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Abstract of the Dissertation

Nonlinear Plasma Wakefield Theory and

Optimum Scaling for Laser Wakefield

Accelerator (LWFA) in the Blowout Regime

by

Wei Lu

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2006

Professor Warren B. Mori, Chair

In this dissertation, we analyze through theory and simulation many important

aspects of a highly nonlinear regime for plasma based acceleration, namely the

blowout regime. In chapter 2, a nonlinear kinetic theory for multidimensional

plasma wave wakes with phase velocities near the speed of light is presented. This

theory is appropriate for describing plasma wakes excited in the so-called blowout

regime by either electron beams or laser pulses where the plasma electrons move

predominantly in the transverse direction. The theory assumes that all electrons

within a blowout radius are completely expelled. These radially expelled electrons

form a narrow sheath just beyond the blowout radius which is surrounded by a

region which responds weakly. This assumption is reasonable when the spot size

of the electron beam and laser are substantially less than the blowout radius. By

using this theory one can predict the wakefield amplitudes and blowout radius

in terms of the electron beam or laser beam parameters, as well as predict the

nonlinear modifications to the wakes wavelength and wave form. For the laser

case, the laser spot size must also be properly matched in order for a narrow

xix



sheath to form. The requirements for forming a spherical wave form, i.e., bubble,

are also discussed. The theory is also used to show when linear fluid theory

breaks down and how this leads to a saturation of the logarithmic divergence in

the linear Greens function.

In chapter 3, we apply the theoretical framework in chapter 2 on four different

physical problems in the blowout regime. First, the optimum plasma density for

maximum wakefield amplitude in the relativistic blowout regime is obtained.

Then the problem of beamloading in the blowout regime is discussed. The third

problem is on how to optimize the transformer ratio by using a linear ramped

electron beam driver. The last problem is about the electron hosing instability

in the blowout regime.

Then in chapter 4, we give an extensive analysis of electron trapping in ar-

bitrary electromagnetic fields with translation symmetry. The general trapping

condition and energy gain limits will be derived. Based on these analysis, we will

discuss the physical meaning of wavebreaking limits derived from 1D fluid theory

and show that these limits are not achievable in a system with a driver ( laser or

electron beam). Particle trapping and significant wave amplitude damping will

occur far before these theoretical wave amplitude limits being reached in both

1D and multi-dimensional wakefields. These analyses clarify a subtle point that

misleading the plasma physicists about the meaning of wavebreaking for many

years .

In chapter 5, we discuss what is the possible parameter regime for LWFA

to be useable as a real accelerator technology. We start from discussions of

the necessary conditions and analyze what they suggest in the weakly nonlinear

wakefield regime. Then we show the analyses in weakly nonlinear regime prefer

a regime where the assumption of weakly nonlinear totally breaks down, namely

xx



the blowout regime. We then discuss many physical aspects in this regime and

derive a group of scaling laws to extrapolate this regime to higher energy (GeV

and beyond).

Finally in chapter 6, we summarize the results, discuss the prospects of plasma

acceleration technologies, and provide directions for further research.

xxi



CHAPTER 1

Introduction

1.1 Introduction

Physics is the science about the understanding of how matter interacts with each

other. These interactions occur with their specific time, space and energy scales

[1]. For any physical phenomena to be identifiable, it must have these three scales.

This is so true such that in many situations we never mention them explicitly. For

me, the most striking beauty of nature is that we can make accurate predictions

and understand it without knowing every detail. Indeed, if this were not true,

one could hardly imagine how the study of science could have ever gotten started.

This is also the reason why doing science is not an overwhelming task and can

be very enjoyable in many cases. So the real objective of most physical science is

not to determine the “ultimate” theory valid for all scales but rather to come up

with simplified models valid within restricted scales that can give the necessary

explanation and effective prediction for the given phenomena. This is not only

true for applied physics where specific physical systems are explored, it is also

true in fundamental physics where the understanding of the interactions between

the fundamental building blocks of matter is pursued [1].

Contemporary physics research has two seemingly distinct but equally impor-

tant trends: one is to go deeper and deeper to identify the most basic building

blocks and physical processes that underly all physical phenomena. The subjects

1



of elementary particle physics and cosmology belong to this category. This is the

traditional trend of physics since the beginning of modern science and it remains

very important. The other trend, which is becoming more and more important is

to explore complex physical systems with more and more realism. For such sys-

tems, the microscopic elementary processes are all well known but these systems

have enormously many degrees of freedom so their macroscopic behavior can be

extremely rich and complex. Condense matter physics, fluid dynamics, plasma

physics et al. are examples that belong to this category. One important common

characteristic of these complex systems is that they generally have many physi-

cal processes that are coupled and occur simultaneously. Each of these processes

may have very different time, space and energy scales.

The major topic of this dissertation is about the physics of how ultra-short

ultra-intense lasers or particle beams interact with matter. This is an interesting

and rapidly emerging subfield of physics and it can be seen as a rich example of

the second category discussed above. It can also be seen as an interdisciplinary

field involving nonlinear optics and plasma physics.

With the development of ultra-intense short pulse laser technology, i.e., chirped-

pulse-amplification (CPA) [2, 3] and Ti:Sapphire laser systems [4, 5, 6, 7] , multi-

TW (10 - 100 TW) tabletop laser systems now are widely available in university

scale laboratories [8, 9, 10, 11]. In addition, PW scale lasers are under construc-

tion around the world. The focused intensity of these lasers can easily exceed

1018W/cm2 ( many such systems can reach 1020 − 1021W/cm2). Compared with

normal matter, the energy density within these pulses is enormously large. The

focused intensity of these lasers is many orders of magnitude larger than the

binding force in normal matter (gas, liquid and solid) so that matter becomes

fully ionized within just a few laser oscillations. Due to this reason, laser-matter

2



interaction at these intensities is almost equivalent to laser-plasma interaction.

In vacuum the oscillating electron energy can easily reach energies exceeding 10

MeV, therefore relativistic effects become significant.

To see how rich and complex the relevant physics can be, some examples may

help. Consider a simple experimental setup where a relativistically intense short

laser pulse propagates through a cm long gas jet target. Imagine that we are

observing the whole process: starting from the laser reaching the gas edge and

ending when it leaves the target. There are many time and space scales involved,

and within each scale there are distinct physical phenomena occurring.

