert Eq. 4.21 into Eq. 4.22, yielding

∂2
t ni − c2

s∇2ni = −m
M
∇ · Fp. (4.23)

The driving term on the right side can be written in terms of the ponderomotive

potential as ∇ · Fp = 1
2
∇2E2. In steady state, we find that the ion density

perturbation eventually reaches

ni ≈ −
1

2
E2, (4.24)

which can be large for some of the fluid like cases (small kλD) and is usually less

than about 0.01n0 for the kinetic runs discussed below. However, being massive,

the ions respond slowly. To estimate the time it takes for the density depression

to form, we drop the spatial derivatives in Eq. 4.23 and integrate twice in time.

We find then that the density scales as

ni ≈
m

MW 2
E2t2 (4.25)
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for waves having a Gaussian profile of width W . Below when we discuss kinetic

waves, even at the very late time of tωp = 1000 in the simulations, we expect

a density depression of about δn ≈ 0.0001n0, giving a frequency shift of about

δω ≈ δn/2 ≈ 0.00005ωp. Given the shifts discussed in Chapter 2 for kinetic

waves, this shift is negligible. Although this calculation is very rough, even if a

more rigorous one were to find the shift an order of magnitude larger, the shift

would still be negligible. Furthermore, we have carried out mobile ion simulations

to compare against the fixed ion cases.

4.2.1.2 Wave Expansion Calculations

While approximate solutions to Eq. 4.6 may be possible for a δω that is a function

of the instantaneous wave amplitude, for example δω ∝ |E0|2 or
√
|E0|, and one

assumes a Gaussian profile, we proceed with a simple model that readily allows

comparison with the simulations at early times. The method is similar, and

reduces to the same result, as in Mori [75] for the nonlinear propagation of a

laser beam in plasma. Figure 4.5 depicts the coordinate system used in the

following. The solid curve represents a line of constant phase, or a wavefront.

We find the angle of propagation as

tan θ ≈ θ =
ky
kx

= − 1

kx

∫
(∂yδω)dt′. (4.26)

The expansion rate is given by vy ≈ vgθ. With dy/dt = vy, we have

d2y

dt2
= −vg

k

∂δω(y′)

∂y′
|y. (4.27)

For a Gaussian transverse profile, using the fluid frequency shift yields

d2y

dt2
=

15

4
k3E2

0

y

W 2
e−

y2

W2 . (4.28)

This model does not allow for the width of the Gaussian to change, nor does

it allow the profile to become something other than a Gaussian. It is therefore
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only appropriate for early times when y(t)− y(0)� W . A better model can be

obtained by considering y(t) = W (t), so that we obtain

d2W

dt2
=

15

2
k3E2

0

1

W
e−1. (4.29)

In this case the width can change, but the profile must remain Gaussian. This is

the same result, although with different constants, obtained for laser self focus-

ing as Mori found in 1997 [75], as mentioned above. As in that paper, we must

also include a term that represents Gaussian diffraction. In the simulations pre-

sented here, we consider the initial value problem, which can be rescaled from the

usual Gaussian beam solution for the boundary value problem. The difference

is that the boundary value problem solves Eq. 4.6 with ∂t → 0, while the initial

value problem solves this equation with ∂x → 0. We can convert the boundary

problem’s solution to the initial value solution with the replacement x = vgt.

Therefore, the expression for the width of the Gaussian as it diffracts in space

becomes

W 2
G(t) = W 2

0

(
1 +

t2

t2R

)
, (4.30)

where tR = kW 2
0 /2vg is the Rayleigh “time” in analogy with the usual Rayleigh

length. Taking the second derivative of WG and inserting it into Eq. 4.29 yields

d2W

dt2
=

15

4
k3E2

0

1

W
e−1 +

4v2
g

k2W 3
(4.31)

Multiplying both sides by W ′ = dW/dt, we can integrate once to find the rate

of expansion, given by

W ′ =

√
15

2

k3E2
0

e
ln
W

W0

+
4v2

g

k2W 2
0

(
1− W 2

W 2
0

)
. (4.32)

The integration constant is chosen by realizing that at t = 0, the wavefronts

have not bent, vgy = ky = 0, so that the rate of expansion due to the nonlinear
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frequency shift is zero, or W ′(0) = 0. Further, taking the first derivative Eq. 4.30

shows that W ′
G(0) = 0 also, so that the the total initial value of W ′ is zero also.

To continue, we let W (t) = W0+δW (t) for times small enough that δW (t)� W0.

Inserting this into Eq. 4.32 and expanding gives

δW ′ ≈
(

15

2

k3E2
0

eW0

+
8v2

g

k2W 3
0

)1/2√
δW, (4.33)

which can be solved to give

W (t) ≈ W0 +

(
15

8

k3E2
0

eW0

+
2v2

g

k2W 3
0

)
t2. (4.34)

Interestingly, we could have anticipated this solution by simply Taylor expanding

the width, as

W (t) ≈ W0 +
1

2
W ′′(0)t2 = W0 +

(
15

8

k3E2
0

eW0

+
2v2

g

k2W 3
0

)
t2, (4.35)

where we used the fact that W ′(0) = 0, as discussed above, and W ′′(0) is found

directly from Eq. 4.29. Thus, the solution is valid for

t2 � W0(
15
8

k3E2
0

eW0
+

2v2g
k2W 3

0

) . (4.36)
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Figure 4.5: Diagram depicting the angle θ. The heavy, curved line represents a

line of constant phase for a wave propagating upward in x at some late time. Not

to scale.
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In the following section, kinetic nonlinearities lead to wavefront bowing in the

opposite direction to that observed above for the fluid case. To show that, in

principle, waves whose wavefronts are bent inward do localize, we perform a sim-

ulation at low amplitude of a fluid plasma wave with artificially bent wavefronts.
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Figure 4.6: Three plots from a run with kλD = 0.1 and W = 100λD with driver

amplitude eED/mωpvth = 0.1 and b = −2. The relatively low peak amplitude of

the wave causes the frequency shift to be negligible. a) Longitudinally averaged

energy vs. y and time; b) Positions of the upper and low half maximums from

a); and c) vertical line outs of a) at early and late times. Although they are ap-

parently quite different, integrals over the transverse profiles shown in c) indicate

that energy is conserved.
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The driver used for this case is given by

Ex =E0e
− y2

2W2 cos(kx− ωt+ be−
y2

W2 ), (4.37)

Ey =E0
y

kW 2
e−

y2

2W2

(
sin(kx− ωt+ be−

y2

W2 ) + 2be−
y2

W2 cos(kx− ωt+ be−
y2

W2 )

)
.

(4.38)

The Ey term is simply to insure that ∇×ED = 0, although in practice it makes

little difference in the simulation results. The phase shift term (be−y
2/W 2

) is

proportional to the amplitude squared and provides initial bending so that it will

focus to a focal point. For example, we show results in Fig. 4.6 for b = −2.0,

kλD = 0.1, and W = 100λD with driver amplitude eED/mωpvth = 0.1. The

resulting fluid wave, shown in Fig. 4.6 has an amplitude of eE/mωpvth ≈ 0.45

and the frequency shift is negligible. The wave focuses in time to its center at

a nearly constant rate, as seen in Fig. 4.6a and b. By late times, the amplitude

along the wave’s axis increases while its width decreases, as in Fig. 4.6c.

4.3 Kinetic Effects

The dominant behavior of infinitely long (or periodic) and finite width, nonlin-

ear plasma waves with kλD > 0.2 is the transverse localization in time of the

wave around its center. Figure 4.7 shows a sequence of longitudinal electric field

snapshots for a run with kλD = 0.3, driver amplitude eE/mωpvth = 0.03, and

super Gaussian width W = 200λD. The most obvious effect is the localization

of the wave with time. Less obvious is the increasing spatial curvature of the

wave fronts with time, as can be seen in the snapshots at tωp ≥ 400. The third

apparent effect is that the wave amplitude along the center of the wave remains

nearly constant, as shown in Fig. 4.8, which shows the peak amplitudes at each

time (including the sideband modulations evident in Fig. 4.7) at tωp = 400, for
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example. If the wave energy were conserved as it localized, the peak amplitude

at the end of the simulation would have been approximately 6 times larger than

it that observed in the simulation. This point is discussed in more detail below.

Based on the degree of wavefront curvature one could use the physical picture

given earlier to estimate dW
dt

= vgθ. However, W clearly changes much more

rapidly than this. When taken together with the fact that the amplitude does

not change, it strongly indicates that localization is due to local removal of energy

(dissipation) from the sides rather than energy flowing inwards.

Another way to view localization is through plots like those in Fig. 4.9. In

these plots, the electrostatic field energy U(x, y, t) = 0.5E·E/mv2
th is summed over

all x at each time, resulting in y vs. t plots of the energy, U(y, t) =
∫
dxU(x, y, t).

