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Abstract of the Dissertation

Quasi-static Modeling of Beam-Plasma and

Laser-Plasma Interactions

by

Chengkun Huang

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2005

Professor Warren B. Mori, Chair

Plasma wave wakefields excited by either laser or particle beams can sustain

acceleration gradients three orders of magnitude larger than conventional RF

accelerators. They are promising for accelerating particles in short distances

for applications such as future high-energy colliders, and medical and industrial

accelerators. In a Plasma Wakefield Accelerator (PWFA) or a Laser Wakefield

Accelerator (LWFA), an intense particle or laser beam drives a plasma wave and

generates a strong wakefield which has a phase velocity equal to the velocity

of the driver. This wakefield can then be used to accelerate part of the drive

beam or a separate trailing beam. The interaction between the plasma and

the driver is highly nonlinear and therefore a particle description is required for

computer modeling. A highly efficient, fully parallelized, fully relativistic, three-

dimensional particle-in-cell code called QuickPIC for simulating plasma and laser

wakefield acceleration has been developed. The model is based on the quasi-static

or frozen field approximation, which assumes that the drive beam and/or the laser

does not evolve during the time it takes for it to pass a plasma particle. The

electromagnetic fields of the plasma wake and its associated index of refraction are

xviii



then used to evolve the driver using very large time steps. This algorithm reduces

the computational time by at least 2 to 3 orders of magnitude. Comparison

between the new algorithm and a fully explicit model (OSIRIS) are presented.

The agreement is excellent for problems of interest. Direction for future work

is also discussed. QuickPIC has been used to study the “afterburner” concept.

In this concept a fraction of an existing high-energy beam is separated out and

used as a trailing beam with the goal that the trailing beam acquires at least

twice the energy of the drive beam. Several critical issues such as the efficient

transfer of energy and the stable propagation of both the drive and trailing beams

in the plasma are investigated. We have simulated a 100 GeV and a 1 TeV

plasma “afterburner” stages for electron beams and the results are presented.

QuickPIC also has enabled us to develop a new theory for understanding the

hosing instability of the drive and trailing beams. The new theory is based on a

perturbation to the ion column boundary which includes relativistic effects, axial

motion and the full electromagnetic character of the wake. The new theory is

verified by comparing it to the simulation results. In the adiabatic long beam

limit it recovers the result of previous work from fluid models.

xix



CHAPTER 1

Introduction

1.1 Electron-positron collider

Particle accelerators are devices in which electric fields are used to accelerate

charged particles. They are widely used in basic scientific research, high energy

physics, industry, medical diagnosis and treatment, new material research and

many other areas. High energy accelerators are also important tools for study-

ing elementary particles and understanding the interactions between them. The

energy of particles in high energy linear accelerators has gone up 9 orders of mag-

nitudes to 50GeV since the first electro-static accelerator was invented, however

the basic principle of an accelerator has not changed.

Early accelerators used electrodes which are connected to a voltage multiplier

or a Van de Graaff Generator, particles are accelerated in the static electric field

between two opposite sign electrodes. As the velocity of the charged particle

increased, difficulties arose as how to keep particles in the accelerating fields.

The linear accelerator(Linac) introduced the concept of using an oscillating

electromagnetic wave which travels at the speed of the particles to keep charged

particles in phase with the accelerating gradient. A room-sized linac can accel-

erate electrons or positrons to energies on the order of 100MeV. To achieve even

higher energy one has to extend the linac to greater lengths which increases the

difficulty to build and operate such a machine; and hence drives up the cost.
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The Stanford Linear Collider is the longest linac which has been built to

date. At 2 miles long, SLC can generate 50 GeV electrons and positrons. At

the end of the linac, the accelerated beams are transported to the interaction

point and focused down to sub-micron sizes for head-to-head collisions. Very

high energy electron-positron collisions with center-of-mass energy of 100GeV

have been achieved in this collider, where Z bosons are produced and studied

from these collisions.

Another type of high energy particle accelerator is the synchrotron accelerator

in which magnetic fields are used to turn the particles so that they move in cir-

cular orbits. Charged particles are accelerated in each turn around the machine.

An example of this type of collider is the Large Electron Positron collider (LEP)

at CERN. It has a storage ring of 17 miles in circumference. For synchrotrons,

the maximum energy is limited by the loss to synchrotron radiation which is pro-

portional to (E/m)4/R, where E is the energy, m is the mass of the particle and

R is the radius of the orbit. Since the loss of energy in this type of accelerator is

inversely proportional to R, they are made as large as possible. LEP is capable of

producing 50GeV electrons/positrons for collisions. To extrapolate to a 500GeV

collider, one has to increase the size of LEP by 1000 times to keep the energy

loss ratio (the ratio between energy loss and initial energy) the same. This is a

prohibitive size for practical reasons, not to mention the cost.

Both SLC and LEP use RF microwaves as the driving source for particle accel-

eration. Such RF systems are the major energy-consuming part of a high energy

accelerator. A significant step toward a more affordable high energy accelerator

is to use superconducting technology to reduce the energy consumption of the RF

system during operation. TESLA (TeV-Energy Superconducting Linear Acceler-

ator) is a new linear accelerator design with superconducting niobium resonators

2



at DESY. This has also been an international collaboration. The TESLA design

includes a 33 km long superconducting linac from end to end which accelerates

particles to 250 GeV. The center-of-mass energy will be 500GeV for the collider.

A TESLA test facility with a 100-meter-long linac was constructed and it has

recently been extended to a length of 260 meters for use in a vacuum ultraviolet

(VUV) and soft X-ray range free electron laser(FEL). The design acceleration

gradient is 25MV/m in the superconducting cavities at a temperature of 2K. In

addition, 35MV/m gradient has been demonstrated in the test facility, thus the

proposed TESLA design could be upgradeable to around 800 GeV in the future.

However, the superconducting niobium cavity can only operate in electric

fields below 50 MV/m, which is lower than the limit for a conventional cavity.

This is determined by the properties of niobium, because at high electric fields,

the heat generated in a superconducting cavity would cause the material to lose

superconductivity. A superconducting collider thus requires a longer linac for

the same energy, which correspondingly requires larger engineering cost. On

the other hand, although conventional copper accelerating structure can sustain

fields of 70 MV/m, studies have shown that material deterioration in such high

fields is much faster than expected. For these reasons, neither conventional nor

superconducting technology offers a cost-effective way to build and operate the

next generation high energy collider.

1.2 The International Linear Collider(ILC)

The International Linear Collider(ILC) [1] is the current vision of the world-

wide accelerator community for the next generation linear collider. It has been

recognized by particle physicists that finding the Higgs boson and measuring its

properties accurately would be a significant scientific advance for understanding
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the interactions between elementary particles and for unraveling fundamental

questions such as dark matter, dark energy and the neutrino mass. Fig. 1.1

shows the time scales of the evolution of the universe and the energy associated

with the interactions on each time scale [2].

It has been estimated that if Higgs bosons exist, their characteristic rest-mass

will be between 117 GeV to 251 GeV [3]. Although this energy range is covered

by the CERN LHC which is a proton-proton collider set to operate in 2007. The

measurement of the spin and parity of the Higgs boson; the determination of the

masses and quantum numbers of the supersymmetric particles and the measure-

ment of the number of extra dimensions requires a electron-positron collider in

the TeV range [4]. A TeV electron-positron collider provides advantages such as

well-defined initial states of collision energy, quantum numbers and polarization,

a point particle like collision interaction and a precise understanding of cross-

section. It will be a useful complementary machine to the LHC for this purpose

and also has the ability for studying other unique problems.

As envisioned, the ILC will operate in the center-of-masses energy range from

0.5 to 1.0 TeV. Until recently, there were two competing designs for the ILC. The

first one, so called the “cold” design, was based on TELSA technology which uses

1.3 GHz (L-band) superconducting cavities; the second one, called the “warm”

design, was based on the 11.4 GHz (X-band) room temperature copper struc-

tures developed at SLAC and KEK. Both technologies are mature enough for

consideration in such a large scale application. However, it is a consensus of the

accelerator community that only one accelerator will be built even with inter-

national collaborations due to its huge cost and technological complexities. In

2004, the International Committee for Future Accelerators (ICFA) chose the su-

perconducting technology for the ILC after extensive investigation of issues such
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Figure 1.1: History of the universe. The abbreviations shown at the bottom of

figure are existing machines or machines under construction or planned for the

future. LHC: Large Hadron Collider at CERN; LC: International Linear Collider;

RHIC: Relativistic Heavy Ion Collider at BNL; HERA: a proton-electron collider

at DESY.
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as cost and schedule as well as technical and physics operation issues. Despite

the compelling physics reasons for the ILC and the consensus of the accelerator

physics community that the “cold” design should be used, it is still not clear that

the world wide governments are ready to move forward because of the enormous

price tag of ∼ ten billion dollars.

1.3 Plasma Wakefield Accelerator

In conventional or superconducting accelerators, the electric fields are sup-

ported by the metallic cavities. The breakdown limit of the surrounding material

of the accelerating structure is the major constraint for using stronger electric

fields in such devices. Other concerns such as field-emission of electrons from the

cavity wall and pulsed heating to the structure are also important limiting factors

for increasing the acceleration gradient. For example, the average acceleration

gradient at the Stanford Linear Accelerator Center(SLAC) is currently 20MeV/m.

The “warm” design of ILC could have achieved around 70MV/m while the “cold”

design has a upper limit of ∼ 50MV/m because the superconductivity of niobium

can not survive in such environment.

The concepts of plasma-based accelerators, first developed by Tajima and

Dawson in 1979 [5], have attracted tremendous interest. It is well-known that

a plasma is already ionized so there is no breakdown limit. This makes plasma

a suitable medium for the acceleration structure. In a uniform plasma, electric

fields can be excited by disturbing the plasma density. This is easily realized

by using a charged particle beam or a laser beam. A charged particle beam

expels or attracts plasma particles by the Coloumb force(usually the velocity of

a plasma particle is small thus one can neglect the magnetic force, however, the

full Lorentz force has to be taken into consideration in the non-linear regime
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discussed in the following chapters); a laser beam can also push plasma particles

away through the ponderomotive force. Therefore a plasma oscillation can be

set up in a plasma whenever a laser or particle beam passes through it. The

plasma oscillations and the associated field structures follow the drive beam and

this picture resembles the wakefield of a motor boat. The phase velocity of the

wave, vp, is the same as the velocity of the drive beam and the wavelength is

determined by the phase velocity and the plasma frequency, λp = 2πvp/ωp. It

is possible to use the longitudinal electric field generated in the plasma waves

to accelerate electron or positron beams just as using the fields in the metallic

waveguide of a linac. In the linear fluid regime, the amplitude of the plasma wave

as well as the longitudinal electric field increases with the strength of the drive

beam. For a particle beam case, this is determined by the peak beam density and

for a laser beam this is determined by the normalized ponderomotive potential.

When the driver strength is increased, eventually the trajectories of individual

plasma particles cross each other. The simple fluid analysis breaks down and

the longitudinal field reaches a limit. The so-called “wave-breaking” limit is the

the peak accelerating field a plasma can sustain in the fluid analysis, it is given

by Emax ∼
√
n0(cm−3)V/cm [5], where n0 is the plasma density. Therefore a

1014cm−3 plasma can support an electric field of ∼ 1GV/m, which is about two

orders of magnitude higher than those of conventional acceleration structures.

This estimate of the accelerating gradient shows that plasma has great potential

as an accelerating structure. Using a linac made of a plasma wakefield structure

could dramatically reduce the size of a TeV class electron-positron collider to

100-1000 meters.

As discussed, there are several schemes to excite a plasma wave in a wakefield

accelerator. Ref [5] proposed using a high power short laser pulse or the beat-

wave of two laser pulses with frequency difference ∆ω ≈ ωp, where ωp is the
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plasma frequency, to resonantly drive a plasma wakefield. The first method is

often referred to as Laser Wakefield Accelerator(LWFA) and the second one is

referred to as Plasma Beat-wave Accelerator(PBWA) [6]. A third method in

which a long laser pulse undergoes the forward Raman instability and decays

into a plasma wave and a forward propagating light wave [7, 8, 9, 10] is called

the Self-Modulated Laser Wakefield Accelerator (SMLWFA).

A fourth scheme which is commonly referred to as the Plasma Wakefield Ac-

celerator (PWFA) is the main topic of this dissertation. Since the first suggestion

to use a particle beam as driver in ref. [11] by Chen, this scheme has been under

extensive and systematic investigations and there has been tremendous progress.

To understand the research in this dissertation, it is necessary to review this

progress. In this section, we shall focus on the progress in theory. Advances in

experiment and simulation are covered in sections 1.6 and 1.7. This review is

not meant to be complete due to the rich physical phenomena involved, rather

it is meant as a means to introduce basic concepts and to motivate the research

described in the following chapters. Due to the different nature of electron beam-

plasma and positron beam-plasma interactions, we also confined the review to

the electron driver case. The positron beam-plasma interaction in the PWFA

scenario still requires significant advances in theory and experiments. In chapter

3, a computer model for PWFA and the implementation of it which is called

QuickPIC are described. Using QuickPIC, complex and fully non-linear positron

beam-plasma interaction can be successfully modeled.

The progress in PWFA research was first enabled by theoretical understanding

of the beam-plasma interaction in this scheme. In [11] the linear fluid theory for

PWFA was developed, and it was found that an accelerating gradient exceeding

1GeV/m is possible. The energy loss of the drive beam of a beam train and
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the energy gain of the trailing beam were analyzed using the linearized fluid

description of the plasma. Under this linear fluid framework, Katsouleas in ref.

[12] further developed the concept of an “ideal” door-step beam shape in 1D

geometry first proposed by Chen and discussed the wakefield of a “non-ideal”

shape beam by solving the Green’s function of the plasma fluid response to a

delta function charge. The result was applied to a Gaussian-shape beam with

sharp cut-off and it was found that the transformer ratio R, which is the ratio of

maximum energy gain of accelerated particles to the maximum energy loss of the

decelerated particles, is between
√
π/2kpσrise and

√
2πkpσrise where σrise is the

rise width of the beam, i.e., the density of the beam nb = nb0e
−z2/2σ2

rise for z > 0.

The transformer ratio is enhanced with this beam shape above the maximum

transformer ratio of 2 for a symmetric beam shape. The two-stream instability

and dephasing between the wake and the trapped particles were found not to be

issues for a highly-relativistic PWFA.

Beam-loading is the physics of efficiently transferring energy from a drive

beam to a trailing beam. This was first addressed in [13]. A linear superposition

approach based on the wakefields from the driver and trailing beam was used in

[13]. This is reasonable for small perturbations when the fluid theory remains

valid. It was realized that efficient beam-loading requires a tradeoff between

the efficiency or equivalently the total number of accelerated particles versus the

accelerating gradient. The energy spread of the accelerated particles was found

to be improved with a reverse triangle shape beam. Within the validity of the

linear fluid theory, transverse beam-loading issues were also studied in [13] for

cases where the trailing beam had a width much less than a collisionless skin

depth. Recently, a clarification of the expression for the linear wakefield of a

narrow beam with a Gaussian profile in both the longitudinal and transverse

directions was carried out by Lu et al. [14]. By narrow, we mean kpσr << 1
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and an aspect ratio σr/σz << 1, where σz and σr are the RMS dimensions in

longitudinal and transverse directions respectively. It turns out that this is the

situation of most interest for recent experiments. The maximum axial electric

field is found to be,

EzM ≈ (236MV/m)(
q

e
)(

N

4× 1010
)(

0.06cm

σz
)2 ln(

√
1016cm−3

n0

50µm

σr
) (1.1)

where q is the particle charge (+e for a positron or proton beam and -e for

electron beam), N is the total number of electrons in the beam, σr is in unit

of µm and σz is in unit of cm, n0 is the plasma density in cm−3. It should be

pointed out that in Eq. (1.1), n0 is not a free parameter, it is an “optimal”

density determined by kpσz ≈
√

2.

It is illustrative to understand the scaling of the wakefield for various beam

parameters. Suppose the charge, N , is kept constant, then one can manipulate

the spot-sizes of the beam by focusing or compression techniques. We shall

tune the plasma density to satisfy the “optimal” density condition kpσz ≈
√

2

so that the maximum wakefield in Eq. (1.1) is always achieved for given beam

parameters. Under such assumptions, Eq. (1.1) indicates the 1/σ2
z scaling of

the wakefield amplitude on the bunch length provided that the logarithmic term

does not change. This is only true when the aspect ratio σr/σz is kept fixed, so

the logarithmic term is also constant. However, due to the slowly varying nature

of a logarithmic function, the 1/σ2
z scaling is still a useful guide for choosing

experimental parameters. The 1/σ2
z scaling implies that if one could compress

the bunch length by a factor of 10, the maximum wakefield could increase by

a factor of 100. This estimate motivated some recent wakefield experiments for

shorter bunches [15, 16].
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1.4 Blow-out regime

The initial theoretical and experimental works of the PWFA concept mainly

focused on the linear regime in which the peak beam density nb is much smaller

than the plasma density n0. In this regime, the transformer ratio is less than or

equal to 2 for symmetric beams, the transverse wakefield is non-uniform and varies

with both the radius and the longitudinal position inside the beam. These have

negative effects on the quality of the accelerated beam. In 1987, Rosenzweig [17]

proposed the non-linear regime of PWFA operation as an alternative. He obtained

the analytical solutions of one dimensional relativistic fluid equations and showed

that large longitudinal electric fields approaching the wave-breaking limit can be

generated when the beam density larger than or equal to one-half of the plasma

density. This idea was later extended to the two or three dimensional case [18] by

the same author with even higher beam density. The major difference between

the 1D and 2D situations is such that plasma electrons’ transverse motion is now

dominant, while in the 1D case they can only move longitudinally. Rosenzweig

considered a case where nb/n0 = 4. The plasma is called “underdense” in this

example, the fields from the beam are no longer a small perturbation to the

plasma so linear fluid theory breaks down [14]. Plasma electrons are rapidly

expelled in the radial direction by the beam’s electric field, while the ions are

heavier and they do not move during the time it takes for the beam to pass by.

This process will continue until all the electrons are expelled from the beam and a

pure ion channel is formed, see Fig. 1.2. For this reason, this proposed extremely

non-linear regime is often referred to as the “blow-out” regime.

There are several advantages to the blow-out regime. Inside the channel, the

ion density is uniform, thus providing a linear focusing field for the beam parti-

cles. Therefore inside the channel, particles with the same energy will oscillate
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beam

Figure 1.2: A cartoon showing the beam and the blow-out trajectories on top of

the density of the plasma electron.
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transversely at the same frequency, thereby preserving emittance. Furthermore,

the Panofsky-Wenzel theorem [19] indicates another excellent consequence which

is that the longitudinal wakefield is constant in the transverse direction. There-

fore, there will be no energy spread for the accelerated particles at different radial

positions but at the same longitudinal position.

It was further pointed out in [14] that the linear expressions for the wakefields

give useful estimates even when the fluid analysis breaks down for the non-linear

regime nb/n0 > 1. It was found that in the narrow beam limit of the blow-out

regime, the non-linear beam-plasma interaction is characterized by the normal-

ized charge per unit length of the beam,

Λ ≡ nb
np
k2
pσ

2
r . (1.2)

For beams with moderate charge and spot-sizes, i.e., Λ < 1 and (Λ/10)1/2 <

kpσr < 1, fluid theory captures the essential dynamics of the blow-out by assum-

ing electrons’ trajectories do not cross even when nb/n0 approaches or is larger

than unity. If nb/n0 is further increased while keeping Λ fixed by reducing the

normalized spot-size kpσr, eventually electrons’ trajectories will cross and the

fluid theory breaks down. This can be seen clearly from Eq. (1.1) by the diver-

gence of the logarithmic term as kpσr approaches 0. Such an unphysical result

will not happen in reality because the trajectory crossing occurs at the head

of the beam which makes fluid analysis invalid. The wakefield indeed saturates

for sufficiently small spot-size. Ref. [14] provides an empirical estimate of the

saturation amplitude of the wakefield. In normalized unit, this is written as,

ε ≡ eE/mcωp = 1.3Λln[(10/Λ)1/2] (1.3)
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Lu et al. showed in Ref. [14] that this estimate agrees with particle-in-cell

simulations for Λ < 1. Thus, one can use Eq. (1.3) as a useful guide for the

mildly non-linear blow-out regime. For the extremely non-linear regime, Λ > 1,

the plasma electrons become highly relativistic which causes the wavelength to

increase and the full electromagnetic character of the wake fields are important.

Using Eq. (1.3) will overestimate the wakefield by a large amount. For such a

situation, a particle description is more adequate than the fluid description.

The extraordinary properties of the blow-out regime have attracted lots of

interest since it was proposed [20, 21, 22, 23, 24, 25, 26, 27]. Different issues

such as wakefield amplitudes and structures, energy gain and loss of the electron

beam, transverse dynamics in this regime were discussed in these papers. Other

applications of the blow-out regime, such as the plasma lens [28] and the ion

channel laser(ICL) [29] can also lead to novel plasma devices.

However, to understand the physics involved in the blow-out regime, one still

needs a complete and self-consistent theory. Lotov described in Ref. [30] a theory

based on particle’s motion for an “infinitely long” beam. An analysis using fluid

theory for the similar situation was done by Whittum [31]. An “infinitely long”

beam implies that the ion channel is adiabatically formed. The radial velocity

of the plasma electrons vr ≈ 0 and the plasma electrons’ motion at the blow-out

boundary is only in the longitudinal direction. Therefore only the beam’s and

plasma’s charge densities and their longitudinal currents are taken into account

in the field equations. Under this adiabatic blow-out assumption, it is found that

the most descriptive parameter is nb/n0. This can be easily understood because

the blow-out radius of plasma electrons for this case is simply determined by the

equilibrium between an electron beam and an electron return current sheath due

to their charge and parallel current densities. This equilibrium is local for each
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longitudinal position, i.e., the local blow-out radius is determined by the local

density ratio nb/n0 because the underlying differential equation [30] only involved

transverse derivatives.

1

γ2r

∂

∂r
r
∂

∂r
γvz −

vz
c2
∂vz
∂r

γ∂vz
∂r

− 4πe2

mc2
vz(ni − nb) =

4πe2

mc2
nb (1.4)

In Eq. (1.4), vz is the longitudinal velocity of the plasma electron, r is the

radial position, γ = 1/
√

1− v2
z/c

2 is the Lorentz factor, ni = n0 is the ion density,

m is electron mass, c is speed of light.

The results from Lotov’s theory and Whittum’s fluid analysis are essentially

the same because the adiabatic blow-out is basically an equilibrium problem

which can be modeled using fluid theory.

In a recent paper [32], Lotov removed the above restriction on adiabatic blow-

out and studied the dependence of blow-out properties on the beam length and

current. Three qualitatively different regimes of the plasma response were found

through particle-in-cell simulations. The first one is the regime described above.

The second one is the so-called “strong beam” regime in which the blow-out

radius is very large (> 4c/ωp), similar physics also appears in the “bubble” or

“broken-wave” regime [33, 34] of LWFA. The third one is the “short beam”

regime in which the beam resembles a point charge, this is also studied in Ref.

[35] theoretically for the energy loss of the beam and in Ref. [36] by simulations.

However, the theoretical analysis in [32] for the “strong beam” regime has flaws.

The approximations for the narrow electron sheath layer used in deriving the

blow-out radius is somewhat unjustified and the results are unphysical.

Recently, a fully nonlinear kinetic theory has been developed by Lu et al. [37].

In this theory, three interaction regions in the radial coordinate for the blow-out

regime are identified. They are:
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1) an ion channel region, where electrons are completely removed;

2) a narrow electron sheath region, where the electrons originally in the chan-

nel are densely packed into a thin layer, this region carries a large amount of

charge and current densities. Strong electric and magnetic fields are generated

by the sheath and the fields from the beam are strongly shielded;

3) a linear response region which extends from the sheath to a few plasma

skin depth outwards. The fields penetrate into this region due to the incomplete

shielding from the sheath. However the leakage fields are small and the plasma

responds linearly to these fields, the interaction in this region can mostly be

understood by linear fluid theory.

An illustration of these three regions is shown in Fig. 1.3 on top of the picture

of the plasma electron density from a particle simulation.

Lu et al. pointed out that the exact forms of the charge and current profiles

of the electron sheath and the linear response region have only a weak effect on

the wake. One can assume the profiles are flat in each region and use rectangular

shapes to model the rapid rise and fall, see Fig. 1.4.