On the shortest time scale, e.g. a few fs ( a few µm in space), tunneling

ionization of the gas atoms by the leading front of the laser occurs and this will

form a relatively cold plasma [12, 13, 14]. The density profile can significantly

differ depending on what kind of gas is used.

On a slightly longer time scale, e.g., tens of fs to a few hundreds of fs (

depending on the plasma density), the laser pulse starts to interact with the

plasma without significantly evolving. A plasma wave wake can be formed and

THz radiation from these plasma oscillations can be generated [15].

On a ps time scale, the laser starts to evolve and many kinds of laser plasma

instabilities may grow. e.g., the laser may self-focus, self-modulate or filament

[16]. It can also interact and couple to the plasma wake leading to enhanced wake

fields and Raman scattering [17, 18, 19]. In addition, plasma electrons can get

trapped in the wake and become accelerated to very high energy. These electrons

can significantly affect the wake structure, i.e, load down its amplitude [20]. X

rays may also be generated by the interaction between the high energy electrons

with the laser or the plasma wake [21, 22].

On an even longer time scale, i.e., 10 ps to ns, the energy deposited in the
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plasma can couple into ion modes. The plasma may experience hydrodynamic

expansion and may be heated by the dissipation of coherent energy, and electrons

and ions may recombine and emit incoherent light[23, 24, 25].

This list is only a small fraction of the phenomena one can expect from ultra-

intense laser matter interactions. But it is already enough to show the richness of

relevant physics. One major goal of research in this field is to understand various

physical processes and identify the usable parameter regime for real applications,

e.g., compact accelerators and light sources.

Since laser pulses can be seen as a beam of photons [26], it is easy to un-

derstand that ultra-short intense relativistic charged particle beams can exhibit

very similar behavior when interacting with matter. Modern large scale accel-

erators can provide charged particle beams of multi-GeV energy with a nC of

charge. When properly focused, the charged particle beams from such machines

can achieve the same energy density as in a focused PW laser. For example, the

largest linear accelerator in the world (SLAC) can provide sub 100fs, 50GeV

electron beams with 3nC of charge at rep rate of 1Hz. Although such a system is

not widely available, they have many advantages when compared with the cur-

rent state-of-the-art lasers. For example, the peak power is a few PW and the

rep rate is much higher than the laser systems with the same amount of energy.

The beam quality is well controlled and diagnosed. In addition, while there are

similarities between beam plasma and laser plasma interactions, there are sig-

nificant differences. These differences make the choice between using a laser or

particle beam depend on the application.
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1.2 Plasma Based Acceleration

One important potential application of the physics of a short pulse laser or

charged particle beam interacting with a plasma is plasma based acceleration.

This is also the major topic of this dissertation.

The application of charged particle beams in general scientific research and

industry is currently much more restricted than that of lasers. The major reason is

the very large cost of building and maintaining particle accelerators due to their

complicated structure and large sizes. The RF-waveguide technology used in

current accelerators can support accelerating gradients no more than 50MeV/m

due to the breakdown of the material on the metallic wall. Therefore, to obtain

significant beam energy ( GeV and beyond) requires large RF-waveguides ( at

least tens of meters long ) and to manipulate the beam by magnetic fields typically

requires magnetic fields coils. For the very large beam energies needed in high

energy physics (100GeV to TeV ), the accelerator size based on RF technology is

extremely large. For example, the 50GeV linear electron/positron accelerator at

SLAC is more than two miles long and the Large Hadron Collider (LHC) is 27km

in circumference. To build and to operate such gigantic machines is formidable.

It requires the state of the art in engineering and management.

One obvious way to significantly reduce the size and cost of the accelerator

is to use much larger accelerating fields, e.g., hundreds times larger than the

material breakdown fields (& 10GeV/m). One medium that can support such

huge fields is plasma. Since it is fully ionized, it naturally avoids the problem of

breakdown. It has been well known since 1950’s that electrostatic waves in a cold

plasma with relativistic phase velocities can support wave amplitudes in excess

of the non-relativistic wave breaking limit, Ewb ' mcωp

e
' √

npV/cm [66]. For

a typical plasma with a density of 1 × 1018cm−3, this corresponds to a gradient
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about 100GV/m, more than one thousand times larger than the breakdown field

in conventional RF structures. If such a wave can be generated and employed

to accelerate charged particles, it might be possible to reduce the size of an

accelerator by a factor of one thousand. In 1979, Tajima and Dawson pointed

out that one way to drive such plasma waves is to use an intense short-pulse

laser [27]. This paper lead to the birth of the field of plasma based acceleration.

Since then, plasma based wakefield acceleration has attracted much interest and

evolved into a very active research field in advanced accelerator research and basic

plasma research.

After more than twenty years of extensive research, many ideas based on

producing and utilizing plasma wakefields have been proposed and tested. Two

kinds of drivers are typically used to produce these large plasma wakes: namely

high-power short-pulse lasers and high current ultra-relativistic charged particle

beams. Both can excite a plasma wake with a phase velocity very close to the

speed of light, which can then be used to accelerate a injected relativistic charged

particle bunch to high energy.

For the laser driven case, the ponderomotive force (radiation pressure) of laser

pulse can displace plasma electrons away from the neutralizing ion background.

The space charge force of the ions pulls the electrons back thereby setting up

a plasma wake. Several related schemes have been proposed for using a laser

to excite the plasma wave wake. Among them the following three schemes are

the most well known and most explored: LWFA [27](Laser Wake Field Acceler-

ator), PBWA [28] (Plasma Beat Wave Accelerator) and SMLWFA [29, 30] (Self-

Modulated Laser Wake Field Accelerator). It is interesting to note that all three

of these schemes were originally mentioned in the 1979 paper by Tajima and Daw-

son. In LWFA, the laser pulse is an intense ultra-short laser pulse with a pulse
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duration about half the plasma period. To operate in such a regime, extremely

short pulses with very high peak power are needed. This requirement is why

this simplest scheme has only recently been explored experimentally. In PBWA,

two laser pulses with a frequency difference matched to the plasma frequency ωp

are used. The pulse length is several to many plasma wave lengths long. The

beat of these two lasers can be viewed as a series of successive short pulses each

with a length about plasma wake wave length. This is the first scheme that was

explored extensively in experiments due to the reason that there was no short

pulse laser available in early 1980’s. Using beat wave excitation, in the 1980’s

the UCLA group demonstrated that relativistic plasma wakes could be generated

[31] and in the early 1990’s they accelerated externally injected electrons [32, 33].