Since the waves are periodic in the x direction, this is proportional to the av-

erage over a wavelength. The driver amplitude in Fig. 4.9a, b and c increases,

showing three different phases of wave localization. Figure 4.9c corresponds to
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Figure 4.7: Sequence of Ex(x, y) at several times. The initial profile was super

Gaussian with W = 200λD, ED = 0.03, and kλD = 0.3.
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the wave shown in Fig. 4.7. The larger amplitude cases b) and c) clearly show

the localization apparent in Fig. 4.7. In each case, kλD = 0.3.

For kλD < 0.2, a wave equation based on the fluid equations still provides a

reasonable description for how a finite width wave evolves. However, as can be

seen in Fig. 4.9 for kλD > 0.2, trapped electrons executing bounce oscillations

leads to oscillation in the wave’s amplitude. Before we discuss multi-dimensional

issues, we first review the general behavior of waves in one dimension for a refer-

ence point. At low amplitudes, γLτB � 1, resonant particles accelerated by the

wave absorb all of its energy and momentum before they can bounce and return

any energy and momentum to the wave; that is, the wave Landau damps away.

We define τB = ω−1
B =

√
m/eEk and γL is the usual Landau damping rate. At

higher amplitudes, the particles begin to ‘bounce’ in the troughs, returning some

0
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Figure 4.8: Peak amplitudes along the center of the wave (y/λD = 0) for each of

the times shown in Fig. 4.7.
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Figure 4.9: 〈U(x, y, t)〉x for U(y, t) for runs with kλD = 0.3 and

eE/mωpvth = 0.0098, 0.031, and 0.15, or γL/ωB = 0.29, 0.17, and 0.071 in

(a), (b), and (c) respectively. The time axis uses the same scale for each case.

of their energy to the wave. For medium amplitudes, 0.1 . γLτB . 1 [15], the

wave returns to just a small fraction of its original amplitude after one bounce

time. At high amplitudes, γLτB � 1, the trapped particles phase mix quickly,

gaining a relatively small fraction of the wave’s energy. Once the resonant parti-

cles have phase mixed, the wave reaches a quasi-steady state with little damping

and a downshifted frequency [59].

The wave behavior at each amplitude as described above was first discovered

in 1D, but it also occurs along the central section of finite-width waves in multiple

dimensions, as seen in Fig. 4.9. For example, a line out at y = 0 for the case of

Fig. 4.9c is sown in Fig. 4.10. This clearly shows the wave evolve over several

bounce times after which a steady state is reached. The ‘low’ amplitude case,

Fig. 4.9(a), actually falls into the medium category above, but lower amplitudes

are difficult to simulate because large numbers of simulation particles are needed

to reduce the noise to low enough levels to observe the wave. To help visualize
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Figure 4.10: The plot is a lineout through the center of Fig. 4.9(c) showing that

the wave’s amplitude along the center does not change after the initial phase

mixing.

the wave, the subtraction technique described in Chapter 3 is used here as well.

In this low amplitude case, the bounce time is so long, however, that it effectively

behaves as a ‘low’ amplitude wave and damps away even in multiple dimensions.

A further comparison between one and two dimensional waves is shown in

Fig. 4.11 where lineouts similar to those in Fig. 4.10 are plotted for several cases.

By taking horizontal lineouts of Fig. 4.9b through the middle of the wave and

near the upper boundary, we get the average wave energy as a function of time

for two different transverse positions. We can then compare this energy with

1D simulations for corresponding peak wave amplitudes to see where they differ

and how. Figure 4.11 provides this comparison, with the addition of a 2D plane

wave. The lineouts from Fig. 4.9b reach different amplitudes because of the y

dependence of the amplitude. However, as expected both show oscillations due

to the trapped electrons. For the comparison, we performed two 1D simulations,

the first reaches a peak amplitude similar to the amplitude at the center of the 2D
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run, while the second reaches an amplitude similar to the 2D run at y = 120λD.

As seen in the figure, the amplitude and phase of the center of the 2D wave

behaves very similar to the corresponding 1D wave and the 2D plane wave. Once

the impulse driver shuts off, the wave Landau damps with a measured damping

rate of γ = 0.016 ± .002ωp, while 1D kinetic theory predicts γL = 0.0167. The

error quoted is simply an estimate of the measurement variation in taking the

slope. As the particles bounce, the energy oscillates and eventually phase mixing

stops the oscillations. Therefore the center of the 2D plasma wave behaves very

similar to a corresponding 1D wave.

The lineout taken at y = 120λD also shows close correspondence with the

1D wave, but eventually the two diverge. Even the slight delay in the bounce

time compared to the larger amplitude lineout along the wave’s center is in good

agreement with the 1D wave. However, as time increases, localization causes the

lineout along the side of the wave to decrease since the wave is locally losing

energy, as a result the plots diverge (become lower) from the 1D result. This

figure clearly shows that much of what is understood about 1D plasma waves can

be applied to the central section of 2D waves. At the wave’s boundaries, on the

other hand, a simple application of 1D concepts is not appropriate. Importantly,

the center of the wave does not increase even though it is becoming transversely

localized.

The deviation between the 1D runs and the corresponding lineouts in 2D

illustrates that at larger amplitudes, when the bounce frequency is similar to the

damping rate, multiple-dimension effects become even more important. For the

medium amplitude case, Fig. 4.9(b), at each successive trapped particle “bounce”

the wave is narrower. This is true for three reasons. First, resonant particles that

absorb the wave’s energy in the first half of the bounce cycle have a relatively
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long period of time to stream out of the wave before the wave amplitude returns.

That is, the transverse velocity of some of the particles that absorb the wave’s

energy and momentum in the first half bounce time carries them out of the wave.

They therefore cannot return their energy to the wave. Since it is more likely

that a particle near the wave’s boundary will leave the wave compared to one in

the center, the sides of the wave preferentially lose energy. Thus, after one full

bounce the sides of the wave return to a lower amplitude than does the center,

causing the wave after each bounce time to be narrower. The second is that the
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Figure 4.11: Energy as a function of time for several different runs with kλD = 0.3.

The two black curves are 1D runs; the amplitude of the wave for the upper curve

is the same amplitude as that for the finite width 2D run at y = 0, while the

amplitude for the 1D wave is the same as the 2D run at y = 120λD. The 2D plane

wave has the same amplitude as the finite width wave at y = 0. Both 2D sim-

ulations have drivers with ED = 0.008 and peak amplitude of about E = 0.031,

while the driver used in the 1D simulations was chosen to generate a wave with

the same amplitude as the super Gaussian wave at y = 0 and 120λD.
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wave will simply appear to be narrower since, as its amplitude decreases, more

and more of the edges fall below the background noise. The third reason is that

particles originating outside the wave stream into it and locally damp the edges.

This effect dominates in the large amplitude case and is discussed in greater detail

below.

The large amplitude case, Fig. 4.9(c), shows a wave that quickly phase mixes,

leaving the center amplitude constant for the rest of the simulation. A lineout

through the center is shown in Fig. 4.10 showing that the center amplitude os-

cillates for a few bounce times and then remains steady. After phase mixing, the

third mechanism above dominates the behavior of the wave. To illustrate how,

we consider a wave in two dimensions having a sharp, rectangular profile in the

y direction and moving into the page, as shown in Fig. 4.12, with γLτB � 1.

We consider the central, flat section of the wave to be much larger than vth⊥τB,

although the figure shows only one set of trapped particles in the center for sim-

plicity. Further, we assume that the wave has existed for several bounce times

so that the particles that were inside the wave’s boundaries when it formed have

phase mixed. Although unphysical, this profile simplifies the following argument

which can then be generalized to a more gradual profile.

In the center of this rectangular wave, an energy balance at each transverse

position is maintained by the trapped particles. Two particles trapped at y = 0,

the wave center labeled ‘2’ in Fig. 4.12, that have vy = ±vth⊥ will take energy

from the wave in the region near y = 0 as they are accelerated. Each arrow in

the figure represents a trapped particle orbit, and the upward arc in vx indicates

that the particle is gaining energy at the expense of the wave at that transverse

location. They return this energy about τB/2 later at nearby locations, labeled

‘1’ and ‘3’. Likewise, the particles accelerated at ‘1’ and ‘3’ moving inward
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replace the energy lost at ‘2’. Thus, an energy balance exists to maintain the

quasi-steady state nature of the center of a wave carrying phase-mixed particles.

Recall that Figure 4.10 shows a line taken through the center of Fig. 4.9(c)

demonstrating that the center of a two dimensional wave does in fact behave

like a one dimensional wave in that the amplitude initially oscillates until phase

mixing leads to a quasi-steady state.

The energy balance is broken, however, at the sides of the wave. The energy

carried by the particle moving out of the wave at ‘1’ is replaced by another particle

that started at ‘2’. However, there is no such partner for the particle that started

at ‘1’ moving inward, as indicated by the dashed curves. As particles like this

enter, indicated by the straight arrows at the sides of the wave, they locally damp

the sides in a process analogous to Landau damping, but they do so at γ ≈ γL/2

since only half the distribution contributes to the damping. Inside the wave, γ(y)

quickly decreases and reaches approximately zero by the time that most entering

particles have completed a bounce. Gradually, the local damping erodes the sides

of the wave leading to wave localization.