Starting from the quasi-static Maxwell equations in the Lorentz gauge and

the equation of motion for a plasma electron(more detail about the quasi-static

approximation can be found in chapter 2), it is shown in [37] that the blow-out

trajectory rb of an electron satisfies a second order ordinary differential equation

of the form,

A
d2rb
dξ2

+Brb(
drb
dξ

)2 + Crb =
λ(ξ)

rb
(1.5)

where ξ = ct−z is the longitudinal position relative to the beam, A, B and C

are weakly dependent functions of ∆/rb, and the source term λ(ξ) =
∫ r>>σr

0
rnbdr
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Figure 1.3: The three regions of the plasma response to a ultra-relativistic elec-

tron beam in the blow-out regime. The yellow or green color in the color map

represents high density and red region is the ion channel where election density

is 0. The drive beam in white color is superimposed on this picture to show the

relative positions of the three regions. ξ = ct − z is the longitudinal position

relative to the beam.
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Figure 1.4: The profile of the source term (ρ − Jz/c) used by Lu et al.. In this

plot, the width of the electron sheath is denoted by ∆e; the width of the linear

response region is ∆L. The rectangular profile used in the theoretical model has

a width of ∆ = ∆e + ∆L and a height of n∆ =
r2b

(rb+∆)2−r2b
.
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is the charge per unit length of the beam. In certain limits, i.e., specific beam

parameters, one can approximate A, B and C with constants and solve for the

blow-out trajectory numerically.

For the adiabatic blow-out limit which is the case studied in [30] and [31],

rm ≡ MAX(rb) << σz,
drb
dξ
∼ 0 and d2rb

dξ2
∼ 0. Under these assumptions, one can

obtain,

rb(ξ) =
√

2(1− vz)λ(ξ) (1.6)

For the non-relativistic blow-out regime (rm << 1), Eq. (1.5) reduces to

d2rb
dξ2

+
1

2
rb =

c(ξ)

rb
(1.7)

For the ultra-relativistic blow-out regime (rm >> 1), Eq. (1.5) reduces to

rb
d2rb
dξ2

+ 2(
drb
dξ

)2 + 1 =
4c(ξ)

r2
b

(1.8)

Using Eq. (1.5) or Eqs. (1.6)- (1.7), it is therefore possible to calculate

the shape of the ion-channel and hence the electric fields inside the channel as

described in Appendix B. It is shown in Ref. [37] that the above equations give

very accurate results for both the blow-out trajectories and electric fields when

compared with the full PIC simulations except for the region at the tail of the

channel.

1.5 Afterburner concept

It has been demonstrated that an accelerating structure with gradients on

the order of GeV/m is possible based on the blow-out regime of PWFA. Several
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years ago a typical beam used in SLAC had N ≈ 2 × 1010 electrons with the

dimensions of σr ≈ 25µm and σz ≈ 630µm. In these experiments [38, 39] the

plasma density was in the range of 1014cm−3 and wakefields in the GeV/m range

were demonstrated.

To make an even more compact PWFA, it is necessary to increase the accel-

eration gradient. There are several ways to increase the acceleration gradient.

One could increase the beam charge or increase the plasma density or compress

the beam. The 1/σ2
z scaling of the wakefield amplitude indicates that it is very

efficient to make a larger wakefield by compressing the longitudinal dimension of

the beam.

Therefore if one could compress the SLAC beam by a factor of 10, the resulting

wakefield would be in the range of tens of GeV/m. It would then be possible to

double the energy of a 50GeV SLAC beam in just a few meters using the blow-out

regime of PWFA. This energy doubling concept is called a plasma “afterburner”

and a 200GeV center-of-mass collider based on such a design is illustrated in Fig.

1.5.

In Ref. [40], an afterburner is defined as “a specifically designed plasma that

accelerates as well as focuses each beam from a linear collider in a single, short,

final stage”. There are two major functionalities of an afterburner. They are

to accelerate electron/positron beams and to focus them down to the size for

collision. These are both accomplished in plasmas. Shown in Fig. 1.5 is the

proposed afterburner staged at the end of the SLAC linac. The 50GeV electron

and positron beams from the linac are sent into two aligned plasma sections, one

for electron acceleration, the other for positron acceleration. An electron beam

drives a non-linear plasma wave and the trailing beam which rides the wave is

boosted to 100GeV in about 10 meters, the drive beam loses energy to the plasma
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Figure 1.5: A conceptual 100GeV-on-100GeV electron-positron collider based on

a plasma afterburner.
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wave and almost stops in the plasma. Accelerating positron beams would require

a longer acceleration distance due to the smaller wakefield excited by the positron

beam [41]. At the exit of the plasma sections, two thin plasma lens will focus the

electron and positron beams and let them collide at the interaction point.

Beam loading and transverse beam dynamics are of importance for an after-

burner. So far, the beam loading problem in the blow-out regime has not been

studied thoroughly. To get an energy-doubled trailing beam with good quality,

such as small energy spread and emittance, it is necessary to probe the parame-

ter space for optimal beam shapes, beam charge ratio and spacing between the

drive beam and the trailing beam. The blow-out theory [37] would provide useful

guidance in selecting the right parameters in term of the initial wake. However,

the drive beam and the trailing beam both evolve during the propagation, so the

beam loading condition has to be modified by taking the beam evolution into ac-

count. Such a study will only be possible by using full scale computer simulations

for an afterburner. We will present such a study in chapter 6.

The transverse beam dynamics was initially studied by Buchanan in the blow-

out regime [42] and by Whittum [43] in the context of ion channel laser. The

ultra-relativistic electron beam propagating in the underdense plasma exhibits a

transverse instability due to the coupling of the beam centroid to plasma electrons

at the edge of the “ion-channel”. This is a collective instability with similar

character to the transverse two stream instability in the overdense plasma [22].

It is referred to as the “electron-hose” or hosing instability in [43]. The spatial

temporal growth of the hosing instability was studied analytically and numerically

for the adiabatic blow-out regime in [43, 44]. It was found to be a severe instability

with fast growth that could destroy the drive or trailing beam in an afterburner.

However, this analysis was carried out in the adiabatic blow-out regime or the
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so called “preformed channel” case. Dodd et al. [24] showed through simulation

that in the case where the ion channel is created by the beam itself, the hosing

growth rate is significantly reduced. Since understanding the hosing instability

will be critical for an afterburner, a self-consistent study of the hosing instability

will be discussed in chapter 5. The initial hosing growth rate of the beam in the

self-consistent fields is solved numerically and verified by fully non-linear PIC

simulations.

1.6 Experiments

The progress of PWFA in the past 20 years has been tremendous. This is

largely due to advances in technology on generating, manipulating, monitoring

and diagnosing high current particle beams. In 1988, Rosenzweig et al. performed

the first experiment to test the PWFA mechanism [45]. In this experiment, a

2.4mm long and 2.4mm wide drive beam with 2 ∼ 3nC charge was used to

excite a plasma wake. The plasma density was 1013cm−3 so nb/n0 ≈ 0.0086,

which indicated that the experiment was in the linear fluid regime. A trailing

electron beam of similar size but with low charge was used to sample the wakefield

of the drive beam. An adjustable delay of the trailing (witness) beam with respect

to the drive beam was used to map out the wakefield left behind the drive beam.

The observed maximum energy gain was around 50 KeV for a plasma length of

L = 20 ∼ 35cm. The energy gain and the measured wavelength are in good

agreement with the linear wakefield theory.

Soon after that, the first experiment of PWFA was repeated [46, 47] with

higher beam density and lower plasma density so small nonlinearities began to

show up, although for these experimental conditions most of the physics involved

was still governed by the linear fluid theory.
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Around the same period, experiments conducted by other groups worldwide

[48, 49, 50] had reported acceleration gradients on the order of 10 MeV/m. These

experiments further validated the linear fluid theory while some new techniques

such as electron bunch trains were implemented.

Recently, the PWFA experiments entered the blow-out regime where the beam

density is equal to or higher than the plasma density and kpσr < 1. Ref. [51]

reported a PWFA experiment with nb ∼ 2.5np at the ANL wakefield facility.

This experiment again used a drive and a witness beam, the average acceleration

gradients were increased to 25 MeV/m over 12 cm of 1013cm−3 plasma. The wave

breaking field is 60MeV/m for this density.

All the experiments mentioned above used low-energy electron beams, which

are subject to erosion and distortion during the non-linear beam-plasma interac-

tion. Beam erosion is an effect which is associated with the finite response time

of the plasma. The head of the beam expels plasma electrons but it takes time on

the order of 1/ωp for the electrons to fly out and an ion channel to form. Hence

the head of the beam will not experience the complete linear focusing force as

the rest of the beam would. It will expand as it would in vacuum. The head

erosion will make the wake generation less efficient and the whole beam will be

eroded eventually if the propagation distance is long enough. Beam distortion is

triggered by the instability such as hosing which results from the beam plasma

interaction.

Both beam erosion and distortion are more pronounced for a high-charge

low energy beam than a high energy beam. The magnetic force nearly cancels

the space charge force for a beam moving at the speed of light, so a high en-

ergy beam can keep its shape when there is no additional focusing force. In

recent years, important experiments in the blow-out regime were carried out us-
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ing ultra-relativistic beams from SLAC linac. These experiments were done by

a collaboration between SLAC, UCLA and USC, and they are called E157 [38]

(LBNL participated in E157 experiment), E162 [52], E164 and E164X [15, 16].

These experiments were conducted at the Final Focus Test Beam (FFTB)

facility located at the end of the 2-mile-long SLAC linac. The typical beam and

plasma parameters used in the E157 and E162 experiments are summarized in

Table 1.1,

Parameters Values

Number of electrons(positrons) N = 1.8 ∼ 2× 1010

Beam energy E = 28.5GeV

Longitudinal spot size σz = 650µm

Transverse spot size σr = 50− 100µm

Normalized emittance εx = 50mm ·mrad

εy = 5mm ·mrad

Peak beam density nb ∼ 1015cm−3

Plasma density n0 < 2× 1014cm−3

Plasma length L = 1.4m

Table 1.1: E157/E162 parameters

In the E157/E162 experiments, the beam density was about 1−10 times higher

than the plasma density and kpσr << 1, thus ensuring that the interaction is in

the blow-out regime. No trailing beam was used but the bunch length was on the

order of the plasma skin depth c/ωp, which is 1/2π of the non-relativistic wave-

length of the plasma wave. The length of the ion channel was also on the order

of c/ωp, so the tail of the beam sampled the accelerating part of the wakefield.

The energy of the beam was analyzed in a spectrometer but in regards to the
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electron energy gain the results were not definitive. However, there was evidence

that the core of the beam lost 170MeV and the tail gained about 350MeV.

The transverse dynamics of the ultra-relativistic beam was diagnosed by mon-

itoring the spot size and displacement of the beam at the exit and at a distance

downstream of the plasma. These diagnostics agreed well with the envelope model

of the beam in a linear focusing field [53], thus confirming that the core of the

beam was indeed immersed in the ion channel formed by the beam itself. A beam

electron will execute betatron motion under the linear focusing force and it will

radiate in the forward direction. Such phenomenon is well known as discussed in

[53, 54], and it was proposed as a plasma wiggler for free-electron lasers [29, 55].

The wiggler strength, which is defined as K = γbωβr0/c (γb is the Lorentz factor

of the beam, ωβ = ωp/
√

2γb is the betatron frequency and r0 is the initial radial

position of the electron) is much larger than 1, thus beam electrons radiate a

broadband high harmonic spectrum. The characteristic frequency of the radia-

tion is in the X-ray range and the angular divergence is extremely narrow for an

ultra-relativistic beam. The E157/E162 team successfully measured the betatron

radiation [56], which shows that a simple and inexpensive PWFA device could

be used as a high brightness X-ray light source.

In another series of experiments, positron beams were used to study the

plasma wake excitation in the underdense regime. Under the linear theory, there

is no qualitative difference in wakefield generation between a positron beam and

an electron beam. But when the beam density is approaching or larger than the

plasma density, positron wakefield generation is very different from electron wake-

field generation and the amplitude is much smaller than the electron wakefield

for the same nb/n0. In the E157/E162 experiments, plasma wakefields excited by

a positron beam was studied for the first time. It was observed that the core of
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the beam lost 68± 8MeV and the tail gained 79± 15MeV [52] which is in good

agreement with fully explicit PIC simulations.

Based on the experiences learned from the initial experiments and new com-

pression techniques for the beam at SLAC, a new set of experiments, E164/E164X,

were recently accomplished to test the 1/σ2
z scaling of the electron wakefields.

The Sub Picosecond Pulse Source (SPPS) at SLAC was used to generate elec-

tron beams as short as 20µm. The 1/σ2
z scaling would predict wakefields on the

order of 100GeV for this type of short beam. It was also realized that the trans-

verse self-electric fields of such short beams are large enough to field ionize the

gas [26], thus there is no need to use a pre-ionizing laser pulse to generate the

plasma. The self-ionization scheme would remove the complexity of synchroniz-

ing an ionizing laser pulse and the electron beam thereby providing a simpler

design for the future experiments. In [15], it was reported that the E164/E164X

experiments achieved energy loss and gain in the 2-4 GeV range in a 10 cm long

plasma. The accelerating gradient was about 20-40GeV/m which is a tremendous

improvement over the previous experiments in which the gradients were all less

than 1GeV/m. Therefore using short beams offers great potential for making a

meter-scale afterburner.

1.7 Computer simulations

Since the invention of the first digital computer half a century ago, com-

puter simulation has emerged as a third method to understand complex physical

phenomena which naturally complements theoretical analysis and experimental

discovery. Computer simulation is now an invaluable tool for both understanding

experimental results and for guiding the development of theory. In the past 20

years, there have been a tremendous amount of increase of the computing power
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available. Just as other areas in science, plasma-based accelerator research has

benefited from this increase of computing power and the advance of computer

modeling.

To model the full scale of a plasma-based accelerator, one needs a code (or

codes) that can model the evolution of the driver, the generation and evolution

of the wake, and the acceleration of the trailing bunch of particles. It turns

out, perhaps not surprisingly, that in most cases to do this properly one needs

particle based models. That is, one needs to follow the trajectories of particles

in their self-consistent fields. The reasons for this are that in many cases the

wake excitation process is highly nonlinear and results in nonlaminar particle

trajectories, and that any reasonable beam loading scenario will require very

tight spot sizes. These situations cannot be modeled using fluid descriptions.

The most straightforward particle based model is the fully explicit PIC al-

gorithm [57], which will be discussed in Chapter 2. In this algorithm, particles

are loaded onto a spatially gridded simulation domain. The charge and current

densities at the grid points can then be calculated by assigning the charge and

current of nearby particles to the grid. These charge and current densities are

used to advance the fields (also defined on the grid) via Maxwell’s equations. The

updated fields are used to advance the particles to new positions and velocities

via the relativistic equation of motion,

Although simple in concept, there are many subtle issues related to how these

equations are solved on a computer including the way in which charge and cur-

rent are deposited on the grid and the way in which the equations of motion are

integrated. Furthermore, because the algorithm makes the fewest physics approx-

imations it is also very CPU intensive. The Courant condition for the stability of

the explicit finite difference scheme requires that the time step must not exceed
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the smallest spatial resolution of the simulation. This is a severe requirement for

the total amount of computation.

An incredible amount of progress has been made during the past 20 years

using the full PIC algorithm. The simulation models have been extended from

1D to 3D, and from serial to parallel. A collection of full PIC codes have appeared

in the literature of plasma wakefield accelerator research. A few are summarized

in Table 1.2. They are XOOPIC [58], OSIRIS [59], VLPL (Virtual Laser Plasma

Lab) [60], VORPAL [61] and turboWAVE [62].

Code Capability Model Geometry S(erial)/

P(arallel)

XOOPIC Laser/Particle Fully EM, PIC 2D P

OSIRIS Laser/Particle Fully EM, PIC 2D(slab/cy-, P

lindrical), 3D

VLPL Laser/Particle Fully EM, PIC 2D, 3D P

VORPAL Laser/Particle Fully EM, PIC/ 2D, 3D P

fluid

turboWAVE Laser Fully EM + pon- 2D, 3D P

deromotive guiding

center, PIC

WAKE Laser Quasi-static, PIC 2D S

LCODE Particle Quasi-static, PIC 2D S

“Whittum” Particle Reduced quasi- 3D S

static, PIC

QuickPIC Laser/Particle Quasi-static, PIC 3D P

Table 1.2: Codes currently used in plasma-based accelerator research and their

features.
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The first four of these five full PIC codes are general purpose codes and can

model both laser and particle drivers. In principle they give the most exact

results. The other codes in table 1.2 are reduced description codes which make

approximations to the physical model and remove the fast time scales in the

system in order to improve the speed.

TurboWAVE [62] is a 2D or 3D parallel code that has the option to use

a fully explicit model for the plasma and a envelope model for the laser field

solver. This option is algorithmically close to a full PIC model but the spatial

and temporal resolutions are not required to resolve the laser oscillation. It is

sometimes referred to as the ponderomotive guiding center model.

Another collection of codes are WAKE, LCODE, “Whittum” which is a code

with no name and written by D.H. Whittum and the code QuickPIC which is

described in detail in this dissertation. In these codes, the quasi-static approxi-

mation or frozen field approximation is used to reduce the computational require-

ment. In a PWFA or LWFA, there is a disparate difference of the time scales of

the drive beam evolution and the plasma response. The quasi-static approxima-

tion takes advantage of this disparity of scales and separates the evolution of the

driver from the plasma wake generation. Essentially, this approximation makes

use of the fact that individual plasma electrons are passed over by the driver and

its wake in a short time compared with the time over which the shape of the

driver and wake evolve. Developing plasma based accelerator PIC codes using

the quasi-static approximation was done independently by Mora and Antonsen

[63] for laser drivers and by Whittum [64] for particle beam drivers. Mora and

Antonsen’s code, called WAKE, was confined to two dimensions and did not in-

clude the ability to model wake excitation from particle beams or to model beam

loading. Whittum’s code is three-dimensional but it does not include the evolu-
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tion of a laser field and it solves an approximated set of the quasi-static wake field

equations. These approximations are only appropriate for narrow driver beam

bunches with moderate amounts of charge. Very recently, Lotov [27] reported on

a 2D quasi-static code, LCODE, which is essentially identical to WAKE except

that it can model PWFA but not LWFA.

In this dissertation, we describe in detail a new code, called QuickPIC, which

makes the quasi-static approximation, but is fully three dimensional, is fully par-

allelized, puts no restrictions on the amount of beam charge, and can model

both LWFA, PWFA, and beam loading. We will also show that QuickPIC can

completely reproduce the results from a full PIC code such as OSIRIS with at

least a savings of 100 in CPU time for extremely nonlinear conditions. (Further-

more, the quasi-static approximation does not suffer from unphysical Cerenkov

radiation [57] that occurs in full PIC codes). The development of QuickPIC is

not a straightforward extension of the 2D algorithms of Mora and Antonsen and

of Lotov or the approximate 3D model of Whittum. Major complexities arise

when the full quasi-static equations are solved in 3D instead of 2D, and when

parallel routines are written with two types of distinct data structures, i.e., the

driver (3D) and plasma particles (2D). In chapter 2, the quasi-static algorithm

for efficiently modeling the plasma wakefield will be explained. The numerical

implementation and the structure of QuickPIC will be presented in Chapter 3

and a few applications will be described in detail in Chapter 5 and 6.
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CHAPTER 2

Particle-In-Cell simulation

In this chapter, we review the Particle-In-Cell (PIC) algorithm for plasma

simulation. A general introduction to PIC codes is discussed in section 2.1. Next

we describe the algorithm of a fully electromagnetic explicit PIC code and point

out the reasons that they are computationally challenging for PWFA simulations.

Then two simplified PIC models are introduced in section 2.3, they are the Darwin

model for the magneto-static system and the quasi-static model for PWFA. Full

quasi-static equations are also derived in this section which will be the foundation

of QuickPIC.

2.1 Particle-In-Cell simulation

When experiments are impractical or too expensive to carry out to test a

new idea in science and engineering, computer simulation can be an attractive

alternative. In computer simulation, various strategies with different levels of

approximations have been developed. When modeling plasma physics, there exist

three different levels of description for the plasma and there are also three levels of

approximation in implementing a “virtual” plasma environment using computer

simulations. Among them are Particle-In-Cell(PIC) [65] codes, Vlasov codes

and MHD fluid codes. In PIC codes, the plasma is described as a collection of

superparticles, where each simulation particle can be regarded as a collection of
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real electrons. While in Vlasov or MHD codes, the plasma is treated as phase

space or configuration space fluid elements. The PIC method captures the particle

nature of a plasma and makes the fewest approximations among these three

methods. However, PIC codes are also the most computational demanding among

the three methods.

The PIC method is composed of four computation steps. In the beginning of

a computation cycle, a collection of particles are initialized, each representing a

fixed or variable amount of real charged particles in the plasma. The charge and

current densities are accumulated on a computational mesh dividing the simu-

lation domain. The value of the electric and magnetic fields on the mesh are

solved according to the governing field equations in a discrete space representa-

tion by finite difference or discrete Fourier series. The particles’ positions and

velocities are then updated using the fields just calculated. The whole simulation

loops through these four steps(initialization, charge and current deposition, field

advance, particle push) as time advances.

The field equations can be derived from the electro-static, magneto-static or

electromagnetic model depending on their applicability to the problem of interest.

In a full PIC code, the electromagnetic model of the fields is used. It describes the

complete physics including radiation and finite speed of light effects. In section

2.2, the fully explicit PIC algorithm is introduced along with some examples. For

other problems where such effects are not of significance, the field equations can

be simplified. If the fields are slowly varying, the electro-static or magneto-static

(Darwin) model can be used in a reduced description code. A reduced description

is also suitable for the beam-plasma interaction using the quasi-static model,

which removes the weak dependence of the fields on the propagation distance

and separates the evolution of the drive beam particles and the plasma particles.
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The Darwin and quasi-static model have some characteristics in common so they

are discussed in detail in section 2.3.

2.2 Fully explicit PIC model

A fully explicit PIC code solves the dynamics of multiple species of charged

particles in their self-consistent electromagnetic fields and any prescribed exter-

nal field. The equation of motion for a charged particle is determined by the

relativistic version of Newton’s law,

dp

dt
= q(E +

v ×B

c
). (2.1)

where p is the momentum of the plasma particle, q is the charge of the particle

and E and B are the total electric and magnetic fields. The displacement of each

particle can then be determined by integrating the following equation in real

space:
dr

dt
= v. (2.2)

In a real plasma, the trajectories of these particles determines field quantities

like charge density ρ and current density J through the summation over all the

particles,

ρ(r) =
N∑
i=1

qδ(r− ri), (2.3)

J(r) =
N∑
i=1

qviδ(r− ri). (2.4)

whereN denote the total number of plasma particles and δ is Dirac delta function.

The charge and current densities are the source terms for the evolution of the

electric and magnetic field through the Maxwell equations,

∇ · E = 4πρ, (2.5)

34



∇ ·B = 0, (2.6)

∇× E = −1

c

∂B

∂t
, (2.7)

∇×B =
1

c

∂E

∂t
+

4π

c
J, (2.8)

After taking the divergence of Eq. (2.8) and then using Eq. (2.5), it is trivial

to find the following relation,

∂ρ

∂t
+∇ · J = 0, (2.9)

This is the continuity equation which simply states that the number of charged

particles is conserved in the system. For the simulation to be self-consistent, this

condition has to be satisfied.

Similarly, taking the divergence of Eq. (2.7) recovers Eq. (2.6) as long as the

the divergence of the magnetic field is zero initially.

Although the equations appear quite simple, the plasma dynamics can be

extremely complicated because each individual trajectory matters. Therefore,

for many problems a fluid description is not accurate.

In a PIC simulation each charged “superparticle” resides in the computer

memory and represents a large number of real plasma particles. Each charged

“superparticle” will have its velocity and position stored in the computer, as

well as its charge and mass. The “superparticles” have much larger charge and

greater mass than a real particle does. But since the equation of motion only

involves the charge-to-mass ratio(q/m) of a particle, the “superparticle” in the

simulation system will have the same trajectory as a real particle does as long as

the charge-to-mass ratio is the same, thus assuring the simulation system would

have a similar behavior as the real system.
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The simulation system is not meant to be a exact replica of the real system.

It approximates the reality in certain aspects. For example, the collisional effects

would be different from a real plasma. A simulation system will exhibit more

pronounced collision effects if “superparticles” are considered to be point charges

(delta functions) in space. One approach to solve this problem is to stretch out

the “superparticle” and assign a shape to the charge distribution. By doing this,

one can effectively reduce the possibility of large angle scattering that would

dominate because of the fewer number of particles in the simulation. However,

small angle scattering still occurs and the system will relax to thermal equilibrium

in a well understood manner. Furthermore, by using enough simulation particles,

one can reduce the collision frequency to be less than the important frequencies

in the problem under study.

Unlike the real world which has continuously varying physical quantities de-

fined on continuous space-time variables, the simulation variables for space and

time are discretized. This is done in order to solve the differential equations on

a digital computer. The volume in which the plasma resides is divided into cells.

Each cell is usually the same shape (usually a rectangular box), but the cell sizes

in different directions can be different. Similarly, the temporal variable is also

discretized, the advance in time then becomes the advance in timestep, usually

with a constant time interval ∆t.