Indeed these are the first two milestones in plasma based accelerator experimen-

tal research. The physics of PBWA is extremely rich because the laser pulses

are long. However, this is also the reason that PBWA will most likely not be

used in a practical accelerator, i.e., there are too many laser-plasma and plasma

wave instabilities of long laser pulses. In the SMLWFA concept, a single intense

short laser pulse of many plasma wavelengths long is utilized. As the laser prop-

agates, it becomes unstable to Raman forward scattering. The laser then beats

with the scattered light to excite the plasma wake. The self-modulation of the

laser is complicated because self-focusing can also couple with the wake excitation

process, leading to the breakup of the laser pulse into many beamlets and the

enhancement of wake field excitation [29]. The advantage of SMLWFA compared

with LWFA is that it needs much less laser power to excite large wake because

very high plasma densities can be used. So it was preferred in experiments during

1990’s to early 2000’s. Many important experimental milestones were achieved

in SMLWFA. For example, very high gradient acceleration up to 1TeV/m, large

amounts of self-trapped electrons, high electron energies, up to 200MeV, and the
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generation of beams with very small divergence angles [34]. However, SMLWFA

excites a wake through an instability, so it is unlikely to make a real accelerator.

For the beam driven plasma wake field [35] or so called plasma wakefield

accelerator (PWFA), the electromagnetic force from the beam charge and current

plays a similar role as the ponderomotive force from the laser. For an ultra-

relativistic electron beam moving into a plasma, the space charge force will push

the plasma electrons away from the ion background. The displaced electrons then

rush back after the beam has passed through thereby create a plasma wake. The

most promising application of this scheme is the idea of a plasma afterburner

[36], where two short plasma sections are placed before the IP of an existing

linear collider to double the energy of the incoming beams. Very recently, a

collaboration involving UCLA, USC and SLAC has achieved many milestones

towards the demonstration of the key physics of a plasma afterburner [37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. These include the first

demonstration of acceleration of a positron beam by positron driven wakefields

[44], the first multi-GeV energy gain for any plasma based acceleration [48], and

the doubling of the energy of the tail of a 42GeV electron beam in less than one

meter [54]! These exciting results are pushing accelerator physicists to seriously

consider the possible application of plasmas in high energy physics.

For practical reasons, in experiments for both PWFA and LWFA, the drivers

are tightly focused to achieve a large enough intensity for exciting large plasma

wake. The narrow spot sizes of the drivers induce forces in the transverse di-

mensions that are comparable to those in the longitudinal direction. This leads

to significant multi-dimensional effects that are absent in one-dimensional theo-

ries. In fact for typical situations, the drivers can completely expel the plasma

electrons radially outward thereby forming a pure ion region ( an ion channel )
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behind it. When wakes are excited in this manner it is called the blowout regime.

The identification of this regime is definitely one of the most important advances

in the field of plasma based acceleration. As we will argue it is the method of

choice for accelerating electrons.

A short introduction of the history of the blowout regime is in order. In

1987, Sun et al. [55] derived the equilibrium profiles of both a laser and plasma

density for a self-guided laser pulse sufficiently short that the ions don’t move

but sufficiently long that no wake is excited. They found that for a laser power

slightly larger than the critical power of relativistic self-focusing Pc, the equilib-

rium electron density profile becomes completely evacuated up to some radius.

This phenomena was called electron “cavitation” by Sun et al. due to its sim-

ilarity to fluid phenomena. Because this analysis was for relatively long pulses

where wakefields are not excited, its implication for plasma based acceleration

was not appreciated immediately. In addition, some assumptions regarding the

radial profile for the plasma response were not correct. Nevertheless, their work

indicates that an intense laser pulse with P ∼ Pc would self-focus until the inten-

sity increases and the spot size decreases to the point where cavitation occurred.

This work also hinted at the idea of a “matched” spot size of a given laser power

for which the laser spot size would remain constant.

A few years later in 1991, Rosenzweig et al. [56] found an interesting regime

for electron beam driven plasma wakefield through 2D (r − φ) fluid and PIC

simulations. In this regime, a short ( about plasma wavelength) and narrow

(spot size smaller than plasma skin depth) electron bunch with sufficient charge

can expels (blows out) the plasma electrons away from its path to form a pure

ion region around and behind it. This phenomenon is very similar to what Sun

et al. found for a laser. Most importantly, Rosenzweig et al. pointed out that
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the accelerating field inside a cylindrical symmetric channel is uniform across the

transverse dimensions and that the focusing force depends linearly on the radius.

Both of these properties are very attractive for an accelerator as they lead to no

energy spread and no emittance growth. This regime was called the “blowout”

regime.

Very soon thereafter it was recognized that similar wakes could be excited

using a short laser driver. In 1991, Mori et al. [57] presented 2D PIC simulation

results which showed that LWFA in this regime also had the advantages of a

uniform accelerating field and a linear focusing force. However, in their paper

Mori et al. also recognized that for existing lasers the power was too low and the

pulse length too long to reach this regime.

During the early to late 1990’s, there were numerous experimental results on

laser plasma acceleration. These experiments demonstrated extremely large ac-

celeration gradients (∼ 1TeV/m) but the acceleration length was limited to 100’s

of µm’s. In response to this limitation in the acceleration length, a research pro-

gram on plasma based acceleration was begun at the Stanford Linear Accelerator

( SLAC) in the late 1990’s. This was a collaboration between UCLA, USC and

SLAC. The goal was to demonstrate acceleration in plasma wakes over meter

scale distance. While there are many similarities with how particle beams and

lasers interact with plasma, there are also significant differences. To plan and

interpret these PWFA experiments, a vigorous simulation and theory effort was

also begun in the blowout regime. Much of this will be described later in this

dissertation.

Very recently, much simulation/theory and experimental progress has been

made on LWFA in the blowout regime. In 2002, Pukhov and Meyer-ter-vehn

observed a very interesting phenomena in the first 3D PIC simulations of LWFA
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[58]. They simulated a 300 TW 30 fs laser propagating in a 2×1019cm−3 plasma.