In a wave with a gradually changing transverse profile, the same process occurs

1 2 3 y

vx
k

Figure 4.12: Diagram showing trapped particle energy balance for a wave moving

into the page. The straight lines indicate the wave boundaries and the curves

represent trapped particle orbits. The dashed curves represent trapped particle

orbits that do not exist because of the wave’s boundaries. The straight arrows

indicate unperturbed particles entering the wave from outside.
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but it is spread out in space and the damping rate at any y position is lower.

Figure 4.9 shows waves with a Gaussian profile, with (c) a large amplitude case.

The bounce time is clear for 0 < tωp . 200, while continuous localization occurs

after phase mixing, as described above. Instead of having a sharp boundary where

new particles enter and trap completely, the Gaussian profile causes a particle’s

trapping width to gradually increase as it moves inward. At each point, an

inward moving particle returns only a portion of the energy it will absorb as it

accelerates a half-bounce later. Therefore, the energy balance is more gradually

broken at each transverse location than in the rectangular case. In either case,

local damping occurs that leads to localization.

To better understand the local damping associated with the wave, we show

a simulation of test particles in which the self-consistent fields of the particles

is turned off. The driver is left on continuously, so each particle moves through

the fixed-amplitude wave field equal to the amplitude of the driver and feels no

other force. By depositing the kinetic energy transfer of the particles, j · E, we

can see the averaged energy loss as a function of the transverse position. The

results of one such run are shown in Fig. 4.13 for a run with kλD = 0.3 and

eED/mωpvth = 0.2. The initial oscillations at the left edge of the plot are the

particles that started within the wave as they phase mix. The curvature of the

first few bounces is due to the variation in bounce frequency due to the wave’s

transverse profile. Once these particles either phase mix or stream out of the wave,

the primary wave-particle interaction is due to particles that started outside the

wave and stream into it.

The pattern of damping from tωp ≈ 125 onward tends on average to be con-

centrated on the sides of the wave, as shown in Fig. 4.14. The sign in both these

figures is chosen so that negative means the wave is losing energy. Figure 4.14
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is generated by summing in time the data in Fig. 4.13 from 200 < tωp < 500

and then dividing the result by the wave’s transverse envelope. The division is

done to normalize the energy transfer rate by the wave’s amplitude, thus showing

something like the damping rate as a function of the transverse position. The

figure clearly shows that the damping is largest on the sides of the wave and peaks

between one and two W to either side. This local damping gradually reduces the

amplitude of the wave along the sides, leading to the localization seen in the fully

self-consistent simulations.

4.3.1 Wave Bending and Self-Focusing

In addition to localized damping due to nonlinear effects, kinetic waves also

suffer a frequency shift due to the trapping of particles. This shift is opposite

in sign to the fluid shift described earlier, causing the wavefronts to bend in the

opposite direction (a direction that can lead to self-focusing), as seen in Fig. 4.15.

Naively inserting the expression for the kinetic frequency shift derived in one

dimension into the NLS equation in place of the fluid shift leads to the possibility
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Figure 4.13: A plot of 〈j·E(x, y, t)〉x for a test particle simulation with kλD = 0.3,

W = 200λD, and eED/mωpvth = 0.2. The color map is saturated at the left side

of the box where the particles that started inside the wave phase mix with large

swings in the energy transfer. This makes the rest of plot visible.
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of a self-focusing instability. This has been referred to as the trapped particle

modulational instability [97, 66, 45, 46]. Since modulational instabilities generate

self-focusing in multiple dimensions, several of these authors have suggested that

self-focusing causes the localization discussed above. In some cases, we have found

numerical solutions to the NLS using the kinetic frequency shift can give similar

rates of localization as found in the simulations, but we believe this apparent

agreement to be spurious for several reasons.

First, the amplitude increase predicted by self-focusing does not occur, as

shown in Fig. 4.10 and Fig. 4.7, at least not until very late times when the

width becomes very small. This observation is consistent with local damping,

but not self-focusing. It is conceivable that self-focusing occurs but the amplitude

does not increase due to some kind of dissipation. But, the test-particle results

presented in Figs. 4.13 and 4.14 show that the damping is concentrated on the

sides of the wave, rather than the center. In SRS simulations, regrowth of the
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Figure 4.14: Average damping for the test particle simulation shown in Fig. 4.13.

The plot is generated by summing the data shown in Fig. 4.13 in time from

200 < tωp < 500 and then dividing by the wave’s transverse envelope.
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plasma waves due to new or continued scattering [45, 46] typically occurs before

the wave reaches such a narrow width, and we therefore do not consider the

late-time, very narrow waves.

Second, the NLS model is not valid, since a frequency shift that depends on the

instantaneous wave ampltude cannot be used to describe kinetic wave behavior.

Even Landau damping, the simplest kinetic effect, cannot be modeled using a

simple wave equation even when a phenomenological damping term is included.

Because Landau damping is proportional to e−k
−2

, no local differential operator

can be used to model it [6]. In the case of the frequency shift the distribution

function at one point in space and time depends on what is happening at other

positions at earlier times. Therefore, the nonlinear terms cannot depend on the

local amplitude. Furthermore, in the kinetic case the zeroth order distribution

function is changing and thus is hard to incorporate into a fluid description.

Therefore, at higher amplitudes, particle trapping renders a fluid model obviously

inadequate. The value of an NLS equation using the kinetic frequency shift as

the nonlinearity is that it can help to understand qualitatively why the curvature

of the wavefront bending is inward, but it cannot be used as a predictive model.

Third, waves with different transverse profiles will have different degrees of

wavefront bending, leading to different rates of self-focusing. The three plots

of Fig. 4.15 show the different degrees of bending in the longitudinal field for a

Gaussian, super Gaussian, and rectangular profile at the same time, from left

to right. Rectangular waves have little wavefront bending since their amplitude

remains nearly constant across the wavefronts. According to the self-focusing

model, rectangular waves should not localize as much. Gaussian waves, on the

other hand, accumulate significant bending and therefore should localize rela-

tively quickly. However, as shown in Fig. 4.16, the localization rate for each of
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these three profiles is nearly the same once phase mixing occurs. The figure plots

the upper position of the spot size W (t) for the simulations shown in Fig. 4.15.

The spot size is found by finding the transverse position whose amplitude equal

to E(y = 0)e−1. Localization is evidently not particularly sensitive to the wave’s

profile. This can be understood to some degree by recognizing that by the time

a particle reaches the wave center where the amplitude is the same for each case,

it will have taken the same amount of energy from the wave because its peak

energy at the top of the trapping width is the same. The difference in each case

is that particles trapped in a rectangular wave take energy quickly, while those

in Gaussian waves gradually accumulate it.

Alternatively, we can initialize the waves with varying degrees of wavefront

curvature, as discussed above, and observe how the localization varies with the

initial curvature. Figure 4.17 shows W (t) for three different simulations using
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Figure 4.15: Ex at tωp = 350 for kλD = 0.3 and W0 = 200λD, each with a profile

of (a) Gaussian, (b) super Gaussian, and (c) rectangular. The aspect ratio is

stretched by a factor of two to exaggerate the bending.
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Figure 4.16: The plot is the position of the upper spot size boundary W (t) for

a Gaussian, super Gaussian, and rectangular profile with W0 = 200λD, showing

that each case localizes at the same rate. The plots correspond to those in

Fig. 4.15.

the Darwin code in which the waves are initially bent with bending parameter

b = 0, 2, and 4 as shown in Eq. 4.37. The curvature is chosen such that the wave

would diffract, with the choice b = 4 the wave initially has approximately the

same curvature as the unbent case would at tωp = 400. If localization is due to

wavefront bending, we would expect the three cases to have significantly different

rates of localization. The figure shows that, although the initially bent waves do

localize slightly differently than the unbent case, the effect is small. The average

rate of localization for the three cases is 0.15vth, 0.14vth, and 0.12vth for b = 0,

2, and 4 respectively. Thus, doubling the degree of the initial bending results

in a less than 10% change in the rate of localization. The spot size W is found

by finding the location y such that the amplitude at y is e−1 below the peak

amplitude. The rate of localization is dW/dt.