On the other hand, the coordinates of a particle are still continuous, particles

can move freely between cells. They are shown as red dots in Fig. 2.1. The

electromagnetic fields are defined only at the grids, which are shown as blue

diamonds in the same plot. When pushing the particles, the electric and magnetic

fields at the grids near a particle’s exact position need to be interpolated to define

the fields at the location of the particle.
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Figure 2.1: Schematic of a uniform mesh(∆x = ∆y) used in 2D PIC simulation.

Particles are shown as red dots. Grid points are shown as blue diamonds.
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The charge and current densities are also defined on the grids by weighting

(depositing) the charge and current for each particle onto the grids. This is re-

ferred to as the charge or current deposition, and it is shown in Fig. 2.2. The

weighting coefficient for each grid point is determined by the shape factor of the

superparticle. For a linear shape factor, the weighting coefficient can be calcu-

lated using the relative area between the particle’s position and the neighboring

grid points as defined below.

w1 = b× d, (2.10)

w2 = a× d, (2.11)

w3 = b× c, (2.12)

w4 = a× c. (2.13)

Figure 2.2: Illustration of the area weighting coefficient used for the charge and

current deposition schemes in PIC codes.

The Maxwell equations need to be discretized to obtain a set of finite differ-

ential equations which correspond to Eq.(2.7) and Eq.(2.8),

38



B
n+ 1

2
x,i,j = Bn

x,i,j − c
∆t

2
×
En
z,i,j+1 − En
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∆y
, (2.14)

B
n+ 1

2
y,i,j = Bn

y,i,j + c
∆t

2
×
En
z,i+1,j − En
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, (2.15)

B
n+ 1

2
z,i,j = Bn

z,i,j − c
∆t

2
×
En
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y,i,j

∆x
+ c

∆t
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×
En
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, (2.16)

En+1
x,i,j = En

x,i,j − 4π∆t× J
n+ 1

2
x,i,j + c∆t×

B
n+ 1

2
z,i,j −B

n+ 1
2

z,i,j−1

∆y
, (2.17)

En+1
y,i,j = En

y,i,j − 4π∆t× J
n+ 1

2
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B
n+ 1

2
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n+ 1
2
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∆x
, (2.18)

En+1
z,i,j = En

z,i,j − 4π∆t× J
n+ 1

2
x,i,j + c∆t×

B
n+ 1

2
y,i,j −B

n+ 1
2

y,i−1,j

∆x
− c∆t×

B
n+ 1

2
x,i,j −B

n+ 1
2

x,i,j−1

∆y
.

(2.19)

Here, for simplicity we assume the simulation is done in a 2D-Cartesian co-

ordinate system. The superscripts n denotes the time index, and subscripts x,

y and z denote the field components and i and j denote grid indices in x and y

directions respectively.

The fact that the particle have continuous variables and the fields have discrete

variables leads to subtle numerical instabilities caused by the particle quantities

aliasing onto the grid. These can be suppressed by using smoothing or filtering

on the current and charge density once they have been deposited. In the code

QuickPIC which will be described in the next chapter, we use a Gaussian filter in

k space which can also be viewed as an additional Gaussian particle shape factor

for smoothing.
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Eq. (2.5) and Eq. (2.6) are typically dropped in the simulation because they

are guaranteed if Eq. (2.7) and Eq. (2.8) are solved for the simulation and the

following two conditions are met. The first condition is that initially the B field

should be divergence free and that ∇·E = 4πρ is satisfied; the second one is that

the charge and current deposition schemes used in the simulation must satisfy

the continuity equation or the longitudinal part of E needs to be corrected every

time step. Although the first condition is trivial to satisfy, the second one usually

requires careful consideration.

One should also notice that in the above implementation of the field solver,

the electric field is defined on integer time indices and the magnetic field is defined

on half integer time indices. Thus the discretized Maxwell equations are properly

time-centered and this is consistent with the discretization of the particle push.

Time-centering the field solver and particle pusher is desirable because it produces

less error and also eliminates the need for an iteration loop.

Once E and B are updated using Eq.(2.14) - Eq. (2.19), the particle push

is repeated and the new values of E and B are used to update the particles’

positions and velocities as described before. This entire process can be repeated

until the specified time is reached. The schematic flow chart in Fig. 2.3 illustrates

the calculation cycle in a typical PIC code.

In a PIC simulation, however, the grid size sets a lower limit to the spatial

resolution of particle-particle and field-particle interactions. It is obvious that

smaller grid sizes will improve accuracy in the calculation, but the total number

of grids is limited by the available memory. For many plasma simulations, a

requirement that the result be meaningful is that the grid size should resolve the

Debye length. This is because Debye length is the scale length of variation in

the potential produced by a “dressed” charge in the plasma. The Debye length
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Figure 2.3: Schematic of a calculation cycle in PIC codes.
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is defined as
√
kT/4πe2n0, where k is Boltzman’s constant, T is the electron

temperature, e is the electron charge and n0 is the plasma density. The collective

behavior of the plasma particles are preserved when the grid size is sufficiently

small as compared to the Debye length (In some cases, such as that of a PWFA,

a cold plasma is assumed, then it is the collisionless skin depth c/ωp that needs

to be resolved).

The time interval ∆t for successive updates is also subject to some require-

ments. ∆t should resolve the characteristic time scale of plasma oscillation. Fur-

thermore, in an electromagnetic algorithm, ∆t must be smaller than ∆x/c (in

1D) to avoid a numerical instability. This is called the Courant condition. This

can also be understood by the fact that ∆x determines the shortest wavelength.

Using the dispersion relation for light, one can then find the highest frequency

and ∆t much be chosen to resolve it.

From a statistics point of view, the field on the grid will fluctuate due to the

randomness of particle motion. To reduce the effect of this fluctuation or “noise”,

a sufficient amount of particles are needed in the simulation.

The requirements for grid size ∆x, time interval ∆t and the number of parti-

cles are the major limitations for the PIC code. Furthermore, knowing what they

must be for properly modeling a problem comes from experience. An incredible

amount of progress has been made during the past 20 years using the full PIC

algorithm [66], however, because the algorithm makes few physics approxima-

tions it is also very CPU intensive. Full scale 3D simulations for PWFA using

codes based on this type of algorithm, such as OSIRIS, often resort to massively

parallel computing techniques. Using a full PIC code it takes ∼ 1013 particle

pushes to model a single GeV PWFA stage (and ∼ 1014 to model a GeV LWFA

stage). On today’s fastest computers, such a simulation takes ∼ 10, 000 (100, 000
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for LWFA) CPU hours; thus it is very expensive to run. Clearly, it is not possible

to model 50 GeV or greater stages using the full PIC method. In the following

section, an alternative approach is discussed and the quasi-static PIC algorithm

is developed.

2.3 Reduced description PIC models

The fully electromagnetic PIC method introduced in section 2.2 is very ma-

ture. In principle the result from a full PIC simulation contains all the physics

as long as the wavelength and frequency of the plasma behavior are properly re-

solved. However many real plasma behaviors span an enormous range of time and

spatial scales. It is sometimes not possible or not necessary to use full dynamics

models. Reduced description PIC codes take advantage of the vastly different

time or spatial scales and make approximations to the field equations in order to

relax the requirements of temporal or spatial resolution that arises in a full PIC

code due to numerical instabilities. The most widely used reduced PIC code is

the electro-static PIC code in which Poisson’s equation is used to solve for the

electric field, and the magnetic field is dropped. The physical meaning of the

electro-static model is obvious and the implementation is simple, however, the

Darwin model and the quasi-static model discussed next require careful investi-

gation.

2.3.1 Darwin model

The purely electromagnetic modes are the most difficult to resolve in a full

PIC model. In particular, electromagnetic modes with phase velocity vφ substan-

tially less than the speed of light can exist in a plasma. However in a full PIC
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code, if the cell size is chosen to resolve the relevant wavelengths, the time step

has to be chosen to resolve modes with phase velocities at c. There are many

techniques that eliminate electromagnetic modes when they are not important

in the problem. It was known by Darwin [67] that one proper way to retain the

most physics in the low but non-zero phase velocity limit is to use a magneto-

inductive version of the Maxwell equations. The approach of Darwin is to make

the next lowest order terms beyond the electrostatic model. The electrostatic

model is the v/c → 0 limit of Maxwell equations, while the Darwin model is an

expression of the fluid-particle Lagrangian to O((v/c)2). Therefore, it can model

electromagnetic modes with 0 < vφ/c < 1.

From the Helmholtz’s theorem, a vector can always be decomposed into two

parts, one is the solenoidal part which can be written as the curl of a vector

potential and the other one is the irrotational part which can be obtained from

the gradient of a scalar potential. In the Darwin model [68, 69, 70, 71], the

electric field is decomposed into Esol and Eirr, which satisfy,

∇ · Esol = 0, (2.20)

∇× Eirr = 0. (2.21)

It is convenient to express the solenoidal component as,

Esol = E +∇φ = −1

c

∂A

∂t
, (2.22)

where the scalar potential φ is determined from,

∇2φ = −4πρ, (2.23)

as results from the use of the radiation or Coulomb gauge.
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The irrotational part of E is calculated from,

Eirr = E− Esol = −∇φ. (2.24)

The Darwin limit of the Maxwell equation arises when the solenoidal part of

the displacement current is small and dropped from the Ampere’s law, i.e., Eq.

(2.8), the new equation has a similar form,

∇×B =
1

c

∂Eirr

∂t
+

4π

c
J. (2.25)

Taking the curl of Eq. (2.25), and using Eq. (2.6), the equation for the

magnetic field can be written as,

−∇2B =
4π

c
(∇× J). (2.26)

Eqs. (2.23), (2.24) and (2.26) are solved in a Darwin code for the fields. In

addition, Esol is determined from the Faraday’s law,

∇× Esol = −1

c

∂B

∂t
. (2.27)

This equation needs to be evaluated with proper boudary condition to ensure

Eq. (2.20).

The right hand side of Eq. (2.25) can be defined as,

−1

c

∂∇φ
∂t

+
4π

c
J ≡ Jsol, (2.28)

where the irrotational parts of the displacement current and of the real cur-

rent must cancel(within the accuracy of a constant), so that only the solenoidal
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component Jsol is left. Eq. (2.28) and hence the Darwin model is completely

consistent with the continuity equation,

∂ρ

∂t
+∇ · J = 0, (2.29)

because −∇2ψ = 4πρ from Eq. (2.23).

Eq. (2.29) is the same equation as Eq. (2.9), hence normal charge and current

deposition schemes in the PIC code can be used to guarantee the self-consistency

of the simulation. It is an advantage of the Darwin code that much of a full

PIC code can be reused while the requirement to resolve the highest frequency

component of the fields is removed. It does however require a predictor-corrector

loop because the particle and field equations are no longer time centered. As we

will see in the later section, the reduced description model sometimes requires

that special charge and current deposition schemes be used. The Darwin system

is the lowest order correction to an electrostatic model because it comes from

an expansion in powers of v/c of the Hamiltonian that includes the interaction

between particle and fields. The Darwin model has been around for many years.

A model with similar looking equations but completely different physics is the

quasi-static model in the next section.

2.3.2 Quasi-static PIC model

The physics of plasma based acceleration allows one to make approximations

that can, in principle, reduce the computational needs significantly and that are

extremely accurate. In a plasma accelerator stage a short drive beam (either a

laser pulse or particle beam) propagates through long regions of plasma and a

trailing beam of electrons or positrons gets accelerated by the resulting wake. The

46



driver and trailing beam evolve on a very different length scale than the plasma

wake wavelength or the driver length. In a fully explicit code, one needs to choose

a cell size that resolves the shortest length scale (either the laser wavelength or the

plasma wavelength) and the time step is constrained by the Courant condition.

For typical plasma accelerator parameters, the drive beam might not evolve for

over 1000’s of time steps. For example, for a PWFA the drive beam evolves on the

scale of the betatron wavelength which is (2γ)1/2 times longer than the plasma

wavelength. For a 50 GeV beam this is a factor of ∼ 500 times longer. For a

LWFA the driver evolves on the Rayleigh length which is also orders of magnitude

longer than the wavelength of the wake (for LWFA the shortest spatial scale is

the laser wavelength so the potential CPU savings of reduced models over the

fully explicit method can be considerably higher).

In this section we describe the physical model that forms the basis of Quick-

PIC and the quasi-static approximation that QuickPIC employs. We begin by

describing the model equations without a laser driver, then we will add the laser

driver to the model in the later chapter. Without any other approximations, a

full set of quasi-static equations for PWFA simulations can be derived from the

Maxwell’s equations. In the mildly non-linear case, one could also exploit more

approximations for both the beam and plasma dynamics, resulting in a simpli-

fied version of the quasi-static equations. The full quasi-static equations will

be reviewed next and then the simplified version will be introduced later. The

structure of the code will be described in the next chapter.

We start from the Maxwell’s equations in the Lorentz gauge,

(
1

c2
∂2

∂t2
−∇2)φ = 4πρ, (2.30)

(
1

c2
∂2

∂t2
−∇2)A =

4π

c
J, (2.31)
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where the Lorentz gauge is defined as,

∇ ·A = −1

c

∂φ

∂t
. (2.32)

An individual particle’s trajectory is governed by Eq.(2.1), and E and B can

be obtained from the following equations,

E = −∇φ− 1

c

∂A

∂t
. (2.33)

B = ∇×A. (2.34)

The coordinate system is chosen to be three dimensional Cartesian, i.e.,

(x,y,z), with z being the direction in which the beam is propagating. We use

the lab frame as our reference frame. The scalar potential φ and vector potential

A are functions of spatial and temporal variables (x, y, z, t). Since we are only

interested in the region where there is beam-plasma interaction, a moving obser-

vation window can then be applied to the problem. This window will move at

the speed of light c which is slightly faster than the drive beam, and snapshots

of this window are taken as the beam is propagating in the plasma. If there is no

beam-plasma interaction, the beam will appear stationary in the snapshot taken

through our observation window. We define this mathematical transformation

from z, t to two new variables s, ξ,

s = z, (2.35)

ξ = ct− z. (2.36)

The center of the moving window can be described by sw = ct, ξw = 0. The

variable s can be regarded as the propagation distance into the plasma, and ξ

as the position with respect to the moving window’s center(in our notation, the

beam is moving in the +z direction, which means the value of ξ will be smaller

at the head of the beam than that at the tail and this is shown in Fig. 2.4).
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Figure 2.4: Schematic of the coordinate system used in QuickPIC.
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With the definitions of these two new variables, the derivatives of field quan-

tities with respect to z and t can be written in terms of derivatives with respect

to s and ξ,

∂

∂z
=

∂

∂s
− ∂

∂ξ
, (2.37)

1

c

∂

∂t
=

∂

∂ξ
. (2.38)

The coordinates s and ξ now represent two disparate scales of the particles’

motion and their associated fields. This leads to the quasi-static approximation

which will be discussed in detail soon. Before the quasi-static approximation is

introduced, we shall discuss the motion of the particles first.

The particles in the drive beam are moving at a speed very close to c, e.g., for

a 30 GeV beam, 1− v/c ≈ 1.4× 10−10. Due to their higher inertia (mass), they

respond much more slowly to the plasma collective fields than do the plasma

electrons and ions. The higher the beam energy, the slower its evolution will

be, in other words, the “stiffer” the beam appears to be. In addition, the space

charge expansion and the magnetic pinching from the self-fields of the beam

nearly cancel out to order 1/γ2 because of the relativistic velocity in z, although

these self-fields are both large respectively. Therefore, only the plasma fields can

lead to the transverse motion of the beam particles. Furthermore, due to the slow

evolution of the beam shape, the plasma electrons and the field structure around

the beam will be “frozen” during the typical time scale of the beam evolution. In

the moving window variables, this time scale is represented by s which is a spatial

variable suitable for integrating the equation of motion of a beam particle. This

is illustrated in Fig. 2.5.
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Figure 2.5: The drive beam and the plasma response. Electromagnetic fields are

frozen between successive beam updates.
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To understand how the plasma evolves, consider the cartoon in Fig. 2.6.

Following the beam, an observer sees plasma electrons moving to the left. The

relative distance of a plasma electron to the head of the beam can be measured by

the variable ξ. To properly evolve a plasma electron’s trajectory, the longitudinal

distance ∆ξ a plasma electron moves through must be small compared to both

the bunch length and the resulting plasma wavelength. The plasma electrons

sweep through the beam and generate the fields which act on the beam. For

example, a hollow ion channel is formed if the drive beam is an electron beam

because the plasma electrons are expelled outward by the beam space charge and

the ions which are more massive do not respond in the time it takes the electron

to move past the beam.

Figure 2.6: Physical picture of how the plasma evolves. It also shows the relation

between ∆s and ∆ξ.
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As stated above, the variables s and ξ can be used to measure the slow time

scale of the beam evolution and the fast time scale of the plasma oscillation. For

a better understanding of these two disparate time scales, a general discussion of

a particle’s trajectory as a function of time will be helpful. A general trajectory

for a particle’s position z(t) is plotted in Fig. 2.7(a). Also plotted in Fig. 2.7(b)

is the inverse function t(z). Note that function z(t) has a single well-defined value

for any t, but the inverse function t(z) does not necessarily have this property. A

particle can come back to its old position at any time, thus for a known position z,

one may find multiple values of t from Fig. 2.7(b). This tells us that the temporal

variable has a unique feature that spatial variables do not have. However, other

than this distinct feature, there is no difference between a temporal variable and

a spatial variable regarding the particle’s motion.

z

t z

t

(a) (b)

Figure 2.7: Particle’s trajectory in 1D can be plotted as z(t) or t(z).

This leads to a simple but unusual way to integrate particle’s trajectory using

the inverse of the equation of motion,

dt

dz
=

1

v
. (2.39)
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This is equivalent to viewing z as the time-like variable and t as space-like

variable. If a particle’s motion varies rapidly in one coordinate compared to the

other then it may be advantageous to view the variable with the slow dependence

to be time-like.

In the beam-plasma interaction problem we would like to investigate, there

are two distinct groups of particles of interest, i.e., beam particles which almost

move at the speed of light, and plasma particles whose longitudinal and trans-

verse motions are local in the lab frame unless they are trapped in the wakefield

and move with the driver. Using the moving window coordinates (s,ξ), their

trajectories are completely different. These are shown in Fig. 2.8.

ξ

s

Plasma particles

x

Beam particles

Trapped plasma 
particles

Figure 2.8: Trajectories of plasma and beam particles in (s,ξ,x) space.

In the s - ξ plane shown in Fig. 2.8, beam particles move almost vertically

due to their large longitudinal velocities which are close to c. For most of the
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plasma particles, the longitudinal momenta they obtain are finite during the

short time for the beam to pass by, therefore their total displacements in s are

very small. They move predominantly to the right in Fig. 2.8. However, some

plasma particles’ longitudinal velocities may be larger enough to keep up with

the beam, their trajectories are also shown in Fig. 2.8. For most of parameters of

interest in PWFA, trapped particles are uncommon, so we do not need to consider

them here. Then it is natural that one would treat plasma particles and beam

particles differently due to their distinct trajectories. In fact, one can integrate

the equation of motion in different forms for these two kinds of particles. It means

that the choice of integration variable should reflect the characteristics of their

motion.

For a beam particle, we use the variable sw(t) = ct to advance its trajectory

(xb(sw(t)), yb(sw(t)), ξb(sw(t))) since it is a slow-varying function of sw(t). The

equations used are,

dPb

dsw
=
qb
c

(E +
Vb

c
×B), (2.40)

dxb⊥
dsw

=
Pb⊥

γbmec
, (2.41)

dξb
dsw

= 1− Pbz
γbmec

, (2.42)

where E = E(x(s), y(s), ξ(s); s) and B = B(x(s), y(s), ξ(s); s).

Under the linear focusing force from the ion channel, the beam particle exe-

cutes betatron motion [28]. Therefore the corresponding “timestep” ∆sw should

resolves the betatron wavelength λβ.

For a plasma particle, the trajectory (xp(ξp(t)), yp(ξp(t)), sp(ξp(t))) can be

integrated using ξp(t) as the time variable for the equations of motion,
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dPp

dξp
=

qp
c− Vpz

(E +
Vp

c
×B), (2.43)

dxp⊥
dξp

=
Pp⊥

γpme(c− Vpz)
, (2.44)

dsp
dξp

=
Ppz

γpme(c− Vpz)
, (2.45)

where E = E(x(ξ), y(ξ), s(ξ); ξ), B = B(x(ξ), y(ξ), s(ξ); ξ) and the relation-

ship dξp = (1− Vpz/c)cdt was used.

Since most plasma particles do not move far away from their original positions

sp0 when the beam pass through, Eq. (2.45) is not integrated. This is reasonable

as long as the fields, E and B, depend weakly on sp which is precisely the quasi-

static condition that will be discussed soon, i.e., ∂E/∂s ≈ 0 and ∂B/∂s ≈ 0.

However, the moving window is moving at the speed of light, thus the following

relation

dsw
dξp

=
1

1− Vpz/c
, (2.46)

needs to be taken into account since there are particle leaving and entering the

window. Eq. (2.46) indicates that for a plasma particle with a larger parallel

velocity, the distance the moving window travels or the time it takes a particle

to move a distance ∆ξ is longer. It is necessary to consider this factor when

weighting the particle’s charge and current in the moving window.

As the driver sweeps over the plasma, plasma particles continuously follow the

trajectories determined by Eqs. (2.43) and (2.44). Thus, to calculate the plasma

contribution to the local charge and current density on a grid in (x, y, ξ) space

depending on Vpz it is necessary to account for the different amount of time a

particle will spend in region ∆ξ. The plasma particle charge and current density
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are therefore accumulated on a grid by using the following deposition schemes

for charge density and current,

ρp =
1

V olume

∑
i

qpi
1− Vpzi/c

, (2.47)

and

Jp =
1

V olume

∑
i

qpiVpi

1− Vpzi/c
. (2.48)

Here the sum is over particles contributing to the charge and current densities

at a given grid point. This sum must include weighting factors to distribute the

particle charge to neighboring grid points.

Since the beam evolves on the time scale of betatron period, its charge and cur-

rent density can be written as ρb(x, y, ξ, s) and Jb(x, y, ξ, s) which depend weakly

on the variable s. Therefore, the plasma response ρp(x, y, ξ, s) and Jp(x, y, ξ, s)

also depend weakly on s, unless the plasma particle interacts with the beam

continuously, e.g., when trapping happens and the plasma particle moves along

with the beam. For an ultra-relativistic beam whose speed is very close to c

and γb >> 1, the plasma particle cannot gain enough energy during the inter-

action with the beam for trapping to happen so such a situation is not common

in our problem. Therefore, the source terms in Eqs. (2.30) and (2.31) also ex-

hibit weak dependence on s. Thus, the so-called “frozen-field” or “quasi-static”

approximation, i.e.,
∂

∂s
� ∂

∂ξ
, (2.49)

can then be taken when the Lorentz factor γb of the beam is large.

Eq.(2.37) then becomes,
∂

∂z
≈ − ∂

∂ξ
, (2.50)
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and Eq.(2.30) and Eq.(2.31) are reduced to simpler forms,

∇2
⊥φ = −4πρ, (2.51)

∇2
⊥A = −4π

c
J, (2.52)

where we define the operator ∇2
⊥ ≡ ∂2/∂x2 + ∂2/∂y2. The derivatives in this

operator are only in the transverse direction, which means that the fields in one

transverse slice at position ξ depend only on the charge and current density in

the same slice. Thus Eq.(2.51) and Eq. (2.52) can be solved using a 2D Poisson

solver.

The modified field equations under the quasi-static approximation remove the

strictest requirement to resolve the shortest wavelength in the system. Unlike

the parabolic Maxwell’s equations, Eqs. (2.51) and (2.52) are elliptical. There

is no explicit time derivative in these equations. Therefore there is no Courant

condition and hence no numerical limit to the maximum time step that one can

use. Instead, the only requirement of the time step comes from the equation

of motion. As described before, the time step only needs to resolve the plasma

oscillation.

Here the field equations are written for potentials φ and A in the Lorentz

gauge. In fact the quasi-static approximation can be applied to the equations

of the E and B directly. Once φ and A are obtained for a particular transverse

slice, it is trivial to calculate E and B in Eq. (2.33) and Eq. (2.34) from the

potentials. Eq. (2.33) can be rewritten in new variables,

E = −∇φ− ∂A

∂ξ
, (2.53)

while the expression for the longitudinal component of E can be further sim-

plified,

Ez =
∂ψ

∂ξ
. (2.54)
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Here a new scalar potential ψ is introduced,

ψ = φ− Az, (2.55)

where Az is the longitudinal component of the vector potential A. ψ is also

referred to as the “pinch potential” [64], because it determines the focusing field

acting on the beam particle moving with Vb = ẑc through

Efocusing = E⊥ + ẑ ×B = −∇⊥ψ. (2.56)

The expression for the Lorentz gauge is now,

∇⊥ ·A⊥ = −∂ψ
∂ξ
, (2.57)

which can be used to update the potential ψ for each transverse slice.