They found that mono-energetic electron beams with large amount of charge can

be self injected near the tail of the ion channel. They believed that this phe-

nomena only occurred at very high laser intensity, laser power and plasma den-

sity. Furthermore, the shape of the ion channel in these simulations resembled a

sphere. In a subsequent paper they coined the term “Bubble” regime. Several

years later, Tsung et al.[59] showed that self-injected mono-energetic beams could

also be produced at lower laser powers, intensities and plasma densities. They

simulated a 16TW laser propagating in a 3× 1018cm−3 plasma. Very soon there-

after, in 2004, three independent groups around the world reported self-generated

mono-energetic electron beams with energies between 70 ∼ 200MeV by shooting

10 ∼ 30TW , 30 ∼ 40fs laser pulses into mm scale gas jet targets [60, 61, 62].

Since then, more than 20 different groups around the world have reported similar

results. A new record just came out a few months ago. The LBNL group reported

a 1GeV mono-energetic electron beam generated by propagating a 40TW ,40fs

short laser pulse through a cm scale capillary discharge plasma wave guide [63].

With the development of more power and compact laser sources and more sophis-

ticated diagnostic technologies, much more exciting new results will come out in

the very near future.

1.3 Particle-in-Cell Simulation

Theory, experiment and simulation are three major tools in scientific research

with each has its advantages and disadvantages. They are closely related in

many fields of contemporary scientific activities. This is especially true for plasma

physics. Plasma is a very complex state of matter and the physical processes in

plasma are extremely rich and complex. Generally to fully understand some
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physical phenomena in plasma, very close collaborations between theory, exper-

iment and simulation are needed. Two most well known examples are magnetic

confined fusion and inertial confined fusion.

With the advances of parallel computing, the importance of simulations con-

tinues to increase in many fields of physics. There is no where more true than in

plasma physics. In many problems in plasma physics, the distribution function

is far from equilibrium, collisions are infrequent, and the long range forces of

individual particles are coupled. Therefore to study such problems, fully kinetic

algorithms are needed. One such algorithm is the particle-in-cell method which

is the method of choice for modeling intense laser and beam plasma interactions.

The idea behind the particle-in-cell (PIC) method is very straight forward

[64]. The electromagnetic fields are represented on a grid with a resolution high

enough to resolve the shortest spatial scales of interests. The particles move

within the grid and can be thought of as finite size particles with a size equal

to that of the grid. In each cycle (time step) of the simulation, the particles are

first pushed to new positions and momenta according to the equation of motion

with the force obtained by interpolating the fields defined at the grid locations

to where the particle resides within the grid. The charge and current density

are then interpolated onto the grid from the particles’ positions. Last, the fields

are advanced according to Maxwell equations with this current density. The

simulations are run for the desired number of steps.

The PIC algorithm has been developed extensively during the past 30 years.

With the rapid development of computer technology and parallel computing in

the last 20 years, we now have the ability to model the full scales both in time

and space of experiments in a full 3D geometry. This was unthinkable even just

ten years ago. Without this powerful modeling ability, much of the theoretical
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progress described in this dissertation would not have been possible.

1.4 Motivation and Outline

Despite the extensive interest in the blowout regime for both laser and electron

beam drivers, many theoretical issues remained unclear until very recently. For

example, no theory existed on how the wake is excited and how to parametrize

the blowout regime, no methods for optimizing the wake fields for a given driver

parameters or optimizing the driver shape to achieve higher transformer ratio

existed, no theory for beam loading existed in this regime, and no theory for the

electron hosing instability of short electron bunches existed. In addition, recent

simulations and experiments in LWFA naturally lead one to ask the following

questions. How does self-injection occur in a multi-dimensional wake? How can

the recent experimental results be scaled to higher energy and better beam qual-

ity? What kind of instabilities can affect the realization of a practical accelerator?

In the rest of this dissertation, we will try to present several recent theoretical

and simulation results which might clarify many of these issues. The following is

an outline of each chapter.

In chapter 2, a nonlinear kinetic theory for multidimensional plasma wave

wakes with phase velocities near the speed of light is presented. This theory is

appropriate for describing plasma wakes excited in the so-called blowout regime

by either electron beams or laser pulses where the plasma electrons move predom-

inantly in the transverse direction. The theory assumes that all electrons within

a blowout radius are completely expelled. These radially expelled electrons form

a narrow sheath just beyond the blowout radius which is surrounded by a region

which responds weakly. This assumption is reasonable when the spot size of the

electron beam and laser are substantially less than the blowout radius. By using
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this theory one can predict the wakefield amplitudes and blowout radius in terms

of the electron beam or laser beam parameters, as well as predict the nonlinear

modifications to the wakes wavelength and wave form. For the laser case, the

laser spot size must also be properly matched in order for a narrow sheath to

form. The requirements for forming a spherical wave form, i.e., bubble, are also

discussed. The theory is also used to show when linear fluid theory breaks down

and how this leads to a saturation of the logarithmic divergence in the linear

Greens function.

In chapter 3, we apply the theoretical framework in chapter 2 to four different

physical problems in the blowout regime. First, the optimum plasma density

for maximum wakefield amplitude in the relativistic blowout regime is obtained.

Next, the problem of beamloading in the blowout regime is discussed. A ex-

pression is given for the number of electrons that can be loaded into a nonlinear

3D wakefield. Next, we apply the theory in chapter 2 to show that even in the

blowout regime the transformer ratio is optimized for an electron beam with a

linearly ramped current profile. Last, we describe how the theory can be applied

to the electron hosing instability.

In chapter 4, we give an extensive analysis of electron trapping and self-

injection in arbitrary electromagnetic fields with translation symmetry. The gen-

eral trapping condition and limit on energy gain are derived. Based on this

analysis, we will discuss the physical meaning of wavebreaking limit derived from

1D fluid theory for an infinite wave train and show that fields at this wave break-

ing limit are not achievable in a system with a driver (laser or electron beam).

Particle trapping and significant loading of the wake will occur far before the

theoretical wave breaking limit is reached for both 1D and multi-dimensional

wakefields. This analysis clarifies a subtle point that has confounded plasma
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physicists about the meaning of wave breaking for driven wakes for many years .

In chapter 5, we discuss what is the possible parameter regimes for LWFA

that might be useable in a real accelerator. We start by considering requirements

for any high energy physics accelerator regarding the stability, the number of

accelerated electrons, their beam quality and the over all efficiency if one used

the weakly nonlinear wakefield regime. We argue that this exercise illustrates

that the assumption of a weakly nonlinear wake is inconsistent with these re-

quirements and that the blowout regime is the natural result. We then provide a

phenomenological theory for LWFA and use it to obtain expressions that can be

used to extrapolate this regime to higher energies, namely 1GeV -1TeV. We also

present 3D PIC simulation results that are in agreement with our theory.