The last and most convincing demonstration showing that local damping dom-

inates self-focusing is to compare the energy flow with Joule heating using the
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Figure 4.17: Position of W (t) for three different simulations having W0 = 300λD,

kλD = 0.3 and eED/mωpvth = 0.02 using the Darwin code. The blue, red and

green curves correspond to b = 0, 2, and 4 as defined in Eq. 4.37.

expression for conservation of energy given earlier,

1

2
∂t
(
E · E + v1 · v1 + 3n2

1

)
+∇ · (P + n1v1) = 0. (4.39)

Since we are now considering kinetic waves and are looking for localized damping,

we expect an energy sink term on the right side that is localized along the wave

edges. Figure 4.18 shows the longitudinally averaged energy, j · E term, and

the ∇ · S from an electromagnetic simulation. A super Gaussian profile is shown

because its sharper boundaries show the localized damping more clearly than does

a Gaussian profile. As can be clearly seen in Fig. 4.18b, the wave loses energy

to the particles along its edges, and it does so in a way that is not indicative

of energy flow. That is, there is no energy gain adjacent to the areas that lose

energy, at least not until late times when the wave becomes very narrow. If there

was energy flow then a red region would border the blue and the amplitude would

increase. The Poynting vector is much smaller than the j · E term throughout.

Note that P does have a red region bordering the blue region indicating energy
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Figure 4.18: a) 〈U(x, y, t)〉x, b) 〈−j · E(x, y, t)〉x, and c) 〈−∇ · S(x, y, t)〉x for a

wave with kλD = 0.3, W0 = 200λD, peak amplitude eE/mωpvth ≈ 0.12, and

super Gaussian profile.

flow.

In addition to the Poynting vector term, energy can flow through the fluid

terms given by ∇· (n1v1), as described above. Figure 4.19 shows this term taken

from assumed values averaged over a wavelength and evaluated for parameters

like those of Fig. 4.18. Again, the sign is chosen so that negative means the

wave is losing energy at that position. This term will only appear once the

wavefronts bow, since that is the only way that this energy can flow inwards.

We therefore evaluate the fluid terms n1 and v1 using the initially bent electric

field given in Eq. 4.37. We choose the bending parameter b = −3 to approximate
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Figure 4.19: Calculated 〈∇ · (n1v1)〉 for a wave corresponding to that shown

in Fig. 4.18. The parameters used are kλD = 0.3, ω/ωp = 1.12, b = −3, and

eE/mωpvth.

the degree of bending observed in Fig. 4.7. As can be seen by comparing the

two figures, Fig. 4.19 and Fig. 4.18, the magnitude of the calculated energy flow

is much smaller than the measured j · E from the simulations, although slightly

larger than the measured Poynting vector term. The magnitude of the peaks in

Fig. 4.19 are not very sensitive to the value of b, so the conclusions here are not

sensitive to our choice of bending parameter. This is further evidence that the

localization is due to local damping effects rather than a self-focusing mechanism.

4.3.2 Linear Landau Damping Filter

Figure 4.9a) shows that any 2D effects in very low amplitude waves are dominated

by Landau damping. However, it is possible that Landau damping itself causes

a transverse wave-profile modification. Without a full 2D solution to the Vlasov
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equation including transverse profile effects in the linear limit, we consider a

simplified model that extends 1D Landau damping to 2D. We consider a wave

with a Gaussian profile given by

g(x, y, t = 0) = E0e
−ik0xe(−y2/2W 2). (4.40)

In Fourier space, this becomes

G(kx, ky) = W
√

2πE0e
−k2

yW
2/2δ(kx − k0). (4.41)

By transforming to Fourier space, we can consider any wave profile to be a col-

lection of spatial plane waves with wavenumbers (kx, ky) to which we can apply

linear Landau damping. Each k component has a complex ω(
√
k2
x + k2

y). To

simplify the analysis we assume Re(ω) ≈
√
ω2
p + 3k2v2

th and Im(ω) ≈ γL(k),

where k =
√
k2
x + k2

y. We discretize the wave and use the FFT to transform to

Fourier space, and then apply Landau damping for a time t0 at γL(k), where

k =
√
k2
x + k2

y. We then transform G(kx, ky, t0)eγL(k)t0 back to real space to see

how Landau damping modified the wave’s profile. The results for three different

initial wave numbers k0 are show in Fig. 4.20. The figure plots the percentage

change in the average energy at a time tωp = 100 with that at t = 0. Since we

are interested in the change in the transverse profile, and not in the reduction of

the (kx, ky) = (k0, 0) mode, we renormalize the energy at the later time so that

it has the same total energy as it did at t = 0. Therefore the figure shows the

change in shape of the profile. Evidently, Landau damping tends to widen the

wave.

That Landau damping will always tend to widen the wave rather than narrow

it can be understood by considering Landau damping to be a low-pass filter, since

γL(k) increases with increasing k. A wave with arbitrary transverse profile will

transform to have some distribution in ky symmetric about 0 and with kx = k0.
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Figure 4.20: Three different cases after applying a Landau damping filter for

a time tωp = 100 to Gaussian-profile plasma waves with W = 100λD. The

function plotted is
∑
all x

(
URN(x, y, t = 100ω−1

p )− U(x, y, t = 0)
)
, where URN is the

field energy renormalized so that it has the same total energy at t = 0 to allow

for a useful comparison after subtraction.

Since each mode that lies off the kx axis will be of larger magnitude k than the

(kx, ky) = (k0, 0) mode, the transverse bandwidth of the wave will always decrease

through the action of Landau damping. A reduction in bandwidth results in a

wider wave in real space, so Landau damping always widens the wave, although

only slightly in most cases.

It should be noted, however, that any modifications to the transverse profile

due to linear Landau damping will usually be completely swamped by the to-

tal damping of the wave. That is, by the time any modification to the wave’s

profile were to become apparent, the wave would have long since damped away

completely, at least for the kinetic waves (k0λD > 0.2) of interest here. It is con-
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ceivable that waves with k0λD < 0.2 could be narrow enough that the significant

damping of the high ky modes could have an observable effect on the shape of the

wave. But, such waves would also diffract, so both effects should be considered

together. The choice of kλD = 0.2 as the transition between no damping and

damping is only intended to be approximate and we use it only as a rough guide.

4.3.3 Three-Dimensional Waves

To further demonstrate the lack of self-focusing, we have carried out a limited

number of three-dimensional simulations. Due to geometrical effects, self-focusing

leads to a stronger enhancement in wave amplitude in three dimensions than in

two. Energy conservation in 3D gives W 2E2 =const versus WE2 =const in

2D. Figure 4.21 shows the localization of a wave in three dimensions using an

electrostatic simulation to reduce the computational demands. Two dimensional

simulations for these parameters indicate that the difference between the elec-

trostatic and electromagnetic simulation results are small, justifying the use of

the electrostatic code. The wave has the same driver amplitude as the wave in

Fig. 4.9(c), but it is half as wide. The simulation used a grid 256x1024x1024 with

2.58× 1010 particles.

Comparing the width of the waves at tωp = 400 in both the two and three

dimensional runs indicates that the localization rate is very similar. The position

of the upper half maximum initially is 182λD for both cases, while the position

at tωp = 400 is approximately 142λD in the 3D run and 138λD in the 2D run.

These two values are within the measurement error of each other, since the value

of the maximum fluctuates slightly across the wavefront and is therefore difficult

to measure accurately. Thus, based on this preliminary comparison, transverse

localization does not change much between two and three dimensions, which
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Figure 4.21: Results from a three dimensional simulation of a wave with

W = 200λD, kλD = 0.3, and eED/mωpvth = 0.03. The upper plot is

〈U(x, y, z, t)〉x, with arbitrary color scale units, and the lower plot is a plane

through the center of the wave, 〈U(x, y, z = 0, t)〉x.

further demonstrates the lack of self-focusing.

4.3.4 Summary

This section showed that for large amplitude kinetic waves with widths at least

several times the wavelength, the sides of the wave damp locally while the center

remains nearly constant. This is due to the damping associated with outside

particles streaming into the wave and absorbing energy as they damp. Although

wavefront bending does occur, it is small and does not cause the dramatic local-

ization observed here. Four separate lines of evidence were presented in support

of this interpretation. Unfortunately, a detailed calculation of the damping rate
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as a function of the transverse position is very difficult and remains elusive, in

large part because the particle orbits are extremely complicated. In the follow-

ing, we consider narrow waves and study the trajectories of crossing particles in

a preliminary attempt to understand local damping.

4.4 Narrow Wave Model

The local damping described above lacks a quantitative model that predicts the

nonlinear damping as a function of time and transverse position. The primary

reason is the lack of analytic solutions for the particle orbits in the finite-width

wave, especially for the large widths discussed. In this section, rather than trying

to generate a detailed theory of the wave behavior, we simply attempt to better

understand the transfer of energy to the particles from the wave. We also consider

a rather narrow wave, with W ≈ λ, in order to simplify the considerations. First,

an analysis of the energy of a particle that traverses a wave is presented using

simple ideas about the particle orbits. Using some of the insight gained, a simple

model is presented that predicts the energy transfer in a fixed amplitude wave

relatively well.