Under the quasi-static approximation, the axial momentum of plasma par-

ticles can be obtained via the constant of the motion [63] (also see Appendix

A),

γp − P̃pz = 1− q̃pψ̃, (2.58)

where P̃pz = Ppz/mc, q̃p = qp/e and ψ̃ = ψe/(mc2). This relation also gives,

P̃pz =
1 + P̃ 2

p⊥ − (1− q̃eψ̃)2

2(1− q̃eψ̃)
, (2.59)

and

γp =
1 + P̃ 2

p⊥ + (1− q̃eψ̃)2

2(1− q̃eψ̃)
. (2.60)

Therefore, once ψ̃ and P̃p⊥ are known one can also calculate Vpz = Ppz/γp.

Furthermore, Eq. (2.45) is not integrated so there is no need to update Vpz

through the normal PIC algorithm. Since we do not need to integrate the sp

trajectory, nor update Vpz, it becomes possible and convenient to use a 2D PIC
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algorithm to model the plasma particles with Eqs. (2.59) and (2.60) for the

longitudinal momentum and the relativistic Lorentz factor which normally re-

quire information of the third dimension. This algorithm will bring substantial

time savings to the quasi-static model in addition to the removal of the Courant

condition.

2.3.2.1 Full quasi-static PIC algorithm

We have derived the equations for the quasi-static approximation in the above

section. Based on these equations, the quasi-static PIC algorithm can be de-

signed. In this section, we will summarize the equations for the quasi-static PIC

algorithm. The implementation will be described in detail in the next chapter.

Under certain situations, a simplified algorithm based on further assumptions to

the simulation parameters can be derived. The implementation of this simplified

algorithm is easier and the efficiency is higher. This simpler algorithm is not

accurate enough for typical PWFA experiments, e.g., those at SLAC; however it

is useful for modeling the e-cloud interaction in circular accelerators [72]. This

algorithm will be reviewed in the next section and some discussion on its validity

will be given.

The full quasi-static PIC algorithm consists of the following equations,

1. Field equations, Eqs. (2.51), (2.52), (2.53)), (2.53), (2.54), (2.55), (2.57);

2. Equations of motion, Eqs. (2.40), (2.41), (2.42), (2.43), (2.44), (2.59);

3. Charge and current deposition, Eqs. (2.47), (2.48).

In deriving the field equations, the only approximation made is Eq. (2.49).

This approximation is valid as long as the beam driver’s Lorentz factor γb >> 1.
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Since this condition is well satisfied for PWFA, the full quasi-static equations are

a very accurate description for the ultra-relativistic beam-plasma interactions. A

PIC model based on these equations is fully kinetic and nonlinear but will be

significantly faster than the fully explicit PIC simulation for PWFA.

Advancing the beam particles can be quite challenging if one needs to include

the self-forces. This is because the self-forces cancel to one part in 10 billion for

a ultra-relativistic beam with γb = 105. Since it can be shown that the plasma

forces dominate, we typically modify the equation of motion by assuming that

Vbz = c in the Lorentz force for a beam particle. Therefore, Eq. (2.40) can be

written as,
dPb⊥

dsw
≈ qb

c
Efocusing = −qb

c
∇⊥ψ, (2.61)

dPbz

dsw
≈ qb

c
Ez = −qb

c

∂ψ

∂ξ
. (2.62)

Eqs. (2.61) and (2.62) replace Eq. (2.40). These two equations together with

other equations described in this section form a set of underlying full quasi-static

equations used in QuickPIC.

Finally, we comment on the self-consistency of the full quasi-static model.

This is done by checking the charge continuity equation. From Eq. (2.51) and

the ẑ component of Eq. (2.52), one can obtain the Poisson equation for ψ,

∇2
⊥ψ = −4π(ρ− Jz/c). (2.63)

Furthermore, if one takes the Laplacian of Eq. (2.57) and substitutes Eq.

(2.63), one obtains the continuity equation implied by the quasi-static model,

∂(cρ− Jz)

∂ξ
+∇⊥ · J⊥ = 0. (2.64)
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Since ρ = ρb + ρp, J⊥ = Jb⊥ + Jp⊥ and Jz = Jbz + Jpz, the beam and the

plasma charge and current density both need to satisfy Eq. (2.64). The charge

and current deposition schemes introduced in Eqs. (2.47) and (2.48) allow the

plasma charge and current densities to satisfy the quasi-static continuity equation

Eq. (2.64). However, the beam charge and current densities obtained through

standard PIC deposition scheme satisfy Eq. (2.9), not Eq. (2.64). Therefore,

solving the quasi-static field equations with the calculated Jb and ρb is not self-

consistent. Since |Jbz| >> |Jb⊥| and Jbz ≈ cρbẑ, one can avoid this problem

by simply dropping the term Jb⊥ and assuming Jbz ≡ cρbẑ. This is completely

consistent with our use of Eq. (2.61) and (2.62) rather than the full Lorentz force.

2.3.2.2 Basic Quasi-static PIC code

Under some conditions, e.g., low current drivers, the plasma electron trajec-

tories are mostly in the radial direction and their velocities are non-relativistic. If

these conditions are met, the equations for the fields and the equations of motion

can be reduced to very simple forms. With the above assumptions,

J = Jp + Jb ≈ Jbz ẑ ≈ ρbcẑ. (2.65)

Thus A⊥ = 0, and only the longitudinal component Az is non-zero. The field

equations are then cast into two scalar Poisson equations,

∇2
⊥φ = −4πρ = −4π(ρb + ρp + ρion), (2.66)

∇2
⊥ψ = −4π(ρp + ρion), (2.67)

where ρb, ρp, ρion are charge density for the beam, the plasma electron and

the ion respectively. These two equations can be easily solved in 2D space with
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established computation techniques.

Finally, we assume that γb ≈ γ0 and γp ≈ 1, which implies that the energy gain

we consider here for the beam would be small and there is no relativistic plasma

electrons generated. As noted above, these are true only for the case in which

“blow-out” is not very nonlinear. The equations of motion of the beam particle

take the same form as Eqs. (2.61) and (2.62), while the equations of motion for

the plasma electrons can be approximated by ignoring the longitudinal motion,

i.e., Vpz = 0. Furthermore, since A⊥ = 0, Bz also vanishes. Combining all these

approximations results in,

dPp⊥

dξp
= −qp

c
∇⊥φ, (2.68)

dxp⊥
dξp

= −Vp⊥

c
. (2.69)

This set of equations can be implemented using 2D Poisson solver and a 2D

non-relativistic pusher with ξ being the time-like variable. The plasma particles

move on a 2D grid of the transverse coordinates and are advanced forward in the

variable ξ while s is kept fixed. The beam particles are advanced forward in the s

coordinate using the fields calculated from the plasma evolution. This algorithm

was implemented in the first phase of QuickPIC code, which we referred to as

Basic QuickPIC [73]. This algorithm is identical to that by Whittum [64]. The

above approximations pose severe limits to the nonlinear beam-plasma interaction

one can simulate. As shown in [73], with Λ ≡ nb

n0
k2
pσ

2
r ∼ 0.06 (Λ, the normalized

beam charge per unit length, determines how nonlinear the interaction is), results

from Basic QuickPIC deviate slightly from the OSIRIS result. While for the

benchmarks in chapter 4, where Λ = 0.9, the results have large deviations. The

basic QuickPIC approximations lead to larger energy gain/lost and larger hosing
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growth of the beam.

2.3.3 Numerical Instability

The Darwin model and the quasi-static model both make assumptions to the

hyperbolic Maxwell’s equations. The modified field equations are both ellipti-

cal equations which represent the instantaneous nature of signal propagation. It

turns out that on one hand these modifications remove the fastest time scales in

the system, making the simulation easier; on the other hand, there is a numerical

instability associated with the use of elliptical field equations and the PIC algo-

rithm. This has been reported in [68, 71, 74] and it has been the major obstacle

in developing a simulation code based on the Darwin model. The root of this

numerical instability has been discussed in detail in the literature. It has been

shown that neglecting the solenoidal part of the displacement current in the Am-

pere’s law Eq. (2.8) is equivalent to omitting the time derivative in the Maxwell’s

equations Eqs. (2.30) and (2.31). Thus retardation is removed from the solution

to the Maxwell’s equations. The effect is analyzed in ref. [68] using Lagrangian

variables and the numerical instability is found to be absolute. To proceed with a

stable algorithm with the Lagrangian variables, Nielson [68] obtained an expres-

sion of Esol using higher moments of the distribution function instead of the time

derivative of the current ∂J/∂t. However, the additional calculations needed to

accumulate the higher order moments and solve the new equation for Esol are

cumbersome and they affect the total efficiency greatly.

Another way to to resolve the instability problem is to use the Hamiltonian

and its associated variables [68, 75]. The equations are rewritten in the canonical

momentum, Pc = P + qA/c, instead of the mechanical momentum. This elimi-

nates the need to evaluate the ∂J/∂t term required in the Lagrangian formulas.
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However the formulas in [68] still contain the time derivative ∂φ/∂t, therefore a

predictor-corrector loop is needed to properly time-center the equations. A code

based on this algorithm was found to be stable. In ref. [75], a Vlasov equation

which uses Hamiltonian variables was solved for, but a similar problem of ∂φ/∂t

is handled using the Vlasov equation under the Darwin approximation.

As noted before, the quasi-static model shares a lot of common characteristics

with the Darwin model. The quasi-static approximation, i.e. Eq. (2.49), makes

the Maxwell’s equations elliptical and hence allows instantaneous interactions

between particles in one transverse slice. This is clearly seen in Eq. (2.51) and

(2.52), where the vector potential A is determined by J without retardation.

Furthermore, to calculate the electric field by Eq. (2.53), one has to know the

vector potential A at a future time, which in turn requires the particle’s motion

to be determined for the future time. Therefore, a stable algorithm is needed

for self-consistency and for avoiding positive feedbacks in the calculation. In the

numerical implementation this is done by iteration and diffusion damping. This

situation does not arise in normal PIC codes where the particle equations and

field equations can be advanced sequentially because they are time centered. The

problem can be traced to the cancellation of time and space derivatives in the field

equations that occur in the drive beam frame, which makes the electromagnetic

interaction local in ξ. However, the reason of numerical instability only exists

in the full quasi-static algorithm. For a basic quasi-static algorithm such as the

basic QuickPIC and Whittum’s code, since A⊥ is dropped from the calculation,

the algorithm is always stable. Nonetheless, the neglect of A⊥ is not valid for

many cases of interest.

From the experience of the Darwin model, a predictor-corrector iteration loop

can be used for properly time-centering the full quasi-static algorithm. But this
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does not resolve the numerical instability. The solution we adopt is to rewrite the

quasi-static Maxwell’s equations into diffusion equations that allow local errors to

diffuse across the simulation box in a desirable amount of iteration. The diffusion

equations are parabolic so that the propagation speed of the signal is finite and

adjustable through the diffusion coefficients. The details of the implementation

are discussed in Chapter 3.

2.4 Summary

In this chapter, we started from Maxwell equations and described the conven-

tional PIC algorithm. The Darwin and quasi-static reduced description models

were introduced. We derived a set of full quasi-static equations for modeling

PWFA. This set of equations was further simplified by making assumptions that

are valid for some PWFA parameters. The full quasi-static equations were then

summarized in a form which can be implemented into the PIC framework. The

numerical instabilities encountered with the Darwin and the quasi-static model

were explained and two general methods to remove the instability were briefly

introduced. In the next chapter, we will focus on the implementation of the

quasi-static model into a PIC algorithm, i.e., the code QuickPIC.
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CHAPTER 3

Implementation of QuickPIC

In this chapter, we describe how the set of full quasi-static equations are solved

numerically and the software design strategy for QuickPIC including details on

the structure of the code. For simplicity, we begin by assuming there is only

a particle beam driver and leave the discussion of how to include the laser’s

ponderomotive force until the end. Other topics such as the PIC Framework used

in QuickPIC, the parallelization method and the performance are also discussed

in this chapter.

3.1 Algorithm

We use the particle-in-cell (PIC) technique [57, 65], which is introduced in

Chapter 2, combined with the full quasi-static equations summarized in section

2.3.2.1. Many pieces of the field solvers, the current and charge deposition rou-

tines and the particle push routines can be found in legacy codes. These legacy

codes are usually well optimized, tested and documented. In QuickPIC, we use a

PIC simulation framework as the foundation which is built upon a large collection

of legacy PIC code components. This Framework is discussed in section 3.2, it

consists of standard 3D and 2D PIC simulation codes. We reuse the components

provided by the Framework and design our algorithm to fit into the 3D and 2D

PIC code structures. This allowed for the rapid development of the QuickPIC
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code. In this section, many issues such as the moving window, plasma update,

beam update, iteration and initialization etc. are discussed. And the paralleliza-

tion structure of QuickPIC will be presented in sections 3.2 and 3.3 with a brief

discussion of the code performance in section 3.4.

3.1.1 Moving window

The idea of a moving window algorithm is widely used in plasma accelerator

simulation codes, e.g. in OSIRIS [76], VORPAL [61], VLPL [60] and turboWAVE

[62]. The moving window follows the interaction region which is typically very

short compared with the propagation length. The moving window is usually

moving at the speed of light and new particles are initialized at the front of the

window at rest and particles that lag behind the interaction region are abandoned.

The field and their derivatives are initialized to zero at the front of the window.

In the full electromagnetic codes mentioned above, lab frame variables, i.e.

(x, y, z, t), are used. To implement a moving window using the full PIC algorithm

requires that the fields (particles) on the grids should be shifted in the moving

direction (the counter-moving direction) at each time step. In QuickPIC, the

moving window algorithm is implemented by adopting two new variables defined

by Eqs. (2.35) and (2.36), where the variable s can be regarded as the propagation

distance into the plasma, and ξ as the position relative to the moving window

center. The center of the moving window is defined as (xw = 0, yw = 0, sw =

ct, ξw = 0). Since the quasi-static model assumes that the plasma response evolves

on a time scale slower compared to the inverse plasma frequency 1/ωp, the plasma

in the moving window is refreshed during the interval of the beam update and

one does not need to shift the particles or fields as is required in a full PIC code.

Fig. 3.1 is a cartoon showing the moving window which follows the drive
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Figure 3.1: A moving window with velocity c is used to follow beam’s evolution.

beam.

3.1.2 Plasma and beam update

Developing an efficient code based on the full quasi-static equations is not

straightforward. While the system described is fully three dimensional, only the

two transverse coordinates (x, y) always remain space-like. For the beam particles

ξ is also space-like and s is time-like; while for plasma particles s is space-like and

ξ is time-like. At a given value of s the beam particles are distributed throughout

a three-dimensional (x, y, ξ) grid. The charge and current densities of the beam

are deposited using standard area weighting (or higher order spline) methods.

At each value of s, we then initialize a collection of plasma particles at an initial

value of ξ sufficiently ahead of the driver. The x and y coordinates of each

plasma particle are advanced forward in ξ (backward through the beam) using

Eqs. (2.43), (2.44) with electric and magnetic fields arising from the charges
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and currents from both the plasma and the beam. The key assumption is that

the variable sp is assumed to be the same for every plasma particle during the

advance in ξ, i.e., we do not integrate sp in ξ and we ignore the weak dependence

of the forces on sp.

At a given ξ the fields are calculated using Eqs. (2.51), (2.52) and (2.57)

where ρ and J from the plasma are calculated in Eqs. (2.47) and (2.48) using

area weighting (or higher order splines) methods, and where ρ and J from the

beam have already been calculated (we do not use the transverse current Jb⊥

from the beam since it is small compared with the longitudinal beam current

and it is not needed to satisfy the continuity equation under the quasi-static

approximation). The value of Vz for each plasma particle is determined from

Eqs. (2.59) and (2.60). Once the trajectories of the particles (x(ξ), y(ξ)) have

been advanced forward in ξ by a desired amount such that the beam has passed

them, then the beam particles are advanced in s. This cycle can be repeated a

desired number of “time” steps in s. This flow is illustrated in Fig. 3.2. The

structure of the algorithm therefore is that of a two dimensional (x, y) PIC code

with the ξ being a time-like variable, embedded in a three-dimensional (x, y, ξ)

PIC code with s being the time-like variable.

We now describe the details of the numerics in the two dimensional part.

At a point in the two-dimensional loop where the electric and magnetic fields

are known, plasma particles are updated with the Lorentz force. Although the

equations of motion are fully relativistic, they can be cast into the form of a

non-relativistic Boris pusher [77] with a modified electric field and an effective

charge qeff to simplify calculation.

dup⊥
dξ

=
qeff
me

[
γpE⊥ +

(up
c
×B

)
⊥

]
(3.1)
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Initialize beam 

Call 2D routine

Deposition

3D routine

end

Push beam particles

3D routine    
begin

Initialize plasma

Field Solver 

Deposition

2D routine    

begin

2D routine

end

Push plasma particles

Figure 3.2: Flow chart of the QuickPIC quasi-static algorithm showing a 2D

routine embedded in a 3D routine.
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and

dxp⊥
dξ

=
up⊥

1− qpψ/mec2
. (3.2)

where the definition of the effective charge is

qeff ≡
qp

1− qpψ/mec2
. (3.3)

In deriving Eqs. (3.1)-(3.2), Eq. (2.58) is used to express the relativistic

factor and we use the proper velocity u = γV.

For the discrete version of Eqs. (3.1)-(3.2), quantities are either known at

half or full integer grid values of ξ, i.e., ξ = (m + 1/2)∆ξ or ξ = m∆ξ, where

m is an integer labeling the grid values. We chose that at an integer grid value

the proper velocities are known. Then it is natural to presume that the particle

positions will be known on half integer grid values. To second order in ∆ξ the

particle positions can be computed for the (m+ 1/2) step by using Eq. (3.2) for

a half time step ∆ξ/2.

As ξ is incremented from the front to the end of the moving window, the

plasma response and all the fields are solved for and stored at each transverse

2D slice using the above numerical algorithm. Then the drive beam, which exists

in 3D space, should be pushed using these fields for a large time step ∆s. The

beam momenta are known at half integer steps in s and the beam positions are

known at full integer steps. When the 2D loop is finished it returns the necessary

fields to the 3D loop to update the beam at a full integer value of s. This update

uses the standard leap-frog algorithm and is therefore time-centered with second

order accuracy in ∆s. The step ∆s only needs to resolve the betatron motion

of the beam particles. The equations used are Eqs. (2.61), (2.62), (2.41) and
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(2.42) with proper normalization. Then the charge density is deposited and the

2D cycle is started again for the updated beam driver. The 3D beam update

and the charge deposition were taken directly from the UPIC Framework to be

described in section 3.2 shortly. The 3D loop does not require any field-solves so

it typically uses a small fraction of the total computation time.

3.1.3 Charge and current depositions

The charge and current depositions of plasma particles are not standard. With

the definition of qeff , the depositions become,

ρp =
1

V olume

∑
i

qpi
1− Vpzi/c

=
1

V olume

∑
i

γpiqeff , (3.4)

and

Jp =
1

V olume

∑
i

qpi
1− Vpzi/c

Vpi =
1

V olume

∑
i

qeffupi, (3.5)

where

γpi =
1 + u2

pi⊥
/
c2 + (1− qpiψ/mec

2)2

2(1− qpiψ/mec2)
, (3.6)

and

upiz =
1 + u2

pi⊥
/
c2 − (1− qpiψ/mec

2)2

2(1− qpiψ/mec2)
. (3.7)

Therefore the deposition routines only require minor changes. The fact that

a given simulation particle does not represent a fixed amount of charge can be

viewed another way. The continuity equation for a collection of discrete particles

each with charge Qi is
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0 =
∂

∂t

∑
i

Qiδ(x− xi(t)) +∇ ·

[∑
i

QiVi(t)δ(x− xi(t))

]
. (3.8)

Under the quasi-static approximation this reduces to

0 =
∂

∂ξ

∑
i

Qi

[
1− Vzi(ξ)

c

]
δ(x⊥− x⊥i(ξ)) +∇⊥ ·

[∑
i

Qi
V⊥i(ξ)

c
δ(x⊥ − x⊥i(ξ))

]
.

(3.9)

Therefore, at any value of ξ we can integrate along x and y to obtain

0 =
d

dξ

∑
i

Qi [1− Vzi(ξ)/c]. (3.10)

So, when advancing plasma electrons forward in ξ, the quantityQi(1−Vzi/c) =

qi , not Qi, of each particle is constant. From which it follows that the charge on

each particle is Qi = qi/(1− Vzi/c), where qi is a constant.

3.1.4 Iteration and Diffusion damping

The equation of motion Eq. (3.1) requires the evaluation of the wake electric

and magnetic fields. These are given in terms of the scalar and vector potentials.

The axial component of vector potential is determined by taking the difference

between φ and ψ,

Az = φ− ψ. (3.11)

The electric field and magnetic field can then be found using the following

equations,

E⊥ = −∇⊥φ−A⊥ξ, (3.12)
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Ez =
∂

∂ξ
ψ, (3.13)

B⊥ = (A⊥ξ +∇⊥Az)× ẑ, (3.14)

Bz = [∇⊥ · (A⊥ × ẑ)]ẑ, (3.15)

where we define A⊥ξ as

A⊥ξ ≡
∂A⊥

∂ξ
. (3.16)

The quantity A⊥ξ satisfies a 2D Poisson equation

−∇2
⊥A⊥ξ = 4πJ⊥ξ/c, (3.17)

with a source term J⊥ξ ≡ ∂J⊥/∂ξ.

The equation of motion Eq. (3.1) and Eq. (3.17) need to be solved consis-

tently. For the field equations Eq. (3.17) which relates A⊥ξ to J⊥ξ, the relation

is clear; while for the particle equation of motion one needs to consider that a

portion of E⊥ is proportional to A⊥ξ. If one were to sum over particles in a

box, the equation of motion would relate J⊥ξ to A⊥ξ. Furthermore, this set of

equations is not time centered. For both of these reasons, an iteration loop will

be required when these equations are discretized in ξ.

It is assumed that the particle positions will be known on half integer grid

values, and the particle proper velocities are known at an integer grid value.

However, the only fields that can be computed straightforwardly are A⊥ and
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hence ∇⊥ ·A⊥ at index m by using Eq. (2.51) and (2.52), and ψ which can be

computed at the (m+ 1) step by using the gauge condition Eq. (2.57).

Therefore, the need for some type of iteration method is clear. In order to

compute the new proper velocity at (m+ 1) the fields at the (m+ 1/2) step are

needed; but in order to compute the fields at the (m + 1/2) step the currents

and charge density at (m+ 1/2) and hence the proper velocity at (m+ 1/2) are

needed.

The iteration starts by predicting J
m+1/2
⊥ , J

m+1/2
⊥ξ and ρm+1/2, it continues by

using these predictions to compute all of the fields at (m+ 1/2), which are then

used to advance the particles, and then the proper velocity at index (m + 1) is

used to correct the prediction for J
m+1/2
⊥ , J

m+1/2
⊥ξ and ρm+1/2. This is summarized

in Table 3.1 and the details are given next.

We assume that the derivative of a quantity in ξ is zero if no information

about the derivative is known. The predictions for J
m+1/2
⊥ , J

m+1/2
⊥ξ are therefore,

J
m+1/2
⊥,l=0 = Jm⊥ + (∆ξ/2) · Jm−1/2

⊥ξ , (3.18)

J
m+1/2
⊥ξ,l=0 = J

m−1/2
⊥ξ , (3.19)

where l is an iteration index.

The prediction of ρm+1/2 is done as follows,

ρm+1/2 = ρ
m+1/2
b + ρm+1/2

p ≈ (ρmb + ρm+1
b )/2 +

1

V olume

∑
i

γ
m+1/2
pi · qpi

1− qpi · ψm+1/2
/
mec2

(3.20)
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m− 1/2 m m+ 1/2 m+ 1 m+ 3/2

Presumed

quantities

ψ, J⊥ξ up⊥, J⊥ xp⊥

Quantities

calculated

before

iteration

A⊥, ∇⊥ ·

A⊥

ψ

Predicted

quantities

J⊥, J⊥ξ, γ,

ρ

Quantities

known after

iteration

φ, Az,

A⊥, A⊥ξ,

∇⊥ · A⊥,

B⊥, Bz,

E⊥

ψ, upz,

up⊥, J⊥

xp⊥

Table 3.1: Quantities and their roles in the 2D cycle and the corresponding 2D

time step at which they are defined.