Finally in chapter 6, we summarize our results and discuss directions for

further research.
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CHAPTER 2

Nonlinear Theory for Relativistic Plasma

Wakefields in the Blowout Regime

2.1 Introduction

The theory of one-dimensional, nonlinear plasma oscillations in cold plasmas has

a long history beginning with the pioneering work of Ahkiezer and Polovin [65],

and Dawson [66]. Ahkiezer and Polovin studied purely one-dimensional (1D) lon-

gitudinal and transverse oscillations in cold plasmas including relativistic mass

effects. In the work of Dawson, non-relativistic treatments of purely 1D longi-

tudinal oscillations were studied, including radial and spherical oscillations. He

showed that trajectory crossing occurs in either radial or spherical oscillations

even for arbitrarily small amplitudes. However, more than 40 years later there is

still no theory for multi-dimensional (3D), nonlinear plasma oscillations associ-

ated with waves with phase velocities near the speed of light, c. Such oscillations

are complicated because the fields are electromagnetic, relativistic mass effects

are important, and trajectory crossing occurs. Besides being of great fundamen-

tal interest, a class of these nonlinear multi-dimensional plasma waves are of great

importance to plasma based acceleration.

In plasma-based acceleration, a plasma wave with a phase velocity close to the

speed of light is driven by an intense particle or laser beam. When a laser beam
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is used it is called laser wakefield acceleration (LWFA)[27] and when a particle

beam is used it is called plasma wakefield acceleration (PWFA)[35]. Most theories

to date on wakefield excitation have either been restricted to linear fluid theory

[35, 49, 74] or one dimensional nonlinear fluid theory[65]. However, in recent

PWFA and LWFA experiments [60, 61, 62, 48] the wakes are excited in the so-

called blowout regime where neither fluid nor one-dimensional theory applies. In

the blowout regime, the wake is excited by the space charge of the beam or the

radiation pressure of the laser expelling plasma electrons radially outward leaving

behind a “channel” of unshielded ions. These expelled, blownout, electrons form

a narrow sheath just outside the ion channel. Eventually the space charge of the

ions pulls the electrons back, thereby creating the plasma wave wake. This is

illustrated in Fig.2.1 where the electron density is plotted from a fully nonlinear

particle-in-cell (PIC) simulation using the code OSIRIS [75]. The electron beam

is propagating to the left in the variable ξ = ct− z. The blowout or ion channel

radius, rb, is also defined in this plot. This figure makes clear that the radius of

the channel is not constant, i.e., it depends on ξ = ct− z.

Figure 2.1: Electron charge density with the defined blowout radius rb(ξ)
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The blowout regime of creating wakefields was first investigated by Rosenzweig

et al.[56] for electron beam drivers. They pointed out that these wakefields had

perfectly linear focusing fields and had an acceleration gradient that was constant

in radius for electrons. For sufficiently intense drivers the ion channel can have

a spherical, i.e., bubble, shape. Therefore, in some of the recent work on LWFA

the term bubble [58], is used. Despite this intense interest, there is little theory

for how the wakefields in the blowout regime scale with the electron beam or

laser beam parameters; and no theory exists for how beam loading occurs within

these nonlinear multi-dimensional wakes. In addition, while there are expressions

for the nonlinear frequency shift [65] for one-dimensional wakes there is no such

expression for multi-dimensional wakes.

The blowout regime also has relevance to the linear theory of wake excitation.

It is well known that the Green function of a relativistically moving point particle

logarithmically diverges with the inverse of the radial position behind the particle.

It had been argued rather nonrigorously that this divergence breaks down for r

less than the Debye length[35] or the Compton wavelength[76]. In a cold plasma

the Debye length is zero and since the theory is classical one should attempt to

obtain a physical reason within the scope of classical theory. Simulations have

shown that the wakes made by narrow bunches do indeed saturate for r smaller

than a critical value[49]. The present work provides a clear explanation as to

why this occurs and therefore when and why fluid theory breaks down. For any

amount of charge one can shrink the beam’s spot size down to a value for which

blowout occurs. The linear Green’s function is not valid for radii within the region

void of electrons. For small blowout radius the influence of the electrons within

and beyond the sheath become very important while within the blowout radius

one needs a different description of plasma oscillations which this new theory

provides.
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Recently, Barov et al.[77], Lotov[78], and Kostyukov et al. [79] each have the-

oretically analyzed the limit of large blowout radius (Lotov calls it the “cavern”

while Kostyukov calls it the “bubble” regime). Barov only treated the energy loss

of an infinitesimally short electron beam. Lotov attempted to provide a quali-

tative analysis of the blowout regime for the PWFA, but his main results differ

profoundly from ours. For example, he obtains the scaling between the blowout

radius and and the axial length Lc of the ion channel (“cavern”), kpLc ∝ k3
pr

3
m for

large kprm,where rm is the maximal blowout radius; while we will show later that

when kprm & 4, the ion channel is a sphere, i.e., Lc = rm. Kostyukov observed in

simulations that for laser drivers the ion channel is indeed a sphere (“bubble”)

and derived the field structure for such shapes moving at the speed of light. Very

recently, Gordienko and Puhkov [80] have presented a similarity theory for wake-

field acceleration driven by laser drivers. This theory provides a mechanism for

scaling results from one simulations or experiment to others provided that the

laser profile remains same, that the relevant laser, space, and time variables are

scaled properly, and that the laser intensity is very high. However, these analyses

do not explain why there is a bubble, nor can they predict the field structure in

wakes created by beam driver or weaker lasers.

In this chapter, we will present a predictive theoretical model for wake excita-

tion by particle beam or laser drivers that are narrow enough to excite the wake

in the blowout regime. The spot size must be less than the blowout radius and

this is quantified in terms of the electron or laser beam parameters later. This

theory can be used to understand the limitations of the cold fluid theory and to

explore the blowout regime for either laser or particle beam drivers. The theory

is valid for arbitrary blowout radius making it possible to understand why the

ion column is roughly spherical for large blowout radius. The theory can also be

used to develop a theory for electron hosing, for nonlinear beam loading, and for
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pulse shaping. The key idea behind the theory is that the wake can be described

entirely in terms of the trajectory of the blowout radius, rb(ξ). This can be done

because the blownout electrons form a sheath whose thickness is narrower than

the blowout radius, even for small values of rb. This key assumption does not

always hold for laser drivers. The chapter is outlined as follows. In section 2.2 the

basic equations are described. In section 2.3 the condition for sheet crossing is

given. In section 2.4 an equation for the blowout radius is derived. In section 2.5

and 2.6 the limits of small and large blowout radius are considered respectively.