4.4.1 Particle Orbits in a Two-Dimensional Wave

Assume a wave whose potential has the form

φ =
E0

k
e−

y2

2W2 cos(kx) (4.42)

in the wave frame moving in the x direction with a velocity vφ = ω/k. The

electric field is

E = −E0e
− y2

2W2 sin(kx)x̂− E0

k

y

W 2
e−

y2

2W2 cos(kx)ŷ. (4.43)
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The equations of motion are therefore

dvx
dt

=
eE0

m
e−

y2

2W2 sin(kx), (4.44)

dvy
dt

=
eE0

mkW 2
ye−

y2

2W2 cos(kx). (4.45)

This is the shape of the external driver used in the simulations, and therefore

also the initial shape of the wave.

It is well known that an infinite plasma wave in 1D will Landau damp for γ �

ωB, where ωB =
√
eE0k/m, or, for larger amplitudes, damp initially but reach a

steady state after the particles bounce a few times [59]. Landau damping applies

while the linear particle orbits remain accurate. Once the linearized equations of

motion no longer approximate the exact particle orbits, linear Landau damping

ceases. In 1D this occurs for small amplitudes, γ � ωB, or for early times,

t < τB/4. In 2D, as shown above, Landau damping still occurs at low amplitudes.

At higher amplitudes, novel multi-dimensional effects become relevant.

The primary difference between 1D and 2D waves is that particles have a

transverse velocity that carries them from regions far from the wave into the

wave. Some of these particles can trap, others may reflect, while still others

will pass through the wave without much change in energy or momentum. The

exact orbits of particles through 2D waves are complicated, and small changes

in the initial positions and velocities of the particles result in large differences

in trajectories. Figure 4.22 shows the complexity of the solutions to Eqs. 4.45

by solving them numerically. The figure shows the change in energy of particles

starting at (x0, y0) = (0,−4W ) with initial velocities given by the axes. These

particles start far from the wave, interact, and are either reflected, trapped, or

carried through the wave. The x-axis is the initial longitudinal velocity normal-

ized to the 1D trapping velocity vT = 2
√
eE/mk and is in the wave frame, while

the y-axis is the initial transverse velocity normalized to vth. Since this group of
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particles starts below the wave, only positive transverse velocities are of inter-

est. Color represents the difference in particle energy in the lab frame at t = 0

and t → ∞, with blue indicating energy loss and red energy gain. In this case

t→∞ means that the particle has either reflected or travelled through the wave

completely. A fourth-order Runge-Kutta scheme was used to calculate the orbits

with dt = 0.1ωp. The plot on the left shows the energy change for a group of

particles with the same initial positions but varying initial velocities as given by

the axes. The plot on the right shows results that are averaged over 30 different

initial x positions uniformly spaced over a wavelength. The initial y position was

constant. Thus Fig. 4.22b shows the energy transfer averaged over a wavelength.

Several observations can be made. First, particles with (vx− vφ)/vT > 0 tend

to lose energy, while those with the opposite velocity gain it, in general analogy

with the 1D case. Second, not all particles within the 1D trapping width gain

or lose significant amounts of energy, and the width in vx over which significant

energy change can occur is less than 1D theory would suggest. That is, particles

with (vx − vφ)/vT near 1 or −1, those near the 1D separatrix, do not interact

strongly with the wave, despite the strong interaction such particles would have

in 1D. Third, an interesting repeating pattern forms that is anti-symmetic around

(vx−vφ)/vT = 0. Although it is not clear exactly what causes the curved shapes,

the repeating pattern is due to the different phases at which each particle enters

the wave. As vx and vy vary, the time required for such a particle to reach the

wave varies, resulting in a stretching, periodic-like structure in the energy change.

However, the important point is that some particles interact with the wave

and carry its energy away. Since there are more particles at lower velocities than

at higher, on balance the wave will lose energy. As particles continue to enter and

exit the wave, the wave will continue to damp away. To identify which particles
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carry most of the energy away and how they do it, the following simple model

treats the wave region as a sort of black box (a scattering center). That is, the

particles orbits are not examined in detail; rather we simply try to understand

how much energy the particles gain or lose as they interact with the wave. Note

that this description cannot tell us where the energy comes from.

Before delving into the model, we present some phase space results from the

self-consistent simulations that help to motivate the model and justify some of

its assumptions. Figure 4.23 shows the positions of a group of particles in y

vs. x space from a fully self-consistent simulation with kλD = 0.25, W0 = 29,

and a relatively large driver of eED/mωpvth = 0.2. The particles’ energies are
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Figure 4.22: This figure shows the change in energy for a group of particles with

y0 = −4W = −100λD and initial velocities given by the axes of the plots moving

through a fixed amplitude wave with kλD = 0.3, Gaussian profile W = 25λD,

and eE/mωpvth = 0.4. The color represents the final energy minus the initial

energy for each particle. Plot (a) shows a group of particles with x0 = 0, while

(b) shows a group averaged over a wavelength.
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indicated by their color. The particles were chosen by tagging each particle in

a simulation at the outset. At some point during the simulation, we selected a

particular group of interest to track and ran the simulation over again, tracking

only those selected. The particles shown in the figure are a small selection of

those that at some point in their trajectory interact resonantly with the wave.

We determine which are resonant by selecting all the particles in a particular

region in space whose velocities are greater than the phase velocity at tωp = 25.

Since for this case there are initially none above vφ, only resonant particles are

selected. Each particle is colored by its energy and the wave is centered around

y = 512λD. As seen in the figure, these particles initially have energy significantly

less than 1
2
mv2

φ, that is, vx < vφ, but as they enter the region where the wave

is, their energy increases at the expense of the wave’s. By the time of the last

picture in the figure, most of the particles have swept through the wave and

gained energy. Therefore there is a flow of particles into the wave that exit the

wave with increased energy.

Figure 4.24 shows the same group of particles, but the axes are now vy vs. y,

with particle color representing vx. Particles with positive vy that start below the

wave move into the wave, gain energy, and then leave the wave at higher energy

than when they entered. However, the figure shows that most of the particles

suffered very little change in vy as they traversed the wave, but gained substantial

vx. That is, resonant particles that traverse the wave tend to gain momentum

in the x direction preferentially even for a relatively narrow wave. It should be

noted that these particles were specifically selected as those that are resonant at

some point in their trajectory; they do not represent a random sample. In fact,

most particles exchange little energy with the wave, and on average this exchange

does not modify the wave.
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Figure 4.23: Particle positions with color representing total energy for a self-

-consistent simulation with a wave having kλD = 0.25, W = 39.25λD, and

eED/mωPvth = 0.2.
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To see a more statistical picture of the transiting particles, we track a group

that starts at 0 < x/λD < 100 and 320 < y/λD < 340 and have initial velocities

vx/vth > 1 and vy/vth > 0.5. These are particles that start below the wave and

Figure 4.24: Plots of vy vs. y with color representing vx for the same group of

particles as shown in Fig. 4.23.
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move upward into it. None of these particles start inside the wave. Figure 4.25

shows the tracks for these particles. Most of the particles traverse the wave with

little change in energy. The majority of those that do exchange energy with the

wave continue through the wave in the positive y direction, while a small fraction

reflect from the wave. This figure shows that most of the energy transfer comes

from particles that start outside the wave and move through it without their vy

changing significantly.

We next identify the condition when a particle exchanges significant energy

with the wave. The vx vs. vy phase space of all the particles is shown in Fig. 4.26.

There are two obvious collections of particles that extend outward from the main

body with large vx. The upper bunch, those with positive vy, represents those

particles just discussed, those that start below the wave and traverse it with

positive vy. The lower bunch is the analogous group, those that start above the

wave and traverse it with negative vy. It is not obvious from the picture where

the particles in the bunches come from, but it is clear that once they interact

Figure 4.25: Particle tracks for a wave similar to that in Fig. 4.23, but for particles

with initial coordinates 0 < x/λD < 100, 320 < y/λD < 340, vx/vth > 1 and

vy/vth > 0.5
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with the wave, they leave it with much higher vx than they started with. For

reference, the run shown in this figure has vφ = 4.4vth and vT = 3.5vth.

Results from the same run are again shown in Fig. 4.27, but this time the axes

are vx vs. y. The particles are seen to enter the wave, gain energy, and leave with

increased vx. The upper edge of the usual 1D trapping width is vφ + vT ≈ 7.9vth.

The particles in the figure seem to be bunched at a vx that is slightly below

vφ + vT after they interact with the wave. This observation is consistent with the

observations made from Fig. 4.22 that the trapping width in 2D is less than the

1D formula.