Note that for each value of s the beam quantities are known at all integer

values of m so that to compute ρb at a half integer index we take the average. In

Eq. (3.20), only γm+1/2 is unknown and needs to be predicted. The prediction is

done using Eq. (3.6) and the previous value of up⊥,
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γ
m+1/2
pi,l=0 =

1 + (ump⊥
/
c)2 + (1− qpiψ

m+1/2
/
mec

2)2

2(1− qpiψm+1/2
/
mec2)

. (3.21)

The other field-related quantities such as φ, Az, A⊥, A⊥ξ, ∇⊥ ·A⊥, B⊥, Bz

and E⊥ can now be solved using Eqs. (2.51) and (3.11)-(3.16) at index (m+1/2)

and φm+1 can also be obtained through the gauge condition Eq. (2.57). Using

the predicted forces, we advance the particles proper velocity and positions to

their next time index, with xp⊥ at (m+3/2), up⊥ and J⊥ at (m+1). The results

um+1
p⊥ and Jm+1

⊥ are then used to make a correction to the previous prediction,

J
m+1/2
⊥ξ,l = (Jm+1

⊥,l−1 − Jm⊥ )/∆ξ, (3.22)

J
m+1/2
⊥,l = (Jm⊥ + Jm+1

⊥,l−1)/2, (3.23)

γ
m+1/2
pi,l =

1 + [(umpi⊥ + um+1
pi⊥,l−1)/2c]

2 + (1− qpiψ
m+1/2

/
mec

2)2

2(1− qpiψm+1/2
/
mec2)

. (3.24)

The predictor-corrector loop can be repeated an arbitrary number of times.

One way to terminate the loop is to wait until a desired accuracy is reached.

However, as discussed in section 2.3.3, the algorithm presented above suffers from

one kind of numerical instability similar to one that occurs in Darwin codes.

The low k modes of A⊥ξ are the most unstable, they grow rapidly and soon

dominate the whole electric and magnetic fields in a few iterations. The problem

actually exists in the field solver. If one views the iteration number as a pseudo-

time variable, the numerical instability arises from the instantaneous nature of

the solution to the elliptical field equation in the pseudo-time. As we notice

earlier in section 2.3.3, several methods including the moment method and the
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canonical momentum method were proposed in the literature to remedy this.

However, incorporating these methods into QuickPIC would involve significant

modifications and they are sometimes impractical. Instead, in QuickPIC we

modified the Poisson solver in the iteration loop so that it resembles a diffusion

equation. Eqs. (3.16) and (2.51) are modified as follows respectively,

DJ
∂

∂T
A⊥ξ = ∇2

⊥A⊥ξ + 4πJ⊥ξ/c, (3.25)

Dρ
∂φ

∂T
= ∇2

⊥φ+ 4πρ. (3.26)

where DJ and Dρ are the diffusion coefficients. We define the pseudo-time as

T = l∆T , then the above equations can be rewritten in the discrete variable l,

(1− 1

DJ

∇2
⊥)A⊥ξ,l = A⊥ξ,l−1 +

1

DJ

J⊥ξ,l, (3.27)

(1− 1

Dρ

∇2
⊥)φl = φl−1 +

1

Dρ

ρl. (3.28)

In the above equations, ∆T is absorbed into DJ and Dρ so there is no need

to consider it anymore. A diffusion equation is parabolic, thus any local error in

the source term J⊥ξ or ρ cannot propagate across the simulation box instantly

in one iteration. Local errors are indeed damped over the pseudo-time and the

calculation can converge to the correct solution in a few iterations if DJ and Dρ

are chosen appropriately. Since numerous calculations are involved in an iteration

loop, it is desirable to have as few iterations as possible to speed-up the code.

For diffusion equations like Eqs. (3.25) and (3.26), the characteristic diffusion

length is LD =
√

4Dl, where we have chosen DJ = Dρ = 1/D for simplicity.

Because normally a particle will not move more than one transverse grid size ∆x
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during one real time step ∆ξ, the scale length of the changes in J⊥ξ and ρ during

this time will be on the order of ∆x. Thus, we should allow diffusion over this

distance to happen in the whole iteration process, i.e., LD,max =
√

4Dlmax = ∆x

, which gives an estimate for the choice of D, D = (∆x)2/4lmax. In practice, we

use lmax = 2 and have found through experimentation that D = (∆x)2 gives the

most rapid convergence and the best accuracy over a wide range of parameters.

These choices are used for the QuickPIC runs that are presented in Chapter 4.

In the present implementation of QuickPIC, all transverse spatial derivatives are

done in Fourier space using fully parallelized FFTs. In principle we could use

k-dependent diffusion coefficients but we have not investigated this in detail.

3.1.5 Boundary conditions

Poisson solvers are used in both the basic QuickPIC and the full QuickPIC.

To get a unique solution from the Poisson solver, one has to specify a proper

boundary condition. For the QuickPIC algorithm, the boundary condition has

a more significant importance. This is because the potential ψ is solved for at

each 2D slab. Therefore it is necessary to define a common reference point for

the potential ψ. For a solution to the Poisson equation, if the area integral of the

source term inside a circle is zero for a sufficiently large radius, then the potential

drops off rapidly outside the circle. At a point far away from the circle, only the

potential from the dipole and other higher order moments of the source inside the

circle are left. The remnant fields become ignorable for large r. The potential,

which is the integral of the field over r is therefore finite, and one can choose the

potential to be zero at r →∞ as a common reference point for every slab. If the

above condition is not satisfied, i.e., the net source term is not zero for ψ, then

ψ drops off as 1/r. An integral for ψ from r = ∞ will not converge. So seeking
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a consistent definition of ψ is not possible for this case.

We will proceed to show the source terms for ψ in both basic QuickPIC and

full QuickPIC are indeed local. This result comes from the continuity equation.

For the basic QuickPIC model, plasma particles only have transverse motion.

Therefore the continuity equation is

∂ρp
∂ξ

+∇⊥ · Jp⊥ = 0 (3.29)

After integration over the transverse dimensions, Eq. (3.29) yields

∂

∂ξ

∫
ρpdr

2 = 0, (3.30)

where dr2 = dx× dy or dr2 = rdφdr.

There is no perturbation ahead of the beam, so the total charge is neutral,

∫
ρpdr

2|ξ=−∞ = −
∫
ρiondr

2|ξ=−∞. (3.31)

Therefore,

∫
(ρp + ρion)dr

2 = 0. (3.32)

In basic QuickPIC, (ρp + ρion) is the source term for ψ. Hence ψ falls faster

than 1/r outside the region of interest and can be set to zero at r →∞.

For the full QuickPIC model, the return current of plasma is retained. The

continuity equation is,

∂(ρp − Jpz)

∂ξ
+∇⊥ · Jp⊥ = 0. (3.33)

81



Thus it can be shown that

∫
(ρp + ρion − Jpz)dr

2 = 0. (3.34)

The source term for ψ in the full quasi-static model is (ρp + ρion − Jpz), in

which the beam density and its longitudinal current cancel. Therefore we can

also define ψ = 0 at r →∞ as a reference.

Although other potentials, such as φ,A, also satisfy the Poisson equation, the

area integral of source term for them are not zero. For example, the contribution

to φ from the charge of the beam cannot be ignored at the boundary. Therefore

one can not find a reference point for φ and A. However, the E and B fields,

i.e., the derivative of the potentials φ and A not the potential themselves are of

importance in the simulation. It is then possible to solve for φ and A using either

periodic or conducting boundary condition since the E and B do not penetrate

into the plasma beyond a few plasma skin depths due to the existence of the

plasma return current and the charge density profile. It is further assumed that

the fields outside a radius of a few plasma skin depths are zero, hence one can set

ψ = 0 at the boundary instead of at r →∞. This is convenient for the simulation.

Since the basic QuickPIC does not include the plasma return current, the drive

beam can affect a larger volume of plasma, therefore one obtains a much larger

value of ψ when integrating from the boundary. This is illustrated in Fig. 3.3.

3.1.6 Initialization and Quiet start

In the PWFA simulations, the evolution and many characteristics of the

plasma wake field depend strongly on the charge distribution of the beam driver.

For example, to study the wake excitation and energy transfer from the drive
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Figure 3.3: A transverse lineout of ψ in the full and basic QuickPIC simulations

for the same parameters used in Chapter 4.
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beam to the trailing beam in the “afterburner” scenario, both beams need to be

properly shaped. Therefore it is desirable to have the ability to generate a beam

with arbitrary shape. In some PIC codes such as OSIRIS, simulation particles are

initialized with uniform separation, while each particle is assigned a charge which

corresponds to the charge density at the position of the particle. Such initializa-

tion routines are simple in nature and work very well in the simulation for colli-

sionless phenomena. However, in most PIC codes including QuickPIC, the charge

of each simulation particle of a particular species is a fixed number. To initialize

a given charge distribution of the beam, one has to place the particles with sepa-

rations that are inversely proportional to the local charge density. For a density

profile which is a separable function of coordinates, i.e., n(x, y, z) = f(x)g(y)h(z),

this can be done through the Newton method to find the position of the particle

in each direction. This initialization routine is available in the UPIC framework,

but it does not generalize to an arbitrary density profile. For nonseparable density

profiles, the rejection-acceptance method first proposed by John von Neumann

[78] is implemented into QuickPIC. The rejection-acceptance method basically

serves as an non-uniform random generator for particle initialization.

The idea of the rejection method is quite simple. Suppose p(x) is the desired

probability distribution that we do not know how to generate and q(x) is an

auxiliary probability distribution we already know how to generate. Assuming

that there exists a constant C that p(x) < Cq(x) for any x, then it is possible

to generate a random variable x that has probability distribution p(x) through

q(x). The steps are outlined below,

1. Draw a sample xi from q(x), let ui = Cq(xi).

2. Draw a sample yi from uniform distribution [0, ui].
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3. If yi ≤ p(xi), then accept xi as a valid sample and go back to step 1.

4. If yi > p(xi), then reject the sample and go back to step 1.

The above algorithm does not put requirements on the property of the de-

sired probability distribution and can be easily generalized to a 3D distribution

p(x, y, z). It can be shown that the probability distribution of xi is p(x) and the

efficiency of the method is greatly affected by the constant C. To achieve better

efficiency, one has to find the smallest C = Copt that satisfies p(x) < Cq(x).

For simplicity, we use the uniform distribution as the auxiliary distribution func-

tion, and set C = 1.2MAX(p(x)). The non-uniform random number generator

from the rejection method does not have a good statistical property, namely, it

is noisy for PIC simulation. To study the transverse instability of the non-linear

beam-plasma interaction under a controlled simulation, it is desirable to have a

initial beam of zero average moment of the transverse position and momentum.

This is also called a “quiet start” for PIC simulations. In QuickPIC, a “quiet

start” is implemented by initializing simulation particle pairs, which have oppo-

site transverse momentum and are placed symmetrically about the centroid of

the beam. Although this method for “quiet start” is simple, we have observed in

the simulations that a “quiet start” beam does not trigger the hosing instability

up to thousands of timesteps.

3.1.7 Laser module

In this section, we describe the principle of modeling laser-plasma phenomena

through the quasi-static approximation. A laser solver based on the quasi-static

envelope equation was implemented by J. H. Cooley and T. M. Antonsen at

the University of Maryland. The details for the numerics of the laser envelope
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solver are described in the dissertation of J. H. Cooley but are summarized here

for completeness on pages 88-94. The solver was combined into the QuickPIC

framework and used as a separate module.

3.1.7.1 Envelope model

The set of quasi-static equations described earlier do not include the evolution

of a laser pulse or its effect on the plasma particles. To include a laser pulse, the

following modifications need to be made. First, an additional vector potential

that generates the electric and magnetic fields of the laser pulse is added to Eq.

(2.31). The laser pulse is described in terms of an envelope and a rapidly varying

phase,

eA

mec2
= Re [â(x, y, ξ, s) exp (−ik0ξ)] , (3.35)

where k0 = ω0/c is the central wave number of the laser pulse corresponding to

a frequency ω0 and the hat denotes normalized quantities. The envelope satisfies

an augmented paraxial wave equation that is derived from Eq. (2.31).

2
∂

∂s

(
−ik0 +

∂

∂ξ

)
â−∇2

⊥â =
4πe

mec3
Ĵ = k2

0χpâ (3.36)

The mixed derivative term is needed to describe group velocity reduction due

to the plasma, the direct forward Raman scattering and the self-modulational

instability [79]. The high frequency current is expressed in terms of a product of

a susceptibility χp and the laser vector potential. The relative dielectric constant

is thus, ε = 1 + χp. The plasma contribution to the susceptibility is calculated

using the following deposition scheme,
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χp = −
〈

ω2
p

ω2
0γp

〉
= − 4πe2

meω2
0

1

V olume

∑ 1

γ̄p(1− Vpz/c)
(3.37)

As shown by Mora and Antonsen [63] the laser period-averaged relativistic

gamma factor is modified when the laser’s vector potential is included,

γ̄p =
[
1 + P 2

p /(mec)
2 + |â|2 /2

]1/2
. (3.38)

The plasma particles are now influenced by the ponderomotive force of the

laser, which is included in the equation of motion as

dPp⊥

dξ
=

qp
c− Vpz

[
E⊥ + (

Vp

c
×B)⊥ −

mec
2

γ̄p
∇⊥

|â|2

4

]
. (3.39)

3.1.7.2 Implementation

If there is a laser driver, the QuickPIC algorithm introduced previously only

needs to be modified in three places. In the momentum advance, the pondero-

motive force needs to be included in Eq. (3.1), i.e.,

dup⊥
dξ

=
qeff
me

[γpE⊥ −
mec

2

qp
∇⊥

|â|2

4
+ (

up
c
×B)⊥] (3.40)

so that the effective electric field in the non-relativistic Boris pusher is now

γpE⊥ −
mec

2

qp
∇⊥

|â|2

4
(3.41)

In addition, the expression for γp is now

γp =
1 + u2

p⊥
/
c2 + |â|2

/
2 + (1− qpψ/mec

2)2

2(1− qpiψ/mec2)
. (3.42)
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Values of the ponderomotive potential are needed on the half integer grid

ξ = (m+ 1/2)∆ξ for x⊥ and are calculated according to

[
|â|2

/
2
]m+1/2

=
1

2

{[
|â|2

/
2
]m+1

+
[
|â|2

/
2
]m}

. (3.43)

Last, we need to deposit the new quantity χp, which is the plasma suscepti-

bility,

χp = − 4π

meω2
0 · V olume

∑
i

q2
pi

(1− Vpzi/c)γpi

= − 4π

meω2
0 · V olume

∑
i

q2
pi

1− qpiψ/mec2
. (3.44)

The propagation of the laser pulse is described by Eq. (3.36) for the evolution

of the envelope â of the normalized vector potential. This equation applies to

the case of pulse propagation in a fully ionized plasma; that is, it is assumed that

there is no other matter in the form of neutral or partially ionized gas present that

would modify the dispersion relation for the laser light. To make the equations

more general we imagine that there is also a tenuous background medium present,

characterized by a small correction to the dielectric constant δε(ω) that modifies

the group velocity and adds dispersion. In this case Eq. (3.36) becomes,

2
∂

∂s

(
−ik0 +

∂

∂ξ

)
â− ik0β1

∂

∂ξ
â + β2

∂2

∂ξ2
â−∇2

⊥â = k2
0χT â, (3.45)

where β1 = 2(vf − vg)/c, vf is the frame velocity ξ = vf t− z, (now assumed

to be different from the speed of light) and

vg ∼= c

[
1− 1

2

d(ωδε)

dω

]
ω0

, (3.46)
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is the group velocity in the background medium in the limit in which the

medium is tenuous. The coefficient of dispersion is given by

β2 =
v2
f − v2

g

c2
+ ω

d

dω

(vg
c

)∣∣∣∣
ω0

. (3.47)

The quantity χT = χp + 2n2I represents the modified susceptibility includ-

ing the plasma contribution and the nonlinear susceptibility of the background

medium. Here I is the local intensity and n2 the second order coefficient of nonlin-

earity in the susceptibility of the background medium. The linear portions of the

background susceptibility are described by δε and contribute to the coefficients

β1 and β2. The coefficient β1 can be set to zero by picking the frame velocity to

equal the group velocity of the background medium. If no background medium

is present, then the frame velocity should equal the speed of light. The plasma

reduction of the group velocity is captured in Eq. (3.45) due to the interplay of

the mixed, second order s− ξ derivative and the plasma contribution to the total

susceptibility. Likewise, the reduction of the group velocity for waves propagat-

ing obliquely to the z-axis is captured by the interplay of the mixed derivative

and the transverse Laplacian. Retention of the mixed derivative term also leads

to separate conservation laws for wave energy and wave action [63]. This allows

for a correct treatment of pulse depletion due to the excitation of plasma waves.

We wish to find a stable numerical approach to solve Eq. (3.45) in a fully

three-dimensional simulation. In addition to the computational cost associated

with solving a three-dimensional non-linear partial differential equation, we have

the added complication of performing this calculation on a parallel computer sys-

tem. To this end, we include the constraint that our computational algorithms

have an efficient parallel implementation. We note that the wave operator in-

volves differentiation with respect to all three space-like coordinates. This will
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make finding an s-centered fully implicit numerical implementation of Eq. (3.45)

difficult. Instead we will use a split step algorithm [80] in which Eq. (3.45) is

separated into two operators each of which can be advanced in an s-centered im-

plicit way. Specifically, we separate Eq. (3.45) into separate equations involving

the two operators L0 and L1,

2
∂

∂s

(
−ik0 +

∂

∂ξ

)
â = L0(â) ≡ i

k0β1

2

∂

∂ξ
â− β2

2

∂2

∂ξ2
â + k2

0χT (x⊥, ξ, s)â, (3.48)

and

2
∂

∂s

(
−ik0 +

∂

∂ξ

)
â = L1(â) ≡ i

k0β1

2

∂

∂ξ
â− β2

2

∂2

∂ξ2
â +∇2

⊥â. (3.49)

Here we have assumed that the coefficients β1 and β2 are independent of

transverse coordinate and we have included half of their effect in each operator.

If these coefficients were spatially varying we would include their full effect in

Eq. (3.48) and eliminate them from Eq. (3.49). The separation is made so that

Eq. (3.48) can be solved in ξ with x⊥ as a parameter, and Eq. (3.49) can also

be solved in ξ by Fourier transforming in x⊥ and treating k⊥ as a parameter. It

is necessary to include the mixed derivative on the left hand side in both steps

so that the interplay between the mixed derivative and the susceptibility in the

case of Eq. (3.48) and the mixed derivative and the transverse Laplacian in the

case of Eq. (3.49) that gives rise to the reduction of the group velocity due to

plasma and oblique propagation is recovered.

The sequence in which Eqs. (3.48) and (3.49) are solved is illustrated in Fig.

3.4. The top portion of this figure illustrates the part of the code that solves

for the laser field, while the bottom portion illustrates the part that evolves
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Figure 3.4: Schematic representation of second order accurate split step algorithm

for advancing the laser field in s. Also shown is the communication between the

laser propagation part of the code and the particle and wake part of the code.
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the particles and calculates the plasma wake as described in the previous section.

The communication between the two parts of the code is illustrated by the arrows

connecting the upper and lower portions of the figure. The laser propagation part

of the code must supply the normalized vector potential (actually, its magnitude

squared |â|2) evaluated on the s-grid, sn = n∆s, to the particle part; while

the particle part must supply the susceptibility χT on the s-grid to the laser

propagation part of the code. Given that the susceptibility χT is known on the

s-grid, Eq. (3.48) is centered about sn = n∆s. The finite difference in s version

of Eq. (3.48) is thus written as,

2

(
−ik0 +

∂

∂ξ

)
ã
n+1/2
1 − ãn−1/2

∆s
=

1

2
L0(ã

n+1/2
1 + ãn−1/2). (3.50)

where ãn−1/2 and ã
n+1/2
1 are intermediate values of the normalized vector

potential that are illustrated in Fig. 3.4. The operater L0 contains the time and

spatially dependent susceptibility evaluated at sn. This depends on the vector

potential at this same time, and this will have to be determined from ãn−1/2.

We will discuss this point subsequently. In between applications of operator L0

we must apply operator L1, which includes the transverse derivatives. This will

connect values of the intermediate quantities ãn+1/2 and ã
n+1/2
1 as indicated on

Fig. 3.4,

2

(
−ik0 +

∂

∂ξ

)
ãn+1/2 − ã

n+1/2
1

∆s
=

1

2
L1(ã

n+1/2 + ã
n+1/2
1 ). (3.51)

In the operator L1 the coefficients are assumed to be independent of x⊥ .

Thus Eq. (3.51) is solved in Fourier space, and periodic boundary conditions in

the two transverse directions are applied.

Both operators L0 and L1 are second order with respect to differentiation by ξ.
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These operators are then represented as second order finite difference equations.

Both equations are thus equivalent to tridiagonal matrices, which are solved by

the dual sweep algorithm [81]. The issue of boundary conditions is complicated by

the addition of the dispersion coefficient β2. Dispersion allows that information

can propagate both faster and slower than the frame velocity. Thus, information

can propagate to both large and small values of ξ. Rather than attempt to impose

an absorbing boundary condition at the minimum and maximum values of ξ, we

simply require that the vector potential vanish at these points and further require

that the simulation domain be large enough such that no reflection of waves from

these points can occur. We note that in the case in which dispersion is absent,

then information can only propagate in the direction of increasing ξ. In this

case the required boundary condition is that all values of â(ξ) for ξ less then the

minimum value in the simulation domain must vanish.

The split step algorithm just described gives a second order in ∆s accurate

solution for the wave equation provided a second order accurate value of the

susceptibility is in the operator L0 in Eq. (3.50). The required susceptibility is

evaluated on the s-grid, while the intermediate quantities determined in (3.50)

and (3.51) are known on the half grid. To evaluate the vector potential at the re-

quired time we apply a half time step advancement of the operator L0 to generate

ân on the grid n∆s starting from the intermediate value ãn−1/2,

2

(
−ik0 +

∂

∂ξ

)
ân − ãn−1/2

∆s/2
=

1

2
L0(â

n + ãn−1/2). (3.52)

Since ãn−1/2 is already second order accurate, and we are only advancing s by a

fraction of a grid spacing we can use a first order evaluation of the susceptibility

in L0 for this step. Typically, we extrapolate the susceptibility from the two

previous s-steps for this estimate. Thus, to advance the laser field, only one call
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to the part of the code that advances the particles is needed per s-step.

Equations (3.50) and (3.51) involve only finite differencing in the axial grid,

thus each transverse location or wavenumber can be solved independently. This

separation motivates the parallel implementation used to solve this system. The

normal layout of the field involves each node having all axial data and all the

data for one transverse coordinate. The second transverse coordinate is divided

among the different processors. This layout allows the evolution of Eqs. (3.50)

and (3.51) to be local to a processor. Unfortunately this layout requires two large

communications to perform the transverse FFT necessary to evolve Eq. (3.51).

We take an FFT in the coordinate that is local to the processors then redistribute

the data so the other transverse coordinate is local. We can then perform the

second FFT in this direction and then solve Eq. (3.51). Finally we reverse the

process leaving the data in the original layout.

3.2 PIC framework

The full QuickPIC code is built from the UCLA Parallel Particle-in-Cell

(UPIC) Framework [82] and the laser solver module described in the previous

section. The UPIC Framework provides trusted components for the rapid con-

struction of new, parallel Particle-in-Cell codes, using object-oriented ideas. It

is designed in layers. The lowest layer consists of highly optimized Fortran77

routines from 25 year legacy of PIC codes. The upper layers are written in For-

tran95. The middle layer primarily provides a much safer and simpler interface

to the complex Fortran77 legacy subroutines by encapsulating many details, such

as data layouts on parallel machines. The upper layer consists of powerful high

level classes that enable the reuse of large blocks of code. The Framework also

provides several sample main codes.
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The QuickPIC code is a fusion of a 3D and a 2D parallel PIC code. The

3D code contains the beam particles and treats the 2D code as a transverse field

solver, where it passes the beam density as input, and obtains the electric and

magnetic fields as output. The Framework uses the GCPIC algorithm for do-

main decomposition [83], but with different decompositions. The 3D Framework

distributes the ξ coordinate across different processors, while the 2D Framework

distributes the y coordinate and treats the ξ coordinate as a time. Therefore the

3D code transposes the beam density which has dimensions (nx, ny, nz) from the

form f(nx, ny, nz/nproc) to the form f(nx, ny/nproc, nz), where nproc is the

number of processors, before it calls the 2D code, and transposes the potentials

back to the original form after the 2D code returns.

The 2D Framework distributes the y coordinate across processors, but the

number of grids per processor can vary. This allows one to keep the number

of particles per processor approximately constant by adjusting the sizes of the

domains, and thus permits load balancing of the calculation. The Framework

is spectral and uses FFTs to solve the fields. However, in addition to periodic

boundary conditions, conducting boundary conditions are also supported, using

various combinations of sine and cosine transforms.

The Framework provides many of the functions that QuickPIC uses, such as

solvers for the potentials, management of guard cells, FFTs, and a particle man-

ager which ensures particles are in the correct domain. To make such functions

easy and safe to use, classes have been defined to hide the implementation details

of complicated data structures. To illustrate the importance of this, the con-

ducting boundary potential solver doubles the size of the grid in each dimension

and creates image charges before the FFT is called. The data in Fourier space

is transposed and has a different domain decomposition than in real space. All
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these details are hidden from the user who uses this solver.