In section 2.7 formulas for arbitrary blowout radius are derived. In section 2.8

the differences between using a laser versus a particle beam driver are described

and the work is summarized in section 2.9

2.2 The Basic Equations for Wake Excitation

In a theoretical description of short laser pulses or ultra-relativistic charged par-

ticle beams interacting with underdense plasmas, one needs to self-consistently

treat both the electromagnetic fields and the trajectories for the plasma particles.

For the electromagnetic fields, the full set of Maxwell’s equations or some reduced

form can be used and due to their linear origin once the currents and charge

densities are known, they can be easily solved subject to appropriate boundary

conditions (including no boundary at all). Therefore, the nonlinearities and com-

plexities come from the description of plasma. Indeed this is true for all kinds

of nonlinear laser matter interactions. The simplest model for a plasma is a cold

fluid model, which is valid for describing laser or beam plasma interactions as

long as the particle trajectories do not cross. Unfortunately particle trajectory

crossing is so pervasive in laser plasma or beam plasma interactions that except

for linear or weakly nonlinear cases, the single cold fluid model always breaks
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down. This situation is painfully evident when multi-dimensional oscillations are

considered.

In 1959, Dawson already pointed out that trajectory crossing will happen

after a period of time for purely radial or spherical cold plasma oscillations, as

long as very weak nonlinearities are taken into account. The reason for this

is that the nonlinearities will induce initial position dependent frequency shifts,

which eventually cause particles to oscillate out of phase with each other leading

to trajectory crossing. Interestingly,1D planar non-relativistic oscillations lack

this kind of phase mixing due the fact that there is no frequency shifts for this

case. As a result, particle crossing in 1D planar oscillations only occurs for rather

large oscillation amplitudes, e.g., the 1D wavebreaking limit. As Dawson showed

this is also the condition when some particles get trapped in the wave, i.e., their

velocity exceeds the phase velocity of the wave. This special property for the 1D

planar case leads to a confusing use of the words “wavebreaking” and “trapping”

in the literature. The original meaning of “wavebreaking” in Dawson’s classic

paper is closer to “trajectory crossing” than “trapping”. As we just discussed, in

1D they always happen together, however for non planar oscillations, “trajectory

crossing” can happen very easily for even very small amplitude without particles

getting “trapped”. In this chapter, we will adopt the term “trajectory crossing”

as the meaning of “wavebreaking” to emphasize the breakdown of single cold fluid

model. How particles trapping can happen in multi-dimentional plasma wakefield

will be the topic of chapter 4.

In light of Dawson’s work, we can see that even for very weakly nonlinear

multidimensional laser plasma or beam plasma interactions the cold fluid model

can only be valid for a finite time or alternatively for a finite region in space. For

example, in the cases of weak and short drivers (by weak, we only mean that the
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density perturbation caused by the driver is small compared with the ambient

plasma density), for the region not too far behind the driver, the fluid model is

valid. This region could be many plasma wavelengths long for a weak driver. On

the contrary, if the trajectory crossing happens near the driver, the fluid model

breaks down totally and a model which includes the blowout regime is essential

this case. For a particle beam driver, one does not necessarily need a strong

driver in order to cause blowout.

From this discussion, it is clear that a particle picture must be used for a

general treatment of the laser or beam plasma interaction. This is equivalent to

a multi-species cold-fluid model where particles within each species execute cold

laminar flow without trajectory crossing.

To analyze general multi-dimensional plasma oscillations excited by an intense

particle beam or laser beam, we therefore start from Maxwell’s equations in the

Lorentz gauge and the equation of motion for an arbitrary number of laminar

fluids:

(
1

c2
∂2

∂t2
−∇2

)
[

A

φ
] = 4π[

J/c

ρ
] (2.1)

1

c

∂φ

∂t
+ ∇ ·A = 0 (2.2)(

∂

∂t
+ V i • ∇

)
P i = qi[E +

V i

c
×B] (2.3)

where ρ =
∑

i qini, J =
∑

i qiniV i, they satisfy the charge conservation

equation:

∂ρ

∂t
+∇ • J = 0 (2.4)
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We next make several simplifications. the first one is that up stream from the

laser or beam driver, each fluid can be treated as at rest or cold. For tenuous

plasmas, the phase velocity of the excited wakefields is roughly the speed of light,

c. Compared with this speed, all the initial thermal velocities of plasma particles

can be treated as zero. The second approximation is the wavelike assumption

where that fields in the wake depend on the variable ξ ≡ (ct − z) where the

phase velocity of the wave is essentially c. The last approximation is called the

“Quasi-static approximation” [81]or “Frozen field approximation”[82], which is

based on the multi timescale nature of the physical process. The driver evolves

on a timescale much longer than the plasma response, so during the time it takes

for a driver to pass by a plasma particle, the driver changes shape very little.

This suggests that we can take the driver as non-evolving when calculating the

plasma response. Therefore, the wake depends weakly on the distance the driver

has moved into the plasma.

For this last approximation to be valid, we need different conditions for laser

drivers and beam drivers. For the laser case, the driver evolves on a scale length

roughly given by the Rayleigh length (ZR =
πW 2

0

λ0
). The laser spot size W0 is on

the order of plasma skin depth c/ωp, so the quasi-static approximation is valid as

long as ω0

ωp
>> 1. For the electron beam case,the the driver evolves on a length

scale roughly given by the Betatron wavelength, which is 2π
√

2γc/ωp for a beam

particle in an ion channel, So the quasi-static approximation is valid for a beam

driver if γ >> 1.