To better understand the transfer of energy from the wave to the particles,

we have performed a number of test-particle simulations. These simulations are

not self-consistent. A field described by Eq. 4.43 is imposed on a 2D Maxwellian

distribution of particles, as described previously. Figure 4.28 shows the kinetic

energy of all the particles in such a simulation. Initially, those particles that start

in the vicinity of the wave gain energy and bounce in the field. After some time,
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Figure 4.26: Plots the distribution function at two times vs. vy and vx for the

run shown in Fig. 4.23.
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at tωp ≈ 60 in the figure, these particles have left the field region or have phase

mixed. Beyond that time, the wave loses energy to the particles at a constant

rate. At this time, the particles that are carrying energy away from the wave

mostly started far from the wave. The power transfer is given by the slope of the

line after the initial bounce phase. In a self-consistent run, this power transfer

would cause the wave to damp. Figure 4.29 shows the power transfer for several

different amplitude waves and for three different transverse widths. Apparently,

the width of the wave has only a small affect on the power transfer. The curve

marked ‘theory’ is described below.
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Figure 4.27: The phase space at two times of vx vs. y for the same run shown in

Fig. 4.23.
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4.4.2 Simple Model of Power Transfer

Based on observations from the simulation we next describe a simple model for

the power transfer from the wave to the particles. We start by examining the

equations of motion for the electrons in a fixed amplitude field, given by

dvx
dt

=
eE0

m
e−

y2

2W2 sin(kx), (4.46)

dvy
dt

=
eE0

mkW 2
ye−

y2

2W2 cos(kx). (4.47)

These equations have no analytic solution. However, the first integral gives the

expression for conservation of energy:

1

2
m(v2

x + v2
y)−

eE0

k
e−

y2

2W2 cos(kx) = U0, (4.48)
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Figure 4.28: Total kinetic energy of the particles in a test-particle simulation with

kλD = 0.25, eED/mωpvth = 0.5, and W = 100λD. After the particles that started

inside the wave phase mix, the wave transfers energy to traversing particles at a

constant rate. The power transfer discussed in the text and in Fig. 4.29 is the

slope of the line at late times.

164



where U0 equals the left side evaluated at t = 0. We are concerned with particles

that start far from the wave, interact, and then leave. These particles satisfy

v2
xf + v2

yf = v2
x0 + v2

y0, (4.49)

since the exponential term is small at the beginning and end of the interaction.

The subscript ‘f’ indicates final and ‘0’ represents initial. If we write vf = v0 +∆v

for each direction, then we have

∆v2
x + 2vx0∆vx + ∆v2

y + 2vy0∆vy = 0. (4.50)

Solving for ∆vx yields

∆vx = −vx0 ±
√
v2
x0 −∆v2

y − 2vy0∆vy (4.51)

Since ∆vx must be real, we obtain an inequality for ∆vy by requiring the terms

under the radical to be greater than zero. However, we could also have solved for
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Figure 4.29: Power transfer from wave to particles for a variety of test-particle

simulations at kλD = 0.25. The curve marked theory is described in the text.
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∆vy and obtained the same inequality for ∆vx. So, we have

−vi0 −
√
v2
y0 + v2

x0 ≤ ∆vi ≤ −vi0 +
√
v2
y0 + v2

x0 (4.52)

where i = x or y. We saw in the simulations above, however, that ∆vy tends to

be small, a fact that can also be seen by noticing that the Ey field is smaller than

Ex by 1/kW 2. If we neglect it, we see that

∆vx = −vx0 ± vx0, (4.53)

or vxf = ±vx0. This deceivingly simple result says that particles which cross

the wave exchange no transverse momentum and exchange either no longitudinal

momentum or a fixed quantity of it.

In 2D, there is no expression for the trapping width as is found in 1D. However,

we can assume that particles whose axial velocities are less than −vT (in the wave

frame) will be nonresonant. An examination of the simulations and numerical so-

lutions to the equations of motion seems to justify this assumption. To determine

vx0, we note that for a Maxwellian particle distribution there are exponentially

more particles with vx0 ≈ −vT than have vx0 ≈ +vT , where vT = 2
√
eE0/mk

is the trapping width. Therefore, we can treat all the resonant particles as if

their initial velocity were vx0 ≈ −vT , an approximation also made by Dawson

and Shanny [52] for example. These particles, after interacting with the wave,

exit in two groups at vxf ≈ ±vT depending on their initial condition. Since we

have ignored the details of the wave-particle interaction, we cannot determine

which will leave the wave with vxf ≈ −vT and which will leave with vxf ≈ vT .

However, if they leave at vxf ≈ −vT = vxi there is no momentum exchange. If

they leave at vxf ≈ vT = vxi, on the other hand, they take momentum and energy

from the wave. Therefore electrons that cross through the wave can only take

energy from it. The phase space shown in Fig. 4.26 shows only one bunch for
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each direction of vy because the bunch with ∆vx = 0, or equivalently vxi = −vT ,

is buried within the bulk of the distribution. In the following, we will assume

that half the particles that enter the wave leave with vxf ≈ −vT and half with

vxf ≈ vT , an unjustifiable assumption but one that seems to work fairly well.

To proceed with a calculation of the damping, we find the flux of particles

entering the wave within the trapping width in vx and then assume that their

energy changes according to the above assumption. Thus, we estimate the upward

flux of resonant particles into the wave as

Γ+ =
1

∆t

∫ λ/2

−λ/2
dx

∫ v+

v−

dvx

∫ yc

yc−vy∆t

dy

∫ ∞
0

dvyf, (4.54)

where v± = vφ ± vT cos(kx/2), f = n0

2πv2th
e
−
v2x+v2y

2v2
th , and yc is the center of the

wave. The vx integral is done over the separatrix defined by v±. In words, the

flux is composed of particles whose vx lies within the separatrix, whose initial y

position is below the wave and close enough to it that their vy will carry them

into the wave in a time ∆t, and whose vy is positive (upward). The total flux

into the wave includes the particles starting above it and moving downward, or

Γ = Γ− + Γ+. We now assume that all of these particles enter the wave with a

Maxwellian distribution and exit in two bunches, as described above. The energy

change is therefore the average change in energy in going from a Maxwellian to

the two bunches. We again ignore any change in vy, so all the energy taken from

the wave is done through vx. The initial energy density is

KE0 =
m

2

∫ λ/2

−λ/2

dx

λ

∫ v+

v−

dvx

∫ ∞
∞

dvyv
2
xf. (4.55)

If we assume that half the particles exit the wave at vφ + vT and half at vφ − vT ,

then the average energy change per particle is

∆KE

particle
=
m

4

[
(vφ − vT )2 + (vφ + vT )2]− KE0

nT
, (4.56)
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where nT is the number of trapped particles, given by

nT =

∫ λ/2

−λ/2

dx

λ

∫ v+

v−

dvx

∫ ∞
∞

dvyf. (4.57)

The rate of increase in the particle energy is then

dKE

dt
= Γ

∆KE

particle
. (4.58)

The right side of the above equation is the quantity labeled ‘Theory’ in Fig. 4.29.

Apparently, this simple model agrees reasonably well with the power transfer

from a fixed amplitude wave of various widths and amplitudes to the particles.

Unfortunately, comparing the above expression with the energy loss in the

simulations does not yield good agreement, despite the fact that the model ap-

pears to correctly calculate the power transfer from a fixed amplitude wave. The

reason is that the model does not consider where in the wave the energy was

taken. The test-particle simulations indicate that the damping is concentrated

along the sides of the wave, and this model does not take that into account,

though in principle it could be generalized. A more complete theory must con-

sider the damping as a function of the transverse position.

4.5 Summary

In this chapter, we explored the evolution of finite width plasma waves. The

goal was to understand the transverse localization of waves observed in SRS

simulation for kλD & 0.25. We began by considering numerical solutions to the

fluid wave equation that show that plasma waves diffract like light waves. We

then showed that the fluid frequency shift derived in Chapter 2 causes enhanced

diffraction that modifies the profile. A nonlinear Schrodinger equation was used

to help understand the behavior. The majority of the chapter considered shorter
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wavelength kinetic waves in which particle trapping effects become important.

At low amplitudes, we found that 2D waves Landau damp with little or no

multi-dimensional effects. The medium and high amplitude cases were found to

localize around their center due to local damping at the sides of the wave. Since

the center of these large amplitude waves reaches a quasi-steady state due to the

phase mixed trapped particles, the damping concentrated along the sides leads to

the localization observed. Test-particles simulations confirmed that the damping

is concentrated along the sides of the wave.

Some authors have attributed the localization to a self-focusing instability.

We provided several reasons why local damping is more persuasive than self-

focusing, including a comparison between the flow of energy and the dissipation

from the j · E in the simulations. To better understand the damping, we then

considered narrow waves and studied how the particles’ energies change as they

traverse the wave. A simple model was found to adequately model the power

transfer for a fixed amplitude wave, but ignored localized damping effects and

therefore did not accurately model the self-consistent simulations.
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CHAPTER 5

Summary and Future Work

The motivation for the work contained in this thesis, as described in Chapter 1,

is to further the basic understanding of how plasma waves evolve. Emphasis was

given to the parameters of relevance to the study of stimulated Raman scattering

for NIF-like conditions. Recent simulations of SRS indicate that the plasma waves

that form in the instability are driven to large amplitudes in which a variety of

nonlinearities occur. These waves also have finite extent in both the transverse

and longitudinal directions. It is important for the understanding of SRS to study

in detail the behavior of driven plasma waves and also the new effects due to those

waves having finite longitudinal and transverse extent. This thesis attempts to

contribute to that understanding with the hope of improving the control of SRS.