In addition to the components provided by the UPIC Framework, some spe-

cial functions had to be custom written for QuickPIC, usually using a function

provided in the Framework as a starting point. For example, both the parti-

cle push and charge deposit subroutines were modified. The new functions were

placed in their own modules, but also had available functions in the original mod-

ules, so that the relationship was similar to that of inheritance in object-oriented

languages. This kind of structure allows QuickPIC to make use of upgrades to

the UPIC Framework with relatively little modification.

3.3 Parallelization

QuickPIC is fully parallelized in both 3D and 2D. The parallelization is im-

plemented using the MPI communication library. As mentioned in the previous

section, the domain decomposition of the 3D beam part is along z, this is illus-

trated in Fig. 3.5 for a 4-node configuration. Each node initializes 1/4th of the

drive beam and stores its information. For every time step, each node will update

the portion of drive beam which belongs to it and exchange particles that move

out of its domain. Since the domain is moving at the speed of light, particles

can only move from right to left, therefore the communication is one-directional

although the particle manager in the framework can handle two-directional com-

munication. The particle manager can move particles to the correct domain even

if they jump across multiple domains, but in a real simulation this is usually

impossible because of the long dephasing length of high energy particles.

The 2D code is localized in the y direction and has a different communication

pattern from the 3D code. Fig. 3.6 shows the 2D domain decomposition and
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Figure 3.5: The drive beam can be viewed as a series of slices of width ∆ξ

distributed on different nodes.
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Figure 3.6: The plasma is distributed in y. The communications happen between

any two nodes.

communication pattern for the same 4-node configuration. The 2D code solves

for the plasma response for each transverse slice in the Fourier space. The mul-

tidimensional FFT routine in the framework requires a data transpose for each

dimension. The data transpose involves global, one-to-one communications. Due

to the large amount of operations in the Fourier space, the transpose routine

becomes a bottle neck for parallel simulation.

QuickPIC has been ported to several platforms, including Mac OS X, IBM

AIX and Linux. Most simulations are done on two parallel computers, SEABORG

at National Energy Research Scientific Computing Center (NERSC) and DAW-

SON in our plasma simulation group. SEABORG is a 6,656-processor IBM
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RS/6000 SP supercomputer with 10 teraflop/s peak performance. There are

380 compute nodes, each node has 16 processors. They are connected by a high-

bandwidth, low-latency switching network. DAWSON is a 512-processor Mac G5

cluster with 4.4 teraflop/s peak performance. There are 256 compute nodes and

each node has 2 processors. Gigabit ethernet is used which provides a low-cost

high performance network for the cluster.

We have run QuickPIC simulations as large as 2048×2048×512 grids but for

our parameter scan we use the “typical” size. For a typical QuickPIC simulation,

256× 256× 256 grids are used in 3D and 256 × 256 grids in 2D. 4 particles per

cell is also commonly used for the plasma. Since there is no field solver in the 3D

code, the 3D calculation only takes a small fraction of the total time. Most of the

time is spent in solving the plasma response for each slice. The execution time for

this kind of simulations scales well up to 32 processors on the IBM SP at NERSC.

However, it currently scales well to only 8 processors on the DAWSON G5 cluster

due to network overhead. The results of the timing benchmarks are shown in Fig.

3.7 to show the performance of the 2D loop on these two platforms. The timing

data was taken for different configurations of the nodes. “Same nodes” means

we use as many CPUs as possible for each node; for NERSC, each node consists

of 16 CPUs; for DAWSON, this number is 2. “Diff nodes” means that we only

use one CPU for each node. The different timing for DAWSON for these two

configurations shows there is some disadvantage to running the 2 CPUs each

node. This may be due to the competition for resources for the 2 CPUs. For

DAWSON, the difference caused by resource competition is greater than the

difference between inner-node and inter-node communications; therefore running

on 2 CPUs on each node is slower than running on 1 CPU for each node. However

the situation on NERSC is different. The resource competition is minimal and

the simulation on the same node is a little bit faster than on different nodes since
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the inner-node communication is more efficient.
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Figure 3.7: Timing of the 2D loop on two different platforms, i.e, NERSC with

high speed network and DAWSON with gigabit ethernet.

Another important observation is the network overhead caused by the slower

network on DAWSON. As more CPUs are used, we see super-linear acceleration

of the performance on NERSC due to its excellent network; while on DAWSON

the timing curve rolls over near 8 CPUs which is not surprising because slower

network is employed. To understand this better, we use a simple model for PIC

code timing,

ttotal = Np ∗ tp +Ng ∗ tg +Overhead (3.53)

In Eq. (3.53), Np is the number of particles and Ng is the number of grids.
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And tp is the time for each particle update and tg is the time for each field update.

These two are nearly constant for different simulations on a given machine. By

varying Np and Ng in the simulation, we are able to deduce the overhead of the

2D loop for the DAWSON platform. The result is shown in Fig. 3.8.
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Figure 3.8: The relation between the overhead and the number of CPUs in the

timing benchmarks on DAWSON cluster.

The overhead is most possibly caused by the latency of MPI calls on the giga-

bit ethernet hardware. A estimate of the total latency for all the data transpose

calls in QuickPIC gives a number on the order of the overhead observed. Further-

more the overhead is observed to grow linearly with the number of CPUs. This

is consistent with the global, one-to-one communication pattern in QuickPIC.

Since each CPU needs to communicate with all other CPUs, therefore the overall
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latency scales with the number of CPUs.

Figs. 3.7 and 3.8 clearly show that QuickPIC is latency limited on the DAW-

SON cluster. This makes QuickPIC simulations inefficient on more than 16 CPUs.

One possible solution is to restructure the FFT calls and combine transposes for

a larger amount of data.

Another technique which we refer to as “software pipelining” is also possible

for dramatically improving the parallel efficiency of QuickPIC. This is briefly

explained here. In QuickPIC, the 2D code views ξ as a time variable so the

calculation is sequential in ξ, and because the speed of the moving window is

c, no information is passed backward in ξ in the 3D code where ξ is treated

as a spatial variable. This feature allows QuickPIC to use software pipelining

to achieve greater parallelism. Using this technique multiple copies of the code

can be started simultaneously with each copy working on different parts in ξ

of the beam and passing the results to the one working on the adjacent part.

This is analogous to the instruction-level pipelining technique used in modern

CPU design where speed-up is achieved by adding more execution units to the

work flow. If the number of copies used is N , the code speeds up and scales by

approximately N times over its current speed. For typical QuickPIC runs, N can

be as large as 128. Since the code currently scales to 32 processors, it would be

possible with software pipelining to run efficiently on as many as 4096 processors.

3.4 Performance

In this section, we provide an estimate of the CPU savings for the QuickPIC

algorithm versus a full PIC algorithm such as OSIRIS. We start with consider-

ations for a beam driver. We assume both types of algorithms use a “moving”
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3D window of length Lz composed of Nx × Ny × Nz grids and the number of

particles per cell, Np, is the same. It is instructive to calculate the total number

of particle pushes. Suppose one wants to calculate the wake from an identical

beam. In a full PIC code the beam starts outside the plasma and then must

propagate through the box in the z direction. This requires Nz timesteps times

a factor of Kc = ∆z/(c∆t) due to the Courant condition (Kc = 31/2 assuming

cells are the same size in each direction). So the number of particle pushes is

Nx×Ny ×Nz ×Np×Nz ×
√

3 (it is really a factor of ∼ 2 less since not all of the

box is filled with particles at the beginning). On the other hand, using QuickPIC,

we only need to go through the 2D part of the code once. The number of 2D

particle pushes is Nx × Ny × Np × Nz where the Nz factor is the number of 2D

time steps. Therefore, assuming Np is the same there is a savings of Nz ×
√

3 in

particle pushes. For example, if Nz = 256, this is a factor of ∼ 450.

There is additional savings that comes from taking large 3D steps in s after

the initial wake is obtained. Suppose one wants to propagate a beam through one

betatron oscillation into the plasma, λβ ≡ 2πk−1
β = 2π

√
2γ c

ωp
. Using a full PIC

code to simulate one betatron wavelength, a total of (λβ/Lz)Nz×Kc updates are

required. This gives Nx×Ny×Nz×Np×λβ× (Nz/Lz)×Kc particle pushes. The

factor Nz/Lz is the cell size in z. On the other hand, using QuickPIC requires

only Nx ×Ny ×Np ×Nz ×Kβ particle pushes where Kβ is the number of steps

needed to resolve one wavelength. We typically use Kβ = 20 − 30. Therefore,

when modeling the propagation of a beam through a fixed distance (here one

λβ), there is a savings of (λβ × Nz ×Kc)/(Lz ×Kβ). For Nz ∼ 256, Kc ∼
√

3,

Lz ∼ 2.5λp, Kβ ∼ 20 and γb ∼ 105, λβNzKc/(KβLz) ∼
√

2γbNzKc/Kβ ∼ 1000.

However, the number of particle pushes is not the only issue. The QuickPIC loop

is less efficient than a full PIC loop because each 2D update has 2− 4 iterations

and the field solve involves numerous FFTs. We find from detailed timings that
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the actual speed-up is between 100 ∼ 1000.

For a laser driver, the cell size in z is typically much smaller in a full PIC

simulation, so the savings can be considerably higher. When modeling a beam

driver the cell size in z is ∼ .05c/ωp, while when modeling a laser driver the

cell size must be <≈ .25c/ω0. Therefore, the savings is typically [ω0/5ωp]
2 times

larger when modeling a laser driver. This factor is proportional to the ratio of

the cell size squared because there are ω0/5ωp times more particles and ω0/5ωp

times more time steps.

The above discussion raises the possibility of running a full PIC code to calcu-

late the wake and then using the wake to advance beam particles a large distance

forward in z and then repeating this loop. This super cycling approach where

beam and plasma particles are pushed with different time steps has been success-

fully implemented in OSIRIS [84]. This would be advantageous over a full PIC

code when the distance of the beam advance is larger than the window size. This

would still be a factor of NzKc less efficient than a quasi-static code but it could

be useful in some cases.

3.5 Summary

In this chapter, we have described in detail the algorithm and structure of a

new fully 3D, fully parallelized quasi-static PIC code called QuickPIC. We de-

scribed the full quasi-static equations and showed how to implement them into

a PIC code structure by combining a 2D plasma PIC code (plasma push, depo-

sition and field solver) and a 3D PIC code (beam push) to advance the beam.

Modifications to the charge and current depositions, particle push, and field solve

routines were described in detail. Because of the quasi-static approximation, the
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field solve and particle push are no longer time centered and an iteration loop

is needed. The detail implementation of the iteration loop was also described.

Several methods of initialization are available in QuickPIC including one to gen-

erate arbitrary beam shapes based on a non-uniform random number generator.

QuickPIC is fully parallelized using MPI and is capable of simulating PWFA and

LWFA problems with at least a factor of 100 savings in CPU needs as compared to

the fully explicit electromagnetic PIC code OSIRIS. Although not described here,

dynamic load balancing [82] as well as a field ionization package [85] have also

been added. A future improvement, i.e., “software pipelining” was also discussed

in section 3.3.
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CHAPTER 4

Benchmarking QuickPIC

In this chapter, we present the result of benchmarks of QuickPIC against a 3D

fully electromagnetic code OSIRIS. The greatest challenge is correctly computing

the wakes for given driver shapes. Once the wake is accurately computed then the

accuracy of the advance of the beam particles or laser is not an issue. Therefore,

the benchmarks to be presented are on the calculation of the wake for electron,

positron, and laser beams. In each case, we assume the beam is azimuthally

symmetric and it does not have any head to tail misalignment, i.e., there is no

tilt. We have benchmarked QuickPIC against OSIRIS for beams with asymmetric

spot sizes and tilts and the agreement is within the same accuracy as those for

the symmetric cases.

4.1 Benchmark for an electron beam driver

The first benchmark is done for an electron beam driver, for which we are

mostly interested in the focusing force on the beam and the longitudinal wakefield.

The electron beam has a bi-Gaussian density profile in both the transverse and

longitudinal directions, nb = N
(2π)3/2σ2

rσz
e−(x2+y2)/2σ2

re−ξ
2/2σ2

z . The spotsizes are

σr = 7µm and σz = 45µm, the emittances are εx = εy = 15mm ·mrad, and the

total number of electrons in the beam is N = 1.8 × 1010 . The beam is ultra-

relativistic with γ = 55800. The plasma density is n0 = 2.0 × 1016cm−3, which
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corresponds to a plasma skin depth of c/ωp = 37.5µm. kpσr = 0.19 << 1, so

the beam is considered narrow and the benchmark results should depend weakly

on σr. The peak beam density is much higher than the background plasma

density, nb/n0 = 25.9, thus the beam-plasma interaction is in the highly non-

linear blow-out regime and as we show the assumptions of Whittum fail [18].

The 3D OSIRIS and QuickPIC simulations are carried out in moving windows

with a box size 16c/ωp × 16c/ωp × 13.35c/ωp and conducting boundaries in the

transverse directions. The plasma provides strong screening of the driver’s fields.

So, although the electric and magnetic fields of the beam are huge in its vicinity,

they do not penetrate into the plasma beyond a few c/ωp. The transverse box size

is chosen to be large enough so that at the boundaries all fields go to zero, thus

the boundaries play little role here. The simulations use 256 × 256 × 256 cells;

the spatial resolution is 0.0625c/ωp for the transverse direction and 0.052c/ωp for

the longitudinal direction. For the OSIRIS simulation, the time step is chosen to

be 0.025c/ωp to satisfy the Courant condition. During the simulation the beam

has propagated 20c/ωp into the plasma. The beam is stiff due to its large Lorentz

factor; its shape almost does not evolve in this short distance. So the quasi-static

approximation should be well satisfied.

Shown in Fig. 4.1 are the longitudinal wakefields from QuickPIC and OSIRIS

simulations. Results from QuickPIC simulations with 2 and 4 iterations are

both shown and they differ slightly from each other and from the OSIRIS result

only at the back of the wake field structure. The agreement is improved with

more iterations. However the simulations with 2 iterations already gives very

satisfactory results even in this highly non-linear case. The discrepancy at the

positive spike is caused by the fact that the charge and current deposition schemes

diverge for plasma particles with Vpz ∼ c , therefore, a smaller 2D step ∆ξ is

required to make the deposition schemes more accurate.
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Figure 4.1: Longitudinal wakefields in QuickPIC and OSIRIS simulations for an

electron drive beam. Both 2 iterations(l=2) and 4 iterations(l=4) are used for

the QuickPIC simulations. The driver moves from right to left in this plot.
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Figure 4.2: Radial electric field comparison for electron drive beam.

109



-2

-1

0

1

2

-8 -6 -4 -2 0 2 4 6 8

Osiris
QuickPIC (l=2)

By
 (m

cω
p/e

)

X (c/ωp)

Figure 4.3: Azimuthal magnetic field comparison for electron drive beam.
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Figs. 4.2 and 4.3 show the radial electric fields and the azimuthal magnetic

fields along the x direction at the center of box (ξ = 0). Excellent agreement is

observed for both comparisons. There is a plasma sheath at radius r ≈ 1.5c/ωp

which carries high charge and current densities. The fields from the plasma

sheath almost cancel the fields from the beam. Therefore, both Ex and By are

small outside the sheath.

4.2 Benchmark for a positron beam driver

For the second benchmark we use a positron beam driver. A positron beam

attracts plasma electrons to the axis and creates a density compression region

near the axis. This process is non-linear in that electrons move towards the axis

with trajectories that cross. The resulting wake structure is small in scale, which

requires fine spatial resolution, thus increasing the problem size. The lack of

strong shielding from a sheath layer also makes a wide simulation box necessary.

Therefore, the positron benchmark is a more stringent test for the algorithm in

QuickPIC.

In the positron benchmark, we once again use a beam containing N = 1.8×

1010 positrons and set γ = 55800 . The beam spot sizes are σr = 25µm and

σz = 600µm respectively, and the emittances are εx = εy = 15mm ·mrad . The

plasma density is n0 = 2.0×1014cm−3, the peak density ratio is nb/n0 = 15.2 and

kpσr = 0.067 << 1. The OSIRIS simulation uses a 4c/ωp × 4c/ωp × 16c/ωp box

with 512×512×256 cells. The QuickPIC simulation uses a 8c/ωp×8c/ωp×16c/ωp

box with 1024× 1024× 256 cells. Here a larger box in the QuickPIC simulation

is needed due to the fact that a particle reflecting boundary is used in QuickPIC.

To show the fine wake structure, we plot the plasma density in both simulations

in Fig. 4.4. The plots show a small region of the simulation domain to give a
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Figure 4.4: The plasma electron charge density (ρp/ρion) in the x − z plane at

the center of the beam is shown for a) an OSIRIS simulation and b) a QuickPIC

simulation. In both cases, the driver moves from top to bottom.

better view of the positron wake. The plots show a low density area near the axis

and wing-like structures formed around it. The QuickPIC simulation once again

reproduces very faithfully most of the detailed features in the OSIRIS results.

Figures 4.5-4.7 are comparisons of the wake fields for the positron driver.

Both simulations show fine scale fluctuations in the longitudinal wakefield Ez

and multiple spikes in Ex (for the center slice with ξ = 0). These are the results

of the variations of local charge density near the beam core due to strong phase-

mixing as the electrons are drawn to the axis by the positron beam. However,

this process does not generate strong plasma currents to cancel the beam current.
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Figure 4.5: Comparison of the longitudinal wakefield for a positron driver.
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Figure 4.6: Radial electric field in the positron benchmark simulation.
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Figure 4.7: Azimuthal magnetic field in the positron benchmark simulation.
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Therefore, the azimuthal magnetic field is dominated by the beam current. As

seen in this benchmark, QuickPIC achieves very good agreement in the non-linear

regime. Finally, it should be noted that the positron wake fields are sensitive to

the spatial resolution, simulation box size, beam evolution after propagation into

the plasma and other boundary effects. A careful simulation setup is necessary

for the benchmark. The subtle differences between the two simulations observed

in Fig. 4.5, such as a small plateau region of the first decelerating field, the

amplitudes of the second decelerating field and the peak radial electric field, are

mostly due to these four factors.

4.3 Benchmark for a laser driver

The last benchmark is for a laser driver. The benchmark problem is adopted

from the standard problem proposed in ref. [86] with some modifications to the

laser parameters. The vector potential (not intensity) of the laser pulse has a

longitudinal profile of the polynomial form 10t′3 − 15t′4 + 6t′5 where

t′ = [1−H(t− t0)](t0 − t)/trise +H(t− t0)(t− t0)/tfall (4.1)

and H(t) is the Heaviside function. Here the laser has trise = tfall = 30fs

and the wavelength is 800nm. The profile is defined for the electric field, not

the intensity. The laser propagates in a uniform plasma with matching density

n0 = 1.38 × 1019cm−3. For this density, ω0/ωp = 11.24 and the non-relativistic

plasma skin depth equals the FWHM of the laser pulse longitudinal profile. The

transverse profile is Gaussian and the FWHM of the focused spot size is w0 =

13.66µm at the plasma entrance. The normalized vector potential of the laser is

|â| = 2 , thus the laser-plasma interaction is in the non-linear blow-out regime.
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The size of the simulation box is 320c/ω0×320c/ω0×321.8c/ω0 or 28.47c/ωp×

28.47c/ωp × 28.63c/ωp in the OSIRIS simulation. The number of the grids is

512×512×1024. For the 3D OSIRIS simulation, ∆t = 0.235c/ω0 , which satisfies

the Courant condition. And the laser pulse has traveled 312.55c/ω0 into the

plasma so that the laser pulse has not yet evolved. The QuickPIC simulation has

a shorter box 320c/ω0×320c/ω0×157.2c/ω0 to show the first wake bucket as the

OSIRIS simulation shows trapped particles in the second bucket. 256×256×256

grids are used in the QuickPIC simulation. For the relatively small frequency ratio

used the two simulations use a similar number of grids. However, if the frequency

ratio were increased by a factor R, the OSIRIS simulation would need R times

as many cells in z while the QuickPIC simulation would not. Fig. 4.8 shows

the longitudinal wakefield benchmark for the OSIRIS and QuickPIC simulations.

The curve from the QuickPIC simulation closely resembles the OSIRIS result,

and it is smooth while the OSIRIS curve is modulated by the second harmonic

of the V ×B force.
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Figure 4.8: Longitudinal electric field comparison for a laser driver.
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CHAPTER 5

Hosing instability

In this chapter, we will use QuickPIC to study the hosing instability of an

intense drive beam in the “afterburner” scenario. Earlier work on the hosing in-

stability in a simple equilibrium geometry indicates that the hosing instability will

be very severe and break up the drive beam in a short distance. We use Quick-

PIC to verify the result in this simplified situation. The possible “afterburner”

design is in a regime not suitable for this simplified theory. The ion channel is

self-generated by the drive beam and the blow-out process is non-adiabatic and

relativistic. We will derive a new linear hosing theory based on trajectory per-

turbation in the self-consistent fields and show that QuickPIC simulations agree

very well with the new theory.

5.1 Hosing Instability

In the linear regime of PWFA where the beam density is lower than the

background plasma density, an instability known as the Transverse Two Stream

(TTS) instability arises from the strong coupling of the plasma [22, 64]. Similar

instability could happen when the beam density is higher than the plasma density.

In this case the plasma electrons are expelled from the beam’s path and the

interaction is in the blow-out regime. This instability is then known as the

hosing instability, and it is one of the most important instabilities for intense
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beam-plasma interactions. Hosing is a transverse instability of the beam which

grows from an initial displacement of the beam centroid. There are basically two

regimes of hosing, as characterized by Whittum [87]; one is the ion-hose instability

which results from the interaction between ions and the beam electrons, the other

one is the electron-hose instability in which the electron sheath in a blow-out

channel couples with the beam. In the possible “afterburner” scenario, the ion

motion is negligible during the time for the beam to pass by, therefore only the

electron-hose is of importance.

The electron hosing instability is usually triggered by the head-tail offset of

the beam. A tilted beam perturbs the plasma electron blow-out trajectory, cre-

ating a slightly displaced ion channel. A shifted ion channel will exert a force on

the beam electrons which pulls them toward the direction of the perturbation.

Thus a positive feedback between the electron sheath and the beam electrons is

established along the beam. Due to the relativistic mass of the beam electron,

this kind of hosing occurs on the betatron timescale. But the wavelength and fre-

quency of the transverse beam centroid oscillation have non-linear dependencies

on the propagation distance and the longitudinal position relative to the beam.

Fig. 5.1 shows a typical real space plot of the beam for the nominal parameters

in [24] (see also Table 5.1) when hosing occurs and saturates over time.

The initial beam in Fig. 5.1 has a bi-Gaussian profile, i.e.,

nb =
N

(2π)3/2σ2
rσz

e−((x−xb)
2+y2)/2σ2

re−ξ
2/2σ2

z . (5.1)

The beam centroid xb is defined as the average position of the beam particles

for each longitudinal position in the beam. A linear tilt with slope xb/ξ = 0.011

is imposed on the centroid and the center of the beam is placed in the middle

of the simulation box. From Fig. 5.1, it can be seen that there are three main
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Figure 5.1: A plot of the shape of the beam and the ion channel in the nominal

“afterburner” simulation.
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Parameters Value

Initial energy (GeV ) 30

Beam charges (1010) 1.8

Emittance εN (mm ·mrad) 15

Spot size σr (µm) 7

Bunch length σz (µm) 45

Plasma density (cm−3) 2.0× 1016

Plasma length (cm) 255

Density ratio (nb/n0) 25.9

Slope of linear tilt 0.011

Table 5.1: Nominal parameters for the hosing simulation.

regions along the beam which exhibit different behaviors. The first one is the

region near the head of the beam, i.e., the yellow box in Fig. 5.1. This is the

place where the ion channel begins to form and the beam in this region displays

little hosing. Even for a strong beam, this underdense region is too short for any

hosing instability to grow. Indeed, the lack of hosing in this region is observed

in many simulations. Simulation results always show a self-aligning effect at the

front of the beam, in which the latter part of the head aligns with the former

part gradually. It is difficult to quantify the exact reasons for this behavior. Here

we provide some qualitative explanations. At the very front of beam where the

beam density is lower than the plasma density, the analysis of transverse two

stream instability applies and the growth rate is generally orders of magnitude

smaller than the one for the hosing instability. Further back in the beam where

the density is sufficiently large, the electrons begin to blow out, yet there are

substantial trajectory crossing and phase mixing. And the ion channel is not

completely formed under this situation, thus reducing the focusing force on the
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beam. The combined effect of these three factors will certainly lead to a much

smaller growth rate for hosing, if there is any. Therefore, for practical reasons we

may assume there is no hosing in this region.

The second region is around the area indicated by the blue arrow. In this

region, the ion channel is completely formed. It has a clear edge and the elec-

tron motion in the plasma sheath at the ion channel boundary is very laminar.