It is also worth noting that for extremely strong drivers, some plasma particles

are pushed forward in front of the driver with very high parallel velocity, so it

takes a rather long time for the driver to pass by these particles. For these

particles, the “quasi-static approximation” will fail.
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For the laser driven case there are three time scales: the high frequency laser

oscillation ω−1
0 , plasma wakefield oscillation ω−1

p and laser envelope evolution

ω0

ωp
ω−1
p . When calculating the wakefield excitation only the smooth motion is rel-

evant. This smooth motion can be described by averaging out the high frequency

laser oscillation from the equation of motion. The resulting smooth force from

the laser is the ponderomotive force.

d

dt
P is =

(
∂

∂t
+ V is • ∇

)
P is = qi[Es +

V is

c
×Bs] + F p (2.5)

In this equation, the fields Es and Bs are the smooth fields produced by beam

driver and plasma charge density and current. Fp is ponderomotive force of the

laser,

F p = − q2
i

γ̄imic2
∇|ÂL

2
|2 (2.6)

where the laser field is written as ALaser = ÂL

2
e−i

ω0
c
ξ + c.c. , eÂL

mc2
≡ a and

γ̄i = (1 +
P 2

i

m2c2
+ |a|2

2
)

1
2 . A thorough derivation was performed by Mora and

Antonsen [83].

At this point, we will adopt normalized units, where time is normalized to

ω−1
p , length to c/ωp, velocities to the speed of light, c, mass to electron mass, m,

and charge to electron charge, e, fields to mcωp/e, potentials to mc2/e, charge

density to enp and current density to enpc. For convenience, we also omit the

subscripts “i” and “s”.

To best utilize the quasi-static approximation, we can do a transformation

from the (x, y, z, t) variables to the (x, y, ξ ≡ ct− z, s ≡ t). In this group of new

variables the quasi-static approximation implies ∂s << ∂ξ in the field equation.

Maxwell’s equations then become
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−∇2
⊥[

A

φ
] = [

J

ρ
] (2.7)

∇⊥ ·A⊥ = −∂ψ
∂ξ

(2.8)

where ψ ≡ φ− Az,∇⊥ ≡ x̂ ∂
∂x

+ ŷ ∂
∂y

and A⊥ = x̂Ax + ŷAy etc. Furthermore,

it can be shown that the plasma electrons evolve as[83]

d

dξ
P⊥ =

1

1− vz

[
−[E⊥ + (V ×B)⊥]− 1

γ̄
∇⊥

|a|2

4

]
(2.9)

where γ̄ = (1 + P 2 + |a|2
2

)
1
2 . There is an Eq.2.9 for each laminar fluid or

lagrangian fluid particle. It can also be shown that γ̄ − Pz = 1 + ψ is a constant

of the motion. In this equation all high frequency motion associated with the

laser has been averaged out. As a consequence of the constant of the motion, we

can write

Pz =
[1 + P 2

⊥ + |a|2
2
− (1 + ψ)2]

2(1 + ψ)
(2.10)

γ̄ =
[1 + P 2

⊥ + |a|2
2

+ (1 + ψ)2]

2(1 + ψ)
(2.11)

1− vz =
2(1 + ψ)2

[1 + P 2
⊥ + |a|2

2
+ (1 + ψ)2]

(2.12)

so that once P⊥ is solved, the axial momentum is known. In addition, the

pseudo potential ψ obeys the Poisson like equation,

−∇2
⊥ψ = 4π(ρ− Jz), (2.13)

the continuity equation of electric charge becomes
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∂

∂ξ
(ρ− Jz) +∇⊥ · J⊥ = 0 (2.14)

and the fields Ez, Bz ,E⊥ and B⊥ can be calculated via

Ez =
∂ψ

∂ξ
(2.15)

Bz = (∇⊥ ×A⊥) • ẑ (2.16)

E⊥ = −∇⊥φ−
∂A⊥

∂ξ
(2.17)

B⊥ = ∇⊥ × (Az ẑ) +∇z ×A⊥ (2.18)

Therefore, the wakefield Ez is completely described in terms of ψ which can

be obtained from a Poisson like equation whose source term depends only on the

profiles of plasma charge density ρ and parallel current Jz, which in turn depend

on all the fields through the equation of motion.

2.3 On Blowout and Sheet Crossing

In this section we will use the simplified sheet (ring) model of Dawson to obtain

a condition for trajectory crossing which is valid for weakly driven wakefields.

In the next section, we will apply the full set of equations towards describing

nonlinear 3D relativistic wakefields. The trajectory crossing condition also defines

the transition from the linear regime to the weakly blownout regime. Imagine

electrons which begin at different radial positions. If no trajectory crossing occurs

then each electron will always see other electrons at smaller radii and hence there

is no region void of electrons. However, if the trajectory of an electron with

a sufficiently small initial radius crosses that of another electron then for radii

smaller than this it is possible for an ion column to form. So trajectory crossing
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is a necessary but not sufficient condition to reach the blowout regime. As we

will show it provides a very reasonable estimate.

To use the Dawson sheet or ring model we assume a cylindrically symmet-

ric, narrow, bi-flat-top electron driver. We also start by assuming that plasma

electron rings do not cross each other. We also assume that the plasma cur-

rent induced fields are negligible and that the velocities of the plasma electrons

remain non-relativistic. These assumptions are rigorously valid for low charge

drivers and we will quantify what is meant by this later.

The charge density profile for our bi-flat-top model is nb(r, ξ) = nb when r < a

and 0 < ξ < L , otherwise nb(r, ξ) = 0. L is the beam length and a is the beam

spot size. In the narrow beam limit we also assume a << 1 and L ∼ 1.

The equation of motion for an electron ring can be derived from Eq.9 by

taking the non-relativistic limit (vz << v⊥ << 1, v⊥ ≈ dr/dξ), and by assuming

the total force on an electron ring is due solely to the electrostatic force from the

total charge within the ring, which includes the ion charge, the electron beam

charge, and plasma electron charge:

d2r

dξ2
= −1

2
r +

c(r0, r, ξ)

r
(2.19)

Here the force term −r/2 comes from the uniform ion background. The

force term c/r comes from the 2d cylindrical electrostatic force from the total

electron charge inside the ring, where c(r0, r, ξ) is the total electron charge per

unit length within the sheet with a initial position r0 and a position r at ξ. With

the assumption of no crossing, c(r0, r, ξ) = 1
2
r2
0 +

∫ r

0
r′nb(r

′, ξ)dr′. For bi-flat-top

model and a particle with r0 > a, c(r0, r, ξ) = 1
2
(r2

0 + nba
2).