In addition to SRS, some of the work contained above is relevant to space

physics. Modern spacecraft encounter Langmuir wave packets, which are mea-

sured in detail, including the distribution function associated with the waves. As

seen in Chapter 3, these can trap and accelerate particles, and they further suf-

fer envelope modifications as they propagate. Thus, some of the work contained

above should be useful in studying space physics.

In Chapter 2, we first presented a derivation of the fluid frequency shift as-

sociated with fluid plasma waves. Published in 2007, this work found that the

inclusion of harmonics in the fluid wave behavior leads to a positive frequency

shift proportional to the amplitude of the wave squared. Much of the motivation
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for this chapter was to better understand how frequency shifts affect the satura-

tion of driven plasma waves. Prior to its publication, the kinetic frequency shift

due to trapped particles had been considered to the exclusion of fluid effects as

a potential mechanism that breaks the wave’s resonance with the driver. The

calculation of the fluid shift added to this debate a new shift that, in some cases,

acts to reduce the kinetic shift and could therefore potentially alter the wave’s

saturation.

The chapter goes on to consider driven plasma waves in which the driver re-

mains on continuously in order to study how well simple phenomenological models

can predict plasma wave behavior. First a general description of the behavior

of driven waves was given, for both fluid and kinetic waves. An important part

of the behavior is nonlinear resonance, in which the wave reaches a larger peak

amplitude when driven off the linear resonant frequency. This occurs because

as the wave amplitude increases, it suffers a frequency shift. If the shift makes

the wave’s frequency closer to the driver’s, the wave can then grow to larger am-

plitudes. A simple phenomenological model that includes the kinetic frequency

shift was presented and compared to a large number of simulations. We find

that in general using the time-asymptotic expression for the kinetic frequency

shift derived from an initial value problem is inadequate to model the wave’s

behavior. The kinetic shift observed in the simulations does not depend solely on

the local amplitude at a particular time. It in fact depends on previous events

that may have occurred at other locations. Although adding a kinetic term to

a phenomenological model is not strictly valid, we do so in an attempt to help

understand the implications of doing so in more complicated models of SRS, such

as LLNL’s pF3D [27]. The simulations indicate that such models can provide a

qualitative understanding of driven wave behavior and nonlinear resonance, but

they do not make quantitatively correct predictions.
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Chapter 3 considers the effects of finite-length wave packets. These are rele-

vant because SRS simulations show that wave packets grow, convect, and interact

in ways that significantly affect the reflectivity levels of the instability. The simu-

lations are performed by driving a finite-length wave packet for a short time and

then allowing it to propagate freely. As resonant particles stream into the packet

from behind, they locally damp the rear edge. Once they begin to trap, they no

longer exchange energy with the wave on average, allowing the middle and front

of the wave to remain essentially unchanged. A simple model based on this phys-

ical picture was presented that provides excellent quantitative agreement with

the simulations for the etching rate. The chapter concludes by presenting the

spectrum of detrapped particles, those that were trapped in the wave but have

since exited it. These so-called“hot electrons” represent a potential problem for

ICF as they stream forward and preheat the target, and this section attempted

to characterize the energy spectra generated by wave packets whose parameters

are similar to those observed in SRS simulations.

The final chapter studies plasma waves in multiple dimensions. These waves

have not been studied in much detail. The work is relevant today since recent

SRS simulations indicate that wave behavior specific to multiple dimensions may

significantly impact SRS saturation and reflectivity levels. The chapter begins by

considering the linear fluid wave equation for plasma waves that is valid for waves

with kλD � 1. Using theory and numerical solutions to the equation, plasma

waves were shown to diffract in direct analogy with light waves in vacuum. When

the fluid frequency shift derived in Chapter 2 is added to the wave equation as

a general nonlinearity and assumed to operate locally in multiple dimensions,

enhanced diffraction occurs. To better understand this behavior, a nonlinear

Schrodinger equation was derived that helps understand the wavefront bending

that occurs as the center of the wave accumulates a phase shift relative to the sides
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and that causes the enhanced expansion of the wave. Furthermore a second order

conservation of energy equation was derived from the linearized fluid equations.

This equation shows that the energy of a plasma wave was shown to move in the

direction of vg which is itself perpendicular to the wavefronts.

In addition to helping to understand fluid waves, this work provided a founda-

tion for understanding the more complex kinetic waves and context for the some

of the recent work done on SRS in multiple dimensions. Kinetic waves, those with

kλD > 0.2, were shown to have three qualitatively different behaviors depending

on their amplitudes. Very low amplitude waves, those with τBγL � 1, simply

Landau damp with no significant multi-dimensional effects. As the amplitude is

increased, particles begin to trap in the wave’s potential wells. When the bounce

time is relatively long, particles that were accelerated during the first half bounce

absorb a significant amount of the wave’s energy. By the time some of it rebounds

a bounce time later, many of these particles have left the wave, carrying some

of its energy with them. Further, incoming particles tend to preferentially damp

the wave along the sides. As a result, medium amplitude waves get narrower

and narrower after each successive bounce time. For large amplitude waves, the

particles phase mix fairly quickly and take relatively little of the wave’s energy.

Accordingly, the dominant effect for these waves is the local damping along the

sides of the wave. The bounce time depends on the amplitude so those parts of

the wave for which τBγL � 1 will locally damp.

The chapter found that as particles stream into the wave, they preferentially

damp it along its sides. Test-particle simulations confirm this by calculating the

instantaneous power transfer from the wave to the particles and showing that it

is largest to either side of the wave. A simple model helps to understand this

behavior. In a plane wave and in the center of a finite-width wave, for every
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particle that traps and carries energy away from a particular transverse position,

there is another that replaces it. Thus, the center of the wave reaches a quasi-

steady state in with the amplitude does not change in time. At the sides of the

wave, this energy balance is broken, leading to a gradual loss of wave energy to

the particles as they enter. It is this local damping that causes localization.

Transverse localization can also be cause by self-focusing. By inserting the

expression for the kinetic frequency shift into the nonlinear Schrodinger equation,

a self-focusing instability can be found. However, we give four reasons for why this

cannot explain the localization observed in the simulations. First, self-focusing

should increase the central amplitude of the wave geometrically as localization

progresses. The simulations indicate the no such increase occurs. Second, such

a model equation is simply not valid, since the kinetic shift was derived in one

dimension and is not local. Third, simulations were presented that show that

waves with different transverse profiles but similar peak amplitudes localize at

the same rate. Self-focusing implies that the different profiles would localize

differently. Fourth, we showed that the averaged j ·E in the simulations indicates

that j · E is dominated by dissipation at the sides of the wave and not by a flow

of energy. This is also inconsistent with the self-focusing interpretation.

The remainder of Chapter 4 studies the behavior of very narrow waves approx-

imately one wavelength wide in order to better understand the transfer of energy

from the wave to particles as they traverse it. A simple model was presented

that predicts the energy transfer in test-particle simulations reasonably well, but

it fails to model self-consistent simulations because it neglects the transverse

variation of the damping.

The simple models and simulations presented in this thesis are by no means

complete. The parameter space available for studying plasma waves is large, and
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there are a variety of nonlinear effects whose interplay results in very complex

behavior. The work contained here was intended to provide a deeper understand-

ing of plasma wave behavior that is relevant to studies of SRS by characterizing

the various behaviors and identifying under which circumstances they occur. In

some cases, significant progress was made, as in the chapter on wave packets,

but in others, like the chapter on plasma waves in two dimensions, significant

work remains to be done to fully understand the behavior. The following section

points out a few topics for further research that would help clarify and extend

the work already done and relate it to new problems in understanding SRS.

5.1 Future Work

Much remains to be understood in the behavior of large amplitude plasma waves,

whether driven, of finite size or both. The primary difficulty in both cases stems

from the complexity of the particle orbits in temporally and spatially varying

fields. Further difficulties arise from the size of the parameter space. For driven

waves, the amplitude of the driver, and thus the rate at which the amplitude

increases, compared with the time required for the frequency shift and nonlinear

resonance to occur presents one example of the parameter space. The simulations

in Chapter 2 all used a single, relatively small driver amplitude, but in SRS the

driver amplitude varies over a wide range. The parameter space is even larger in

two dimensions, in which the profile, width, and amplitude can be varied. Wave

behavior is also determined strongly by the wavelength.