Therefore the shape of the ion channel can be represented by a single particle’s

trajectory. Clear evidences of the hosing growth are observed in many numeri-

cal simulations. Hosing causes the beam centroid to oscillate with an increasing

amplitude, Fig. 5.2 shows the centroid oscillation for the point indicated by the

blue arrow in Fig. 5.1.

We have discussed two regions of interaction in beam hosing instability. Fur-

ther back in the beam, where the beam centroid oscillation amplitude becomes

large and comparable to the channel radius, the beam hits the boundary of the

ion channel and particles are lost when they get out of the channel. Therefore

the maximum centroid oscillation amplitude is limited by the width of the ion

channel. This is the third region of the hosing behavior which is indicated by the

green arrow in Fig. 5.1.

When the amplitude of the hosing oscillation is small, the electron beam can

still be considered rigid and can be described by the centroid position xb. Also

the perturbed trajectory of an plasma electron only slightly deviates from an

unperturbed one. Therefore the electron density at the ion channel boundary is

changed slightly. To the lowest order, the effect of the density perturbation can be

approximated by a dipole moment created by shifting the ion channel by a small

amount. The shifted ion channel centroid xc, which is defined as the equilibrium

position (force is zero) in the channel(Fig. 5.3), is determined by the plasma
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Figure 5.2: The absolute value of the centroid position |xb| in a self-generated

channel (blue curve) and the prediction from a linear theory for a equilibrium

channel (red curve). The black line is a linear fit for the initial growth in the

simulation before the nonlinearity occurs. This initial growth is orders of mag-

nitude smaller than the result for a equilibrium channel. The hosing amplitude

begins to saturate for s > 0.6m.
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response to the electron beam. On the other hand, the beam feels an asymmetric

focusing force from the ion channel. The coupling of the beam centroid and the

channel centroid will eventually cause the beam to hose. A diagram of the linear

hosing analysis is shown in Fig. 5.3.

Beam centroid ),( ξsx
b

),( ξsx
c

Channel centroid

Equilibrium ion channel

a)

b)

Figure 5.3: A diagram of the linear fluid analysis for hosing instability. a) the

tilted beam in a equilibrium channel. b) the cross-sections of the beam and the

ion channel which are shifted by an amount of xb and xc respectively.

A linear fluid model for the hosing instability in a equilibrium channel was

developed by Whittum in [43]. Here we will introduce this model which serves

as a starting point for a new theory suitable for a non-equilibrium channel. By
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equilibrium, we mean that the channel radius is defined by the charge neutral-

ization radius requ = rneu =
√
nbr2

b/np, where rb is the radius of a flat top beam,

and for a beam with Gaussian profile, rb =
√

2σr. In an equilibrium channel, the

plasma electrons have no radial velocity. Furthermore the longitudinal velocity

is assumed to be small, therefore the plasma electrons only feel the space charge

force. The longitudinal velocity is not negligible for very intense beam for which

requ >> c/ωp. The equilibrium channel is not a typical situation for most beam

plasma interactions and it is not appropriate for PWFA studies. However, when

the beam is long, i.e., τ >> 1/ωp, where τ is the bunch duration, the plasma

does respond adiabatically to the beam and if the normalized charge per unit

length nb/n0(kpσr)
2 is not too large, the longitudinal velocities of electrons in the

sheath are non-relativistic. Under these conditions, one can assume a equilibrium

channel.

By adopting the above assumptions, one can derive the coupled equations for

the beam centroid and the channel centroid based on a fluid description. The

potentials ψ and φ can be written as ψ = ψ0+ψ1 and φ = φ0+φ1, where subscript

0 denotes the unperturbed quantities and subscript 1 are for the perturbations.

ψ1 and φ1 can be calculated from the Maxwell’s equations,

∇2
⊥ψ1 = −4πρe1, (5.2)

∇2
⊥φ1 = −4π(ρb1 + ρe1). (5.3)

Since the longitudinal velocities of the electrons are assumed to be small,

we can drop the longitudinal current in the continuity equation of the plasma

electrons. The linearized continuity equation can be written as,
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∂ρe1
∂ξ

+∇⊥ · (ρe0ve1) = 0. (5.4)

The plasma electron’s motion is assumed to be non-relativistic under the space

charge perturbation from the beam and the electron sheath itself.

∂ve1
∂ξ

=
e

m
∇⊥φ1. (5.5)

There are no electrons in the ion channel, i.e., ρb0 = 0 for r < requ, so it can

be seen from Eq. (5.4) that the perturbation on the plasma electron density ρe1

only exists at the channel boundary. To the lowest order, the ion channel is still

round with radius requ and only shifts to a new centroid position xc. Thus the

density perturbation takes the form ρe1 = enpxccosθδ(r− requ), where δ(r) is the

Dirac delta function and θ is the azimuthal angle in the transverse plane.

Note that for 2D slab geometry, the electric field at the channel from the

density perturbation of the beam will be independent of xb. Therefore, hosing

can only occur in full 3D geometry.

For small perturbations, the distortion of the beam is considered negligible.

Therefore, the density perturbation can be determined in the same way as the

perturbation to the plasma electrons, giving ρb1 = enbxbcosθδ(r− rb). Substitut-

ing the expressions for ρe1 and ρb1 into 5.3, then combining Eqs. (5.4) and (5.5),

one can obtain the equation of xc for a given xb. In normalized units, it can be

written as

∂2
ξxc + ω2

0xc =
nbr

2
b

npr2
equ

ω2
0xb, (5.6)

where ω0 ≡ kp/
√

2 = ωp/
√

2c and
nbr

2
b

npr2equ
= 1 for the equilibrium channel.
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The particle beam moves at a speed close to the speed of light, so an individual

beam electron does betatron oscillation around the equilibrium position under

the focusing force from the ion channel. When the beam and the channel are

disturbed, the restoring force on the beam is determined by the relative position

(xc − xb). The equation of motion for the beam centroid can be written as,

∂2
sxb + k2

βxb = k2
βxc, (5.7)

where kβ = kp/
√

2γ is the betatron wavenumber.

Eqs. (5.6) and (5.7) describe the couping of the beam centroid and the ion

channel centroid for the small amplitude hosing instability. The asymptotic so-

lution for a short bunch ω0ξ << kβs is given in [44]. We provide it here as a

reference,

xb(s, ξ) ≈
37/4

27/2π1/2

xb(0, ξ)

A3/2
eA cos(kβs−

A√
3

+
π

4
) (5.8)

In Eq. 5.8, A(s, ξ) = 33/2

4
[(kβs)(ω0ξ)

2]
1/3

.

The asymptotic solution, Eq. (5.8), is plotted in the red curve in Fig. 5.2

for the parameters shown in Table (5.1) and it is compared with a simulation

result in the blue curve. In the simulation, the bunch length was kpσz = 1.2. The

centroid oscillation in the simulation follows a linear exponential growth which is

measured by the black curve and then saturates after a certain distance. If the

growth was linear for the entire simulation, the final oscillation amplitude would

still be one order of magnitude smaller than the prediction from Eq. (5.8). This

comparison clearly shows that the above fluid analysis of the hosing instability

does not give correct predictions for the non-linear blow-out regime of an intense

short beam. In the next section, we will reanalyze the hosing instability in terms
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of the motion of an electron at the edge of the ion channel.

5.2 Hosing theory and verification

5.2.1 Hosing theory based on particle model

In this section we will introduce a particle model for the hosing instability

analysis. The model is based on the perturbation to a plasma electron’s trajectory

in the blow-out regime. The main assumptions are,

1. The perturbation is on the 0th order trajectory and is assumed to be small;

therefore this is still a linear perturbation theory. In the fluid model, there

is no 0th order trajectory, since the electrons are at rest.

2. The beam centroid is treated the same way as in the previous analysis. This

means that the beam is round and it must be narrow compared with the

blow-out radius, so the additional effects caused by the deformation of the

beam can be neglected.

3. The deformation of the channel shape under small amplitude perturbation

is omitted, therefore the channel is only shifted to a new position.

4. The center of the channel can be defined as xc(ξ) = (r+(ξ) − r−(ξ))/2,

where r+(ξ) and −r−(ξ) are defined as the trajectories of the innermost

electrons at the upper and lower boundaries of the ion channel in the plane

of the perturbation. This is illustrated in Fig. 5.4. We define (r+ + r−) as

the diameter of the channel. The change of this quantity is assumed to be

a higher order effect and is consequently dropped in our analysis.
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r0(ξξξξ) r+(ξξξξ)

-r0(ξξξξ) -r-(ξξξξ)

Figure 5.4: A cartoon for the trajectory perturbation model used in the hosing

analysis. ±r0 are the unperturbed trajectories of the innermost electrons and r+,

−r− are their perturbed trajectories respectively.
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Based on these assumptions, we will derive new coupled equations for the

channel centroid. The derivation starts from the relativistic equation of motion

for a plasma electron,

dP⊥

dt
=

d

dt
(γ
dr

dt
) = −(Er − VzBθ), (5.9)

where we adopt the same notations and definitions as used in Chapter 2 but

the normalized units c = 1, e = 1 and m = 1 are used for simplicity.

The derivative with respect to time can be written in terms of the fast time

scale variable ξ. Using γ(1− Vz) = 1 + ψ, it becomes,

d

dt
= (1− Vz)

d

dξ
=

1 + ψ

γ

d

dξ
. (5.10)

Substituting Eq. (5.10) and γ =
1+P 2

⊥+(1+ψ)2

2(1+ψ)
into Eq. (5.9), one can obtain,

2(1 + ψ)2

1 + (1 + ψ)2(dr
dξ

)2 + (1 + ψ)2

d

dξ

[
(1 + ψ)

dr

dξ

]
= −(Er − VzBθ), (5.11)

where ψ is the solution to −∇2
⊥ψ = 4π(ρ− Jz). Eq. (5.11) can be rewritten

as,

2(1 + ψ)2 d

dξ

[
(1 + ψ)

dr

dξ

]
= −(Er − VzBθ)

[
1 + (1 + ψ)2(

dr

dξ
)2 + (1 + ψ)2

]
. (5.12)

Eq. (5.11) or Eq. (5.12) describes the trajectory of an electron in the self-

consistent radial electric and azimuthal magnetic fields. When the beam is

straight, i.e., there is no perturbation, the solution for r(ξ) is r0(ξ), and the
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fields and potential are Er0, Bθ0 and ψ0. The longitudinal velocity is denoted as

Vz0.

Next we perturb this equilibrium solution by small perturbations which are

designated by subscript “1” in the following equations.

r = r0 + r1, (5.13)

Er(r0 + r1) = Er0 + Er1, (5.14)

Bθ(r0 + r1) = Bθ0 +Bθ1, (5.15)

Vz(r0 + r1) = Vz0 + Vz1, (5.16)

and

ψ(r0 + r1) = ψ0(r0). (5.17)

Relationship (5.17) follows from the assumption that the channel shape does

not change and the channel is simply displaced by r1.

We now substitute the above expansions into Eq. (5.12) and order the result-

ing terms.

The 0th order equation is,

2(1 + ψ0)
2ψ̇0ṙ0 + 2(1 + ψ0)

3r̈0

= −(E0 − Vz0B0)
[
1 + (1 + ψ0)

2ṙ0
2 + (1 + ψ0)

2
]
. (5.18)

here we adopt the convention dψ
dξ
≡ ψ̇.

The 1st order equation is,
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2(1 + ψ0)
2ψ̇0ṙ1 + 2(1 + ψ0)

3r̈1

= −2(E0 − Vz0B0)(1 + ψ0)
2ṙ0ṙ1

−(E1 − Vz0B1 − Vz1B0)
[
1 + (1 + ψ0)

2ṙ0
2 + (1 + ψ0)

2
]

(5.19)

We next use the 0th order solution to reduce Eq. (5.19) further. From the

0th order equation, the Lorentz force can be expressed as,

−(E0 − Vz0B0) =
1 + ψ0

γ0

[
(1 + ψ0)r̈0 + ψ̇0ṙ0

]
. (5.20)

Dividing the 1st order equation by 2(1+ψ0)
3 and substituting Eq. (5.20) into

the new equation, Eq. (5.19) becomes,

r̈1+

{
ψ̇0

1 + ψ0

− 1

γ0

[
(1 + ψ0)r̈0 + ψ̇0ṙ0

]
ṙ0

}
ṙ1 = − γ0

(1 + ψ0)2
(E1−Vz0B1−Vz1B0).

(5.21)

Eq. (5.21) is a second order ODE for the perturbation r1 with the known

0th order blow-out trajectory r0 in the coefficients. This equation also involves

the derivatives of the 0th order trajectory, the potential ψ0 and its derivative

and the 0th order longitudinal velocity and Lorentz factor along the trajectory.

These are 0th order quantities depending on the profile of the drive beam. They

can be extracted from a simulation or approximated using an analytical model

described in Appendix B. The perturbation to the Lorentz force is the source

term in Eq. (5.21). The self-consistent force −(E1 − Vz0B1 − Vz1B0) is the sum

of the perturbation from the beam and the response from the charge and current

at the edge of the channel. However, it is difficult to calculate the charge and

current profile at the edge of the channel. We therefore express the self-consistent
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force in terms of the perturbation from the beam and a numerical factor c1(ξ)

which quantifies the importance of the forces from the plasma response to those

from the beam tilt, i.e.,

−(E1 − Vz0B1 − Vz1B0) = Fb1 + Fp1 = Fb1c1(ξ), (5.22)

where Fb1 = (Eb1 − Vz0Bb1) is the perturbation to the Lorentz force from

the beam, and Fp1 = Fb1(c1(ξ) − 1) is the change of the force from the plasma

response. We obtain c1 from simulations and for many situations c1(ξ) ∼ 1.

On the other hand, it is rather simple to derive Eb1 and Bb1 as they are just

the change of the electric and magnetic fields from the beam when the centroid

is shifted by xb.

Eb1 = Bb1 = −2πnbr
2
b

[
1

r0 + r1 − xb
− 1

r0

]
. (5.23)

Note that in 2D slab geometry, Eb1 = Bb1 = 0.

When |r1 − xb| << r0, we can expand the total force from the beam as

Fb1 = −(Eb1 − Vz0Bb1) ≈
2πnbr

2
b (1− Vz0)

r2
0

(xb − r1). (5.24)

Finally, Eq. (5.21) is written as,

r̈1 +

{
ψ̇0

1 + ψ0

− 1

γ0

[
(1 + ψ0)r̈0 + ψ̇0ṙ0

]
ṙ0

}
ṙ1 = c1c2c3ω

2
0(xb − r1), (5.25)

where two new factors are defined as c2(ξ) = 1
1+ψ0

and c3(ξ) =
nbr

2
b

ner20
. The

physics which produces c2 and c3 will be discussed shortly.
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Eq. (5.25) is for the upper trajectory r+ = r0 + r1. The lower trajectory

−r− = −r0 − r2 can be solved using a similar equation for r2,

r̈2 +

{
ψ̇0

1 + ψ0

− 1

γ0

[
(1 + ψ0)r̈0 + ψ̇0ṙ0

]
ṙ0

}
ṙ2 = −c1c2c3ω2

0(xb + r2). (5.26)

So the channel centroid, which is defined as xc = (r+ − r−)/2 = (r1 − r2)/2,

satisfies,

ẍc +

{
ψ̇0

1 + ψ0

− 1

γ0

[
(1 + ψ0)r̈0 + ψ̇0ṙ0

]
ṙ0

}
ẋc = c1c2c3ω

2
0(xb − xc). (5.27)

We find that for most situations of interest the effect of the terms in bracket

is small. This is partly because these terms are proportional to ψ̇0 and ṙ0, for

weak beams each term is small while for intense beams the terms tend to cancel

each other. Therefore, we drop the terms in bracket. Then the result can be cast

into a form comparable to the channel centroid equation Eq. (5.6) from the fluid

theory.

∂2
ξxc + c1c2c3ω

2
0xc = c1c2c3ω

2
0xb. (5.28)

In Eq. (5.28), c1, c2 and c3 are all functions of r0(ξ). Therefore the strength of

the coupling from the beam centroid to the channel centroid varies along the blow-

out trajectory. In general, these coefficients can be obtained from a simulation

without perturbations. In Appendix B, an analytical model to determine r0(ξ)

and ψ0(ξ) is introduced. In principle, c2 and c3 which depend on r0(ξ) and ψ0(ξ)

can be analytically calculated for an arbitrary beam profile.

For adiabatically formed channels with small blow-out radius, plasma elec-

trons are pushed to the charge neutralization radius slowly, Vr ≈ 0 and Vz0 ≈ 0.

135



The fields from the plasma sheath is weak, and so are the perturbations to the

fields. In this case, ψ0 << 1, r0 = rb, and Fp1 ≈ 0. Therefore, c1 ≈ c2 ≈ c3 ≈ 1,

the result of the fluid model is recovered. If the beam-plasma interaction becomes

more intense, the plasma electrons will be relativistic and the plasma sheath car-

ries large charge and current densities. These lead to three important physical

effects: 1) The plasma sheath generates strong electric and magnetic fields which

tend to reduce the perturbation (the c1 coefficient); 2) The relativistic mass will

change the resonant frequency, and the plasma electrons may also gain substan-

tial longitudinal momentum so the 0th order Lorentz force becomes important

(the c2 coefficient). 3) The blow-out radius does not always equal the charge

neutralization radius, so c3 varies along the blow-out trajectory. These effects

which are contained in coefficients c1, c2, c3, change the hosing growth. The fluid

analysis of Whittum could in principle take into account of effects 1) and 3),

however they would be included in an inconsistent manner, e.g., the effect of c3

only appears in the RHS of Eq. (5.6) not the LHS. Generally, for a relativistic

non-adiabatic blow-out ion channel, c1c2c3 < 1, therefore the hosing growth is

reduced by the combination of all these effects.

We have derived the new channel centroid equation based on a quasi-static

particle model. The analysis is simplified by dropping the ψ̇0 and ṙ0 terms in Eq.

(5.27). In the next section we will show that this is justified as we find excellent

agreement between the new hosing theory and QuickPIC simulations.

5.2.2 Verification of the model

In this section, we present the simulation results which directly verify the

correctness of our new theoretical analysis for hosing. The 3D nature of the hosing

instability requires full scale 3D PIC simulations. These simulations are time-
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consuming using conventional PIC codes, as the beam has to propagate several

betatron wavelengths before a noticeable hosing oscillation can be detected. The

vast scale difference between the betatron wavelength and plasma wavelength

determines that full PIC codes are inefficient to model such an interaction. Our

3D simulations are conducted using QuickPIC, and each simulation only takes

several hours on 16 CPUs on DAWSON cluster.

5.2.2.1 Hosing for the adiabatic non-relativistic blow-out regime

The first simulation is in the adiabatic non-relativistic blow-out regime. Fig.

5.5 shows the initial beam density and plasma response. Here we use two beams in

the simulation to create an adiabatic channel. The first one is short and narrow,

it blows out electrons creating a channel with a radius small compared with the

plasma skin depth. The second beam is also narrow and it immediately follows

the first beam. The density of the second beam is chosen to keep the channel flat.

A linear tilt is imposed on the second beam along the moving direction, with the

head of the beam on the axis and the tail off axis.

The simulation parameters are: plasma density n0 = 5.66× 1016cm−3, beam

spot size σr = 9.09 × 10−3c/ωp, energy of the beam γb = 55800, charge of the

first beam Q1 = −2 × 108e, charge of the second beam Q2 = −1.2 × 109e.

The simulation box size is 3.6c/ωp × 3.6c/ωp × 17.1c/ωp. 256 × 256 × 256 grids

and 5,242,880 particles for each beam and 4 particles/cell for the plasma are

used in the simulation. The density of the first beam rises linearly from zero

to its maximum in L1 = 4.91c/ωp while the second beam has a uniform density

along the axis with a length L2 = 11.4c/ωp. The small separation of the two

beams is adjusted to make the transition in the shape of the channel smooth.

The maximum blow-out radius is rblow−out = 0.23c/ωp which is small compared
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First 

beam

Plasma

Second 

beam

Figure 5.5: Density plot of the beams (left) and plasma (right) in the simulation

for the hosing instability in the adiabatic non-relativistic blow-out regime. The

beams move downward in this plot.

with the plasma skin depth. The slope of the linear tilt of the second beam is

1.96× 10−3.

The position of the centroid at ξ = 3c/ωp in the second beam is plotted as

a red curve in Fig. 5.6. We notice that c1 ≈ c2 ≈ c3 ≈ 1 in this regime, so Eq.

(5.28) has the same form as Eq. (5.6). We numerically integrate the coupled

equations Eq. (5.6) and Eq. (5.7) and the result is plotted as a blue curve in Fig.

5.6 which is in good agreement with the simulation result. This indicates that

both our new theory and Whittum’s theory can describe the hosing instability

accurately in this regime.

5.2.2.2 Hosing for the adiabatic relativistic blow-out regime

The second simulation is in the adiabatic relativistic blow-out regime. Fig.

5.7 shows the initial beam density and plasma response. Similar to the first

simulation, two beams are used to blow out a channel which is relatively uniform
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Figure 5.6: Hosing growth of the centroid oscillation as a function of propaga-

tion distance s from the simulation and the theory prediction for the adiabatic

non-relativistic blow-out regime.
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near the second beam. This is done by placing the second beam at a location

where the blow-out radius is maximum and adjusting the total charge of the

second beam such that the blow-out radius remains constant thereafter.

First 

beam

Plasma

Second 

beam

Figure 5.7: Density plot of the beams (left) and plasma (right) in the simulation

for the hosing instability in the adiabatic relativistic blow-out regime.

To study hosing in this regime, we simulate a plasma density of n0 = 5.66×

1016cm−3, beam spot sizes of σr = 8.98 × 10−2c/ωp, and beam energies of γb =

55800, charges ofQ1 = −6×1010e and ofQ2 = −2.4×1011e for the first and second

beams respectively. The simulation box size is 22.4c/ωp × 22.4c/ωp × 17.1c/ωp.

256 × 256 × 256 grids and 524,288 particles for each beam and 4 particles/cell

for the plasma are used in the simulation. The density of the first beam rises

linearly from zero to its maximum in L1 = 4.91c/ωp while the second beam has

a uniform density along the axis with a length of L2 = 8.72c/ωp. The separation

of the two beams is D = 2.68c/ωp. In this case, the maximum blow-out radius is

rblow−out = 4.3c/ωp. The slope of the linear tilt is 7.69× 10−3.

The centroid oscillation is measured for a slice at 5c/ωp in the second beam.

The simulation result and the theory prediction based on the new theory are
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Figure 5.8: Hosing growth of the centroid oscillation as a function of propaga-

tion distance s from the simulation and the theory prediction for the adiabatic

relativistic blow-out regime.

141



plotted at the bottom of Fig. 5.8 in red and blue curves. The three factors c1,

c2 and c3 are taken from simulations. The ψ0 at the ion channel boundary is not

negligible in this case (i.e., ψ0 becomes comparable to 1), therefore the relativistic

and longitudinal velocity effects represented by the c2 factor are important as

can be seen in Fig. 5.8. Because the blown-out electrons have a substantial

longitudinal velocity, the Lorentz force also makes the equilibrium radius larger,

this reduces hosing by reducing the factor c3. Fig. 5.8 makes clear that the new

hosing theory is in excellent agreement with the simulations, while the theory of

Whittum greatly overestimates hosing growth by two orders of magnitude in only

6 betatron oscillations! Furthermore, Fig. 5.8 also shows that each coefficient is

important for this situation.

5.2.2.3 Hosing for the non-adiabatic non-relativistic blow-out regime

The third case is what we refer to as the non-adiabatic non-relativistic blow-

out regime. Fig. 5.9 shows the initial beam density and plasma response. Only

one beam is used in the simulation. To make the blow-out more abrupt, the

beam density peaks at the head and linearly decreases to zero towards the tail.

For this case, we simulate a plasma density of n0 = 2×1016cm−3, a beam spot

size of σr = 5.3× 10−3c/ωp, a beam energy of γb = 55800, and a beam charge of

Q = −1.8× 108e. The length of the beam is L = 3.72c/ωp. The maximum blow-

out radius is rblow−out = 0.24c/ωp, and the slope of the linear tilt is 4.17× 10−3.

The simulation box size is 4c/ωp × 4c/ωp × 4.3c/ωp. 512 × 512 × 256 grids and

4,194,304 particles for the beam and 4 particles/cell for the plasma are used in

the simulation.

The beam centroid oscillation at 3c/ωp in the beam is plotted vs. s in Fig. 5.10

as a red curve. The green dashed curve is the result from the fluid theory. The
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Figure 5.9: Density plot of the beams (left) and plasma (right) in the simulation

for the hosing instability in the non-adiabatic non-relativistic blow-out regime.

other two curves at the bottom of the plot are the results from our theory with

only c3 correction, and with both c2 and c3 corrections. For this non-relativistic

blow-out situation, the deviations of c1 and c2 from unity are small and only

the position dependent correction to c3(ξ) is needed. Since the plasma response

is weak in this regime, the main reason for reduced hosing growth is from the

non-adiabatic nature of the blow-out process, i.e., the ξ dependence of rb(ξ).