This equation can be easily integrated numerically. Fig.2 shows two trajectory
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plots for different nb0 for a bi-Gaussian beam driver with kpσr = 0.01 and kpσz =
√

2. In Fig.2.3(a) nb = 1.0 and there is no trajectory crossing, while in Fig.2.3(b)

nb = 10, and clear trajectory crossing can be seen.

Clearly there is a transition from no-crossing to crossing. We can derive such a

condition if we calculate the maximum radius rm(r0) for an arbitrary initial radius

r0. This is possible because the particle trajectories all oscillate with frequencies

in the variable ξ that are very close to each other, so they will each reach their

maxima at nearly the same value of ξ. This effect can also be seen in the above

figures. Trajectory crossing occurs when rm(r0) changes from a monotonically

increasing function to a function with both a local maxima and minima.

First we treat the case r0 ≥ a. The equation of motion can be integrated once

leading to the potential energy φ(r, r0) for a particle with an initial radius r0,

φ(r, r0) = −1

4
r2 +

1

4
(
nba

2

r2
0

+ 1)r2
0(1 + 2 ln(

r

r0
)) (2.20)

A particle’s velocity is 0 for both r = r0 and r = rm(r0) so the potential for

these two radii should be the same :

φ(rm(r0), r0) = φ(r0, r0) (2.21)

This leads to the following relation between rm(r0) and r0 :

r2
m − r2

0 = (
nba

2

r2
0

+ 1)r2
0 ln

r2
m

r2
0

(2.22)

Rewriting this equation by normalizing the radius to a, r̄m = rm/a and r̄0 =

r0/a gives,
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Figure 2.2: Plots of trajectories for electrons at different initial radial position for

an electron beam driver with kpσr = 0.01 , kpσz =
√

2, the beam center ξ0 = 5

and with (a) nb0 = 1 (b) nb0 = 10

r̄2
m − r̄2

0 = (
nb
r̄2
0

+ 1)r̄2
0 ln

r̄2
m

r̄2
0

(2.23)
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For the non-crossing assumption to be valid, we need r̄m(r̄0) to be a monoton-

ically increasing function of r̄0 , this is equivalent to dr̄m
dr̄0

> 0. By differentiating

the above equation we can get :

dr̄m
dr̄0

=
r̄m
r̄0

(ln
r̄2
m

r̄2
0

− nb
r̄2
0

)(ln
r̄2
m

r̄2
0

− nb
r̄2
0

+
nb
r̄2
0

ln
r̄2
m

r̄2
0

)−1 (2.24)

There is no particle crossing for sufficiently large r̄0 since dr̄m/dr̄0 → 1 as

r̄0 → ∞ . We see that for ln r̄2m
r̄20

= nb

r̄20
we have dr̄m

dr̄0
= 0, which defines the onset

of particle crossing. We denote this critical r̄0 as r̄0m . Combined with the above

equation, this gives r̄0m and r̄m(r̄0m) for a given nb. We find that u ≡ nb

r̄20m
satisfies

the following equation :

exp (u)− 1 = u(u+ 1) (2.25)

This equation has a nonzero solution u0 = 1.7933. Correspondingly, r̄0m =

0.747
√
nb and r̄m(r̄0m) = 1.831

√
nb. In our analysis r̄0 ≥ 1, therefore only when

nb ≥ 1.792 can particle crossing be possible. We can verify that at this r̄0m, r̄m

is a minimum by checking if d2r̄m
dr̄20

> 0. Differentiating Eq.2.24 we get :

d2r̄m
dr̄2

0

=
2r̄mr̄

2
0

n2
b

(
nb
r̄2
0

− 1) (2.26)

which is obviously greater than 0 , since we have nb

r̄20m
= 1.7933 .

For r0 < a, a similar calculation can be carried out by taking into account the

kinetic energy of the particle when it reaches r = a. Some particles very close

to the axis will not reach r = a, for example, the particle with r0 = 0 will just

go through the beam without any deflection. This is very similar to an unstable

equilibrium, where every trajectory with an initial r0 slightly different with 0 will

leave the equilibrium very quickly.
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It turns out that for a beam density smaller than a critical density ( surpris-

ingly the same value nb = 1.792 ), rm(r0) is a monotonically increasing function.

Assuming r0 < a, then for nb > 1.792, rm(r0) (r0 < a) will have a local maximum

at some radius r0 = r∗ < a. If we keep increasing nb, this r∗ will move toward 0,

which means more electrons inside the beam will be blown out.

Combining the results for r0 < a and r0 > a, we can make the following

conclusions:

1. When the beam density satisfies the condition, nb < 1.792 , then rm(r0) is

a monotonically increasing function. In this case, no particle crossing happens.

2. If nb > 1.792, then rm(r0) will have negative slope between r∗ < r0 < r0m,

where r∗ < a is a local maximum of rm(r0), and r0m > a is a local minimum

of rm(r0). In addition, rm(r0m) is the blowout radius. Electrons with initial

positions in this range will cross an electron that starts at position at r0m. If nb

is large enough (e.g. nb = 10), r∗ will also be very close to 0, which means almost

all electrons of r0 < r0m will cross electrons with r0 < r0m, so a nearly pure ion

channel will be formed .

We can rewrite the blowout radius rmax in normalized units as :

rmax = 1.831(nba
2)

1
2 (2.27)

We define Λ as normalized charge per unit length,

Λ ≡
∫ ∞

0

rnbdr (2.28)

For a bi-flat-top beam, Λ = nb0a
2/2, and for a bi-Gaussian beam, Λ = nb0σ

2
r .

The blowout radius then can be written as rmax = 2.58Λ
1
2 . This basically shows

that in the blowout regime the blowout radius depends primarily on the total
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charge per unit length not just the peak density. It is worth noting that for a

bi-Gaussian beam (σz ∼ 1 and σr << 1), simulations and trajectory calculations

show that rmax ≈ 2(nb0σ
2
r)

1
2 , which is about 20 percent smaller than the above

theoretical value. The reason is that the bi-Gaussian beam has a longitudinally

varying density profile, but the formula uses the maximum density leading to a

larger result.

For a very short driver, e.g., L << 1, it is the initial kick from the beam that

determines if blowout will happen or not. A similar calculation to that given

above can be carried out. The main difference is that for this case it is the total

charge of the beam that determines the condition for blowout and the blowout

radius. The relation between the blowout radius and the total charge Q also has

similar form, e.