Much work remains to be done to develop mesoscale models of SRS. The

simulations shown in Chapter 2 may help to generate such models, as they il-

luminate how a simple model fails. Chapter 3 indicates that finite-length waves

have finite lifetimes, even in the large-amplitude limit. Further research can help
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understand what consequences this will have for SRS. In Chapter 3 some prelim-

inary results of particle detrapping are presented, which also has implications for

SRS. Chapter 4 indicates the finite-width waves localize, but no model was found

that predicts the localization rate. Finding a model is the most obvious path for

future research in this area, but studying how localization affects SRS in more

detail would likely also prove fruitful. In addition, some of the work presented

here may be of interest in space physics. Exploring these connections with other

fields would also be of interest. Last, further advances in computational power

will allow for extensive three-dimensional studies as well as studies of how many

packets interact together in both homogeneous and inhomogeneous plasmas.
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APPENDIX A

Hermite-Gaussian Fit For f

As a plasma wave modifies the distribution function, we assume that at each

time the roots of the kinetic dielectric function give the instantaneous resonant

frequency. In this appendix, we find the approximate distribution function by

fitting it to some finite number of Hermite-Gaussian polynomials. Using the

relations of these polynomials, we insert the approximate f into the linear, kinetic

dielectric to find the instantaneous resonant frequency. This has also been done

by Strozzi et al. [48].

To begin, the kinetic dielectric function is given by

ε(ω, k) = 1−
ω2
p

k2

∫ ∞
−∞

dv
∂vf

v − ω/k
. (A.1)

We assume that f is composed of a sum of Hermite-Gaussian polynomials given

by

f =
N∑
n=0

cnHn(v)e−v
2

, (A.2)

where we have normalized v to v/
√

2vth. Inserting this into the dielectric yields

ε(ω, k) = 1−
ω2
p√

2k2

∫ ∞
−∞

dv
∂v

[∑N
n=0 cnHn(v)e−v

2
]

v − ζ
, (A.3)

where ζ = ω
kvth
√

2
. Using the fact that

Hn(v) = (−1)nev
2 ∂n

∂vn
e−v

2

, (A.4)
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we can write

ε(ω, k) = 1−
ω2
p√

2k2

N∑
n=0

cn

∫ ∞
−∞

dv
1

v − ζ
∂n

∂vn
e−v

2

. (A.5)

Integrating by parts twice yields

ε(ω, k) = 1−
ω2
p

k2

√
π

2

N∑
n=0

(−1)ncnZ
n+1(ζ), (A.6)

where

Zn(ζ) =
1√
π

∂n

∂vn

∫ ∞
−∞

dv
1

v − ζ
e−v

2

(A.7)

is the nth derivative of the usual plasma dispersion function. Numerical compu-

tation of the Zn becomes difficult as n increases as the values become very large.

Effective calculation then requires accurately calculating the difference between

large numbers, a task that is difficult on computers. We therefore work to rewrite

the sum over the derivatives in a form that is easier to calculate. To proceed, we

write

Z(ζ) = i
√
πe−ζ

2

(1 + Erf(iζ)) = i
√
πg(ζ)h(ζ), (A.8)

where we have defined g = e−ζ
2

and h = 1 + Erf(iζ) for convenience. Using the

fact that
dn

dζn
gh = fng +

n∑
m=1

(
n

m

)
fn−mgm, (A.9)

fn = (−1)ne−ζ
2

Hn(ζ), (A.10)

and

gn = (−1)n
2√
π
Hn(ζ)e−ζ

2

, (A.11)

we find that

Zn(ζ) = (−1)nHn(ζ)Z(ζ) + 2(−1)n−1
∑
m=1

nim+1

(
n

m

)
Hn−m(ζ)Hm−1(iζ). (A.12)

Inserting this expression into the dielectric above yields an equation that can

be evaluated readily on a computer. The plots generated in this thesis from
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this equation are made using the root finder in Mathematica. To achieve a

better fit to the data, we actually subtract a Maxwellian f0 from the data, and

then use the Hermite-Gaussian polynomials to fit δf . The above equations are

modified slightly to this effect. In deriving these results, we followed Percival and

Robinson [84]. However, the text of their paper is riddled with typographical

errors, so the derivation here is our own.
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APPENDIX B

Driver Current and Return Currents

The purpose of this appendix is to briefly explain the formation of a return cur-

rent formed by the driver in multidimensional simulations for those interested in

reproducing the simulations contained in Chapter 4. In the simulations discussed

in this thesis, there is often an ambiguity associated with the k = 0 Fourier mode

of the electric field since spectral field solvers are used. When solving Gauss’

Law, for example, we simply use φ = ρ/k2, but we set the component of the

potential at k = 0 to be zero. Ordinarily there is no problem with this, since

with periodic boundaries there can be no DC electric field. However, when an

external driver is applied to excite a plasma wave, it generates a DC current in

the plasma. To understand what happens, we consider first the electrostatic code

in one dimension that solves for the electric field using Gauss’ Law, as mentioned

above. In one dimension, where ∇× cB is strictly zero, Ampere’s Law gives

∂tE + j = 0, (B.1)

where we have used electrostatic units and have normalized charge to the electron

charge. The divergence of Ampere’s Law together with Gauss’ Law gives the

continuity equation. However, when the code sets the DC k = 0 component of

the electric field to zero, then no electric field builds up to prevent the current

from being generated. The current means the plasma is drifting, which can lead

to Doppler shifts in the waves. In 1D, this can be eliminated by letting ∂tE(k =
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0) + j(k = 0) = 0 such that an electric field builds up so that j(k = 0) = 0.

However, in multiple dimensions it is more difficult when the wave has a finite

transverse extent. In this case the return current can flow outside the wave rather

than through it.

We can be more explicit by solving the fluid equations to obtain the electric

field at second order. The procedure is exactly that shown in Chapter 2 when we

calculate the frequency shift, except that we do not use the homogeneous solution

to the first order wave equation. Instead, we assume there is a driving term, as

in the simulations, so the wave equation at first order is given by

∂2
tE1 − 3∂2

xE1 + E1 = ED sin(kx− ωt), (B.2)

where ED is the driver amplitude. Thus, the first order solution for E1 grows

secularly in time. Going to second order, we find that E2 has a DC driving term.

The equation for E2 is given by

∂2
tE2− 3∂2

xE2 +E2 =
1

4
ωtE2

D + (...) cos(2(kx−ωt)) + (...) sin(2(kx−ωt)), (B.3)

where we have not written out all of the many sinusoidal terms for clarity. At

second order, the current is given by j2 = n1v1 + v2. The first term, n1v1, is the

nonlinearity responsible for the DC term in the equation for E2. Normally, the

second order Ampere’s law would require that ∂tE2 + j2 = 0, and it turns out

that this means there will be no net current. That is, v2 itself has a term that

exactly cancels the DC (k = 0) term coming from n1v1, thus leaving 〈j2〉 = 0,

where the spatial average picks out the DC terms.

However, in the standard simulations, the DC term on the right side is ordi-

narily set to zero. As a result, Ampere’s Law no longer holds and a DC current

grows quadratically in time, given by

〈j2〉 =
1

8
kωE2

Dt
2. (B.4)
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This expression accurately predicts the current found in the simulations. In order

to make the simulations give the same results as the fluid equations predict, we

add Ampere’s Law for the DC mode, given by

∂t〈E〉 = −〈j〉, (B.5)

to the usual field solver in the electrostatic simulations. Otherwise, the current

drift causes a time-dependent doppler shift that complicates measurements of the

frequency shift.

As mentioned earlier, in multiple dimensions, the situation is more compli-

cated. In the electrostatic code, there is now only ambiguity when kx = ky = 0.

For the driver used in Chapter 4, there is no ambiguity since the ky modes are

not also zero at the same time. However, now the return current comes from the

sides of the wave rather than from the center, as in one dimension. Accordingly,

the averaged j2 derived above applies in multiple dimensions, with ED now being

a function of the transverse coordinate. The simulations again agree well with

the predicted current.

The fact that a current is being generated implies that we should expect

magnetic fields, which are ignored in the electrostatic simulations. We therefore

have also examined the driver current using the Darwin and electromagnetic field

solvers, where we find that the driver current varies dramatically depending on the

choice of the vth/c. This is because the magnitude of the magnetic field generated

by the current increases with increasing vth/c, and therefore the current induced

by the magnetic field also increases. While the current profile for vth/c→ 0 (the

electrostatic limit) is proportional to 〈ED(y)〉, as vth/c becomes large, the net

current profile becomes a constant function of the transverse coordinate. As vth/c

increases, the return current begins to flow more through the wave center than

from outside of it, effectively canceling the driver current. In SRS experiments
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and simulations, vth/c ≈ 0.1, which is sufficiently large that the total DC current

in the simulations is constant across the wave.

With the exception of Chapter 2, we are not interested in explicitly measuring

the frequency shift, so in that respect the driver-induced current is unimportant.

However, because the current can vary with the transverse position, it can bend

the wavefronts as the center moves more quickly than the sides of the wave. It is

for this reason that we use the Darwin and electromagnetic codes in Chapter 4

with a temperature of vth/c = 0.1 to study what are otherwise electrostatic waves,

since the average current in this case is constant and does not cause any wavefront

bending.
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