5.2.2.4 Hosing for the non-adiabatic relativistic blow-out regime

The fourth case is what we refer to as the non-adiabatic relativistic blow-out

regime. Fig. 5.11 shows the initial beam density and plasma response. This

simulation is similar to the non-adiabatic non-relativistic blow-out simulation,

except that the beam has more charge to make the blow-out process relativistic.

For this case, we simulated a plasma density of n0 = 2 × 1016cm−3, a beam

spot size of σr = 1.3 × 10−2c/ωp, a beam gamma of γb = 55800, and a beam

with charge Q = −9 × 109e. The length of the beam is still L = 3.72c/ωp. The
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Figure 5.10: Hosing growth of the centroid oscillation as a function of propagation

distance s from the simulation and the theory prediction for the non-adiabatic

non-relativistic blow-out regime.
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maximum blow-out radius is now rblow−out = 1.5c/ωp and the slope of the linear

tilt is still 4.17 × 10−3. The simulation box size is 12c/ωp × 12c/ωp × 4.3c/ωp.

512 × 512 × 256 grids and 4,194,304 particles for the beam and 4 particles/cell

for the plasma are used in the simulation.

Head

Plasma

Tail

Figure 5.11: Density plot of the beams (left) and plasma (right) in the simulation

for the hosing instability in the non-adiabatic relativistic blow-out regime.

The beam centroid oscillation at 3c/ωp in the beam is plotted in Fig. 5.12

as a red curve. The green dashed curve is the result from Whittum’s theory

and the blue dashed curve is from our new model. The new model also gives

a reduced hosing growth for this case and the agreement with the simulation

is satisfactory. The other two curves at the bottom of the plot are the results

from the new model with only the c3 correction, and with both the c2 and c3

corrections. The correction from c3, i.e., the radius of the blow-out trajectory,

has the largest contribution to the reduced hosing growth while the other two

corrections also have smaller but still important contributions. The simulation

result has a slightly lower hosing growth than the prediction from the new model.

It might be due to the dropping of the terms proportional to ẋc in the channel
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Figure 5.12: Hosing growth of the centroid oscillation as a function of propagation

distance s from the simulation and the theory prediction for the non-adiabatic

relativistic blow-out regime.
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centroid equation, i.e., Eq. (5.27). We will investigate this discrepancy in the

future.

5.3 Summary

The hosing instability is perhaps the biggest obstacle to making a high en-

ergy plasma wakefield acceleration stage. In this chapter, we studied the electron

hosing instability using a particle model. An equation of motion describing the

trajectory of a plasma electron in the moving window was derived. A linear per-

turbation theory is developed based on this equation. The new coupled centroid

equation for the ion channel was cast into a form which can be easily compared to

the result from previous fluid theory. The theory includes three numeric factors

which reduce the coupling of centroid oscillation between the beam and the ion

channel. These three factors represent the effects from the plasma self fields, the

relativistic mass and the axial motion of plasma electrons, and the ξ-dependence

of the channel radius respectively. Verification of the new particle model was

carried out in four different blow-out regimes and the agreements between the

model and the simulation results are found to be excellent.
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CHAPTER 6

Simulation of Afterburner

The plasma afterburner has been proposed as a possible advanced accelerator

scheme for a future linear collider. The concept which was introduced in section

1.5 uses a high energy electron(or positron) drive beam from an existing linac such

as the SLC to drive a plasma wake. The wakefield which has a phase velocity

equal to the velocity of the beam can be used to accelerate part of the drive

beam or a trailing beam. Several issues such as the efficient transfer of energy

and the stable propagation of the drive and trailing beams in the plasma are

critical to the afterburner concept. In this chapter, we investigate the nonlinear

beam-plasma interactions in such a scenario using QuickPIC.

6.1 Choosing parameters

In the non-linear blow-out regime of PWFA, the accelerating electric field can

be roughly estimated by the 1D wave-breaking limit Ewave−breaking ≈ mcωp/e ≈

96
√
n0 eV/m, where n0 is in unit of cm−3. Therefore larger accelerating fields

can be achieved by using higher plasma density. However, due to technological

limitations, the total number of beam particles generated in SLC or ILC is about

2 × 1010 and the longitudinal size is on the order of 10 ∼ 100 microns. These

parameters put a limit on the maximum plasma density if one still wants to op-

erate in the blow-out regime and one wants efficient beam-loading to be possible.
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We use n0 ∼ 1016cm−3, which gives c/ωp ∼ 53µm and Emax ∼ 10 GeV/m as a

starting point.

In general, to efficiently transfer the energy from the drive beam to the wake

and then to the trailing beam, the density profile of both beams are of importance.

This is because the blow-out process is determined by the ratio Λb/Λ0, where

Λb = nbσ
2
r is the charge per unit length of the beam and Λ0 = npk

−2
p is the

charges per unit length of the plasma in a cross section of (c/ωp)
2. When the

beam radius is comparable to the blow-out radius, the blow-out trajectory also

depends on the transverse profile of the beam. However, in the large blow-out

radius situation, i.e., rbm >> r0, where rbm is the maximum blow-out radius and

r0 is the transverse size of the beam, the dependence on the transverse profile

is small, thus the longitudinal profile of the drive beam alone determines the

rate of energy loss to the wake. The linear theory of beam loading [13] gives

the ideal longitudinal “door-step” profile of the drive beam to achieve constant

energy transfer rate to the wake inside the beam. In a future publication [37]

we will show that even in the non-linear blow-out regime, a wedge shaped beam

is best. In our simulations, the beam density rises linearly from the head to the

tail. This profile gives a roughly constant deceleration wake field inside the beam

except for the region near the head. The trailing beam is shorter and has less

charge than the drive beam. It is placed near the end of the blow-out channel

where it witnesses an acceleration field larger than the deceleration field acting

on the drive beam. A trailing beam with a properly chosen profile can flatten

the longitudinal field in the region where the beam resides, reducing the final

energy spread of the trailing beam. We define the ratio between the beam-loaded

acceleration field and the maximum deceleration field as the transformer ratio.

It is desirable that this parameter is large so the energy transfer is most efficient.
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The above discussion only serves as a general guideline, there is freedom in

choosing the parameters for the final design. In reality, it is more difficult to

manipulate the total charge, profile and separation of the beams than to fine-

tune the plasma density to obtain a good wake field structure inside the ion

channel.

Due to the development of QuickPIC, we are able to model both 100 GeV

and 1 TeV afterburner stages. To put things in perspective, such simulations

would have taken 500,000 and 5,000,000 node hours on the fastest supercomputers

using full PIC codes such as OSIRIS. The parameters of our simulations are

summarized in Table 6.1, and Table 6.2 lists the numerical parameters for the

simulations. These simulations are not intended to be the final ones, but rather

represent the first attempt to study the relevant physics of beam propagation in

an “afterburner” stage.

Parameter 100 GeV stage 1 TeV stage

Initial energy (GeV ) 50/50 500/500

Beam charges (1010) 3.0/1.0 3.0/1.0

Emittance εN 2230/2230 2230/2230

(mm ·mrad)

Spot size σr (µm) 15/15 15/15

Driver length (µm) 145 145

Trailer σz (µm) 10 10

Beam separation (µm) 100 100

Plasma density (cm−3) 5.66× 1016 5.66× 1016

Plasma length (cm) 300 2819

Table 6.1: Simulation parameters
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Parameter 100 GeV stage 1 TeV stage

Simulation box size (µm) 280 × 280 × 380 760 × 760 × 380

Number of grids 256 × 256 × 256 512 × 512 × 256

Number of beam particles 8,388,608/655,360 8,388,608/655,360

Number of plasma particles 4/cell 4/cell

3D time step (1/ωp) 90 300

Number of time steps 1520 4200

Table 6.2: Numerical simulation parameters

The 100 GeV stage starts with γb = 97, 847 and a matched emittance, while

the 1 TeV stage uses a beam of γb = 978, 473 and εN about 1/3 of the matched

emittance. So in the first simulation the beam envelope does not change, but

the large emittance causes the beam head to erode rather quickly. In the second

simulation, the erosion is minimal for the propagation distance which is on the

order of 106c/ωp or 28 meters.

6.2 Simulation results

Fig. 6.1 shows the evolution of the drive beam, the trailing beam and the

plasma channel in the simulation for a 100 GeV afterburner stage. The wedge

shape drive beam blows out an ion channel with a maximum radius of about

3c/ωp. After the beam passes by and the electrons reach the maximum blow-

out radius, they rush back towards the axis. The trailing beam is located about

4.5c/ωp behind the driver. In the blow-out regime, beam loading arises because

the space charge of the trailing beam slows down the plasma electrons, as they

return to the axis. The ion channel is elongated due to the existence of the second
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beam. This also changes the position of the accelerating field spike and the Ez

is flatten near the region where the second beam is located.

Since the drive beam’s spot size and emittance are matched to the plasma den-

sity, the beam envelope remains about the same size in the simulation. However,

because the matched beam propagation requires a fully formed ion channel, which

is not the case for the head of the drive beam, the head erosion is clearly seen

in Fig. 6.1. As the head of the beam diffracts, the ion channel shifts backwards,

and hence does the wakefield structure. The decelerating field becomes larger

and spikier compared with the initial wakefield, this is shown in Fig. 6.2,while

the accelerating field becomes smaller. Both effects cause the transformer ratio to

drop. Once the head of the beam is lost due to diffraction, the core of the beam

which is overdense starts to interact with the plasma directly. The core of the

beam has more charge to blow out a sufficiently deep channel for itself to keep fo-

cused. Therefore, the erosion of the beam and the wakefield evolution slow down

leading to a relatively stable accelerating structure for the rest of the simulation.

At the end of the simulation, the part of the drive beam located at where the

decelerating field is largest is depleted, this effect causes the decelerating field to

decrease and the ion channel to be formed behind the driver.

To see the effects of hosing, the drive beam also had an initial tilt in its

centroid. The hosing instability was triggered by this initial tilt but it was stabi-

lized in this matched beam simulation. The trailing beam was also seen to shift

vertically in ion channel, but no significant hosing was found.

Fig. 6.3 shows the phase space of the drive beam and trailing beam during

the simulation. The head of the drive beam expands and remains at the initial

energy while the tail almost stops. The final energy of the trailing beam is

centered around 100 GeV with 1.12 nC charge. About 0.48 nC of charge is lost
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s = 0 m

s = 3.10 m

s = 2.01 m

s = 1.01 m

Figure 6.1: The beam and plasma evolution at different propagation distances

from the 100GeV stage simulation. The beams move from right to left.
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Figure 6.2: Longitudinal wakefield evolution in the 100 GeV simulation.

due to hosing, and the energy of these particle remains near 50 GeV. The energy

distribution of the trailing beam is plotted in Fig. 6.4. The distribution of the

accelerated particles has two peaks, one is near 92 GeV and the other one is

near 102 GeV. The energy difference between these two peaks is about 10% of

the mean energy, while each peak actually has an energy spread considerably less

than 10%. The two peaks of the energy distribution can be explained by the non-

uniform wakefield inside the trailing beam. As the drive beam and the wakefield

evolve, the difference of the wakefield felt by the beam particles at differect ξ

position first decreases then increases again as seen in Fig. 6.2. This causes the

energy spread of the trailing beam. To improve the energy spread, it is desirable
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s = 0 m

s = 3.10 m

s = 2.01 m

s = 1.01 m

Figure 6.3: Phase space plot at the end of the 100 GeV stage simulation.
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Figure 6.4: Energy distribution of the drive beam and the trailing beam in a 100

GeV afterburner simulation.

to have less head erosion. One way to achieve this is to use a smaller emittance

as shown in the 1 TeV simulaiton below.

Results from the 1 TeV simulation are shown in Figs. 6.5-6.7. Fig. 6.6 is a

sequence of the longitudinal wakefield plotted at different times of the simulation.

In Fig. 6.7, the beams’ energy versus longitudinal position is shown for this sim-

ulation. In this simulation, no initial tilt was used and little or no hosing growth

was observed for either the driver or trailing beams. Therefore we focus on the

characteristic of wakefield evolution and energy gain/lost during the propagation.

The TeV simulation had the same beam and plasma parameters as the 100

GeV simulation, except for the initial energy, emittance and propagation distance.
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s = 0 m

s = 28.19 m

s = 18.79 m

s = 9.40 m

Figure 6.5: The beam and the plasma channel at different propagation distances

in the 1 TeV simulation.
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Figure 6.6: Longitudinal wakefield evolution in the 1 TeV stage simulation.

The beams have an emittance three times smaller than the matched emittance

for this plasma density, therefore oscillations of the beam envelope are observed

in the simulation, as seen in the second frame in Fig. 6.5. Because the beam

particles have 10 times the energy than in the 100 GeV simulation, the head of

the drive beam expands at a rate slower by 10 although the normalized emittance

is the same. In this case only a small portion of the head of the beam erodes away

at the beginning and the wake slips backwards as the beam head diverges. The

decelerating field becomes larger while the acceleration field remains relatively

unchanged. As before, the beam density at the new head position becomes high
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s = 18.79 m

s = 9.40 m

Figure 6.7: Phase space of the beams at different distances in the 1 TeV stage

afterburner simulation.
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enough to form the ion channel, and the erosion rate slows down. The wake is

very stable for ωpt > 90000 and the transformer ratio remains close to 1.1. The

drive beam evolution is also stable, and it drives a wake which has a more uniform

decelerating field. The trailing beam sees an initial accelerating field which is not

constant in the beam, but as the head erosion and wake slippage occurs, the

accelerating field in the trailing beam becomes flat and an ideal beam-loading

situation appears later in the simulation. This contributes to the smaller energy

spread of the trailing beam compared with the 100 GeV simulation. The final

energy of the trailing beam is about 1.08 TeV and the final FWHM energy spread

is estimated to be about 5%.
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Figure 6.8: Energy distribution of the trailing beam in the 1TeV simulation.
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6.3 Summary

In this chapter, two QuickPIC afterburner simulations were carried out. The

first one is for a 100 GeV afterburner stage and the other one is for a 1 TeV

stage. In both simulations, a drive beam with a linear ramp longitudinal density

profile and a trailing beam with Gaussian profile are used. The emittances of the

beams are chosen to be matched or nearly matched to the plasma density. The

simulation for the 100 GeV stage was run with a initial tilt in the drive beam.

The centroid oscillation triggered by the tilt was stabilized in the simulation. The

evolutions of the beams and the wake were found to be stable except for the head

erosion. The trailing beams in both simulations doubled their energy as desired.

These simulations are the first simulations for plasma afterburners. Currently,

the simulations do not account for the radiation loss due to the particle betatron

oscillations. The energy loss rate can be estimated by Wloss = remc
2γ2
bk

4
pσ

2
r/(12e)

(eV/m). For the 100 GeV simulation parameters, the formula yields Wloss = 1.06

GeV/m. This is much smaller than Ewave−breaking ≈ 24 GeV/m, therefore one can

ignore the radiation loss. However, for a 1 TeV stage with the beam parameters

in Table 6.1, Wloss = 106.25 GeV/m >> Ewave−breaking. One can reduce the

loss to a few percent of Ewave−breaking by compressing the transverse spot size by

a factor of 10. A simulation for such a narrow beam is currently not feasible

because it requires an enormous number of grid points. However, as long as the

spot size is much smaller than the blow-out radius, the blow-out process should

depend weakly on the spot size.

Another issue not being completely addressed in the 1 TeV simulation is the

tolerance for the hosing instability. As we have discussed in Chapter 5, three

effects on hosing need to be included for the non-adiabatic relativistic blow-out

case in an afterburner stage. These effects arise from the charge neutralization
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radius, the magnetic fields in the wake and plasma electrons’ relativistic masses,

and the plasma self force respectively. These three factors can be determined in

the simulation and they generally reduce the growth rate from the linear fluid

theory prediction. Further detail on the hosing instability in an afterburner stage,

including the tolerance in the tilt and the mechanism to stabilize hosing will be

conducted in the future.

Furthermore, these simulations are conducted using a pre-ionized plasma. It

is advantageous to use a self-ionized plasma in a real experiment. In addition,

ion motion could deteriorate the quality of the trailing beam and positron ac-

celeration remains a problem to solve. As we continue to improve QuickPIC, all

these problems can be addressed soon.
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CHAPTER 7

Summary

Plasma-based acceleration can provide ultra-high acceleration gradients for

future high energy physics research. The interaction between the driver and the

plasma wakefield in this scenario is extremely nonlinear and complex. Therefore,

to explore the underlying physics in this plasma accelerator concept, one often

uses PIC computer simulation as a valuable tool. In this dissertation, we have

described a novel PIC code, QuickPIC, for modeling the plasma wakefield accel-

erator. QuickPIC, which implements the quasi-static approximation, allows one

to obtain accurate results with substantially less computation time than using

full electromagnetic codes. Estimates indicate that it could lead to two orders

of magnitude saving in computation time over existing simulation techniques

without any loss in accuracy.

QuickPIC differs from previous quasi-static PIC models because it includes

the full dynamic of the plasma response, and it is fully 3D and fully parallelized.

This enables one to efficiently model the detailed physics in the current PWFA

experiments and advanced concepts, such as afterburners. QuickPIC is con-

structed using two legacy simulation codes developed in UCLA, with modern

programming interfaces in Fortran 90. This method of code development allows

a rapid construction of a new code. An object-oriented framework structure has

also greatly simplified the code development. QuickPIC is fully parallelized and

scales well up to 32 processors for the typical problem sizes.
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In this dissertation, we also used QuickPIC to conduct full scale 3D simu-

lations of key physics for plasma wakefield accelerators. QuickPIC provides the

opportunity to study 3D nonlinear and long time scale effects in PWFA which

had been impossible or difficult to model using other codes. In particular, we

investigated two physics phenomena.

The first one is the electron hosing instability. The existing fluid model for

hosing analysis and its predictions were reviewed. QuickPIC simulations were

conducted to study the hosing instability. It was found that the existing the-

ory significantly overestimated the amount of hosing growth. For example, in

the strongly non-linear blow-out regime, the simulation and theoretical growth

rates differ by factors of 100 within only a small number of betatron oscilla-

tions. A kinetic model based on electrons’ equations of motion was developed

and three new terms were found. These terms arise from the perturbed fields

from the plasma, the relativistic mass and axial motion of plasma electron and

the ξ-dependent channel radius respectively. The new theory was validated with

QuickPIC simulations.

The second phenomenon was the afterburner energy doubler concept for

PWFA. A 100 GeV stage and a 1 TeV stage were simulated using QuickPIC.

It was found that beam loaded transformer ratios larger than 1 are possible for

3 to 1 ratio between the number of electrons in the drive beam and the trailing

beam. In these full scale simulations, the drive beam and the trailing beam were

found to be stable during the propagation and the final energy of the trailing

beam was indeed doubled as desired. The energy spreads of the trailing beam

was about 5% for the 1 TeV stage.

In this dissertation we only touched the tip of the ice berg in regard to both

the development of QuickPIC and its use. We have been constantly improv-
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ing QuickPIC for both versatility and performance. There are many interesting

problems related to the afterburner concept that need to be explored, such as the

betatron radiation from the beam in a TeV class afterburner, the ion response

to an intense beam, the use of a hollow plasma channel to guide and accelerate

a positron beam and the use of a thin plasma lens for the final focusing of the

beam. To model these problems with QuickPIC, new capabilities in the code are

required. These will be done in a modular approach. These additions have been

planned as the next step to integrate more physics into our quasi-static model.

There is also a demand to couple the result from other simulation codes, such as

the initial beam data from the particle tracking code Litrack, or a self injected

beam generated at the end of a full electromagnetic LWFA simulation. Such

works will enable an end-to-end simulation for plasma-based accelerators.

Another aspect of the future work is to improve the performance of QuickPIC.

Load-balancing is currently being added in QuickPIC to address the parallel effi-

ciency. A software pipe-lining technique was also proposed to decompose a large

simulation into several steps which can be pipe-lined and assigned to different

groups of processors. This will increase the level of parallelization and allow

QuickPIC to scale to thousands of processors easily.
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APPENDIX A

Conserved Quantity of Particle Motion

In this appendix we will derive Eq. (2.58), i.e., a conserved quantity of plasma

electron’s motion,

d

dt

[
γe − p̃z − (1− q̃eψ̃)

]
= 0 (A.1)

where p̃z = pz/mc = γβz, q̃e = qe/e and ψ̃ = ψe/(mc2) are the normalized

parallel momentum, normalized charge and normalized ”pinch potential” respec-

tively. The dimensionless velocity becomes β = v/c.

We start from the momentum equation,

dp̃z
dt

=
q̃ee

mc

[
−∂φ
∂z
− ∂Az

c∂t
+ βx × (

∂Ax
∂z

− ∂Az
∂x

) + βy × (
∂Ay
∂z

− ∂Az
∂y

)

]
(A.2)

and energy equation,

dγ

dt
=

qe
mc2

v · E =
q̃ee

mc

[
−β · ∇φ− β · ∂A

c∂t

]
(A.3)

Subtracting Eq. (A.2) from Eq. (A.3), we get,

d(γ − p̃z)

dt
=
q̃ee

mc

[
−(

∂

c∂t
+ β · ∇)(φ− Az) + (

∂

c∂t
+

∂

∂z
)(φ− β ·A)

]
(A.4)
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The first term on the right hand side can be rewritten as

− q̃ee
mc

(
∂

c∂t
+ β · ∇)(φ− Az) = − d

dt
(q̃eψ̃) (A.5)

The second term can be rewritten in terms of the ξ = ct − z and s = z

coordinates as

q̃ee

mc
(
∂

c∂t
+

∂

∂z
)(φ− β ·A) =

q̃ee

mc

∂

∂s
(φ− β ·A) (A.6)

Therefore,
d(γ − p̃z + q̃eψ̃)

dt
=
q̃ee

mc

∂

∂s
(φ− β ·A) (A.7)

and in the spirit of the quasi-static approximation ∂/∂s ≈ 0, this becomes,

d(γ − p̃z + q̃eψ̃)

dt
= 0 (A.8)

If we assume that the plasma is at rest in front of the beam then,

γ − p̃z + q̃eψ̃ = (γ − p̃z + q̃eψ̃)|t=−∞ = 1. (A.9)

From Eq. (A.9) one can obtain a relationship between p̃z and p̃⊥. In partic-

ular, squaring both sides of the relationship

γ = 1 + p̃z − q̃eψ̃. (A.10)

leads to

p̃z =
1 + p̃2

⊥ − (1− q̃eψ̃)2

2(1− q̃eψ̃)
. (A.11)

Therefore, p̃z can be calculated without using the ẑ component of the equation

of motion. Eq. (A.11) is used in our full quasi-static QuickPIC algorithm.
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APPENDIX B

An Analytical Model For ψ

In Chapter 5, we derived the new coupled centroid equation Eq. (5.28) for

the hosing instability. Eq. (5.28) contains a numeric factor c2 = 1
1+ψ0

, where

ψ0 ≡ ψ(r0(ξ)). The value of ψ0 was taken from the simulation for the four

simulations described in Chapter 5. Here, we introduce an analytical model from

Ref. [37] for ψ0.

Since −∇2
⊥ψ = 4π(ρ−Jz/c) (Eq. (2.63)), one needs to determined the source

term (ρ − Jz/c) in order to calculate ψ. It is found that ψ depends weakly on

the exact radial profile of (ρ − Jz/c). A simplified profile is used in [37] which

is also shown in Fig. 1.4. The (ρ − Jz/c) profile in the plasma sheath and the

linear response region is assumed to be constant. The value of the constant is

(ρ−Jz/c) = n∆ =
r20

(r0+∆)2−r20
with ∆ being the width of the constant profile. And

(ρ− Jz/c) = −1 for r < r0. Therefore, the solution for ψ is

ψ(r) =
r2
0(ξ)

4
(1 + β(ξ))− r2

4
forr < r0, (B.1)

where β(ξ) = (1+α)2ln(1+α)2

(1+α)2−1
− 1 and α ≡ ∆

r0
.

One can also derive an equation of motion for r0(ξ) by assuming ∂∆
∂ξ
≈ 0. It

is written as,

A(r0)
d2r0
dξ2

+B(r0)r0(
dr0
dξ

)2 + C(r0)r0 =
λ(ξ)

r0
, (B.2)
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where A(r0) = 1 + [1
4

+ β
2

+ 1
8
r0

dβ
dr0

]r2
0, B(r0) = 1

2
+ 3

4
β + 3

4
r0

dβ
dr0

+ 1
8
r2
0
d2β
dr20

,

C(r0) = 1
4
[1 + 1/(1 + β

4
r2
0)

2] and λ(ξ) =
∫ r>>σr

0
rnbdr.

For given beam parameters, the unperturbed blow-out trajectory r0 can be

solved from Eq. (B.2), and ψ can be determined from Eq. (B.1) once r0 is

obtained.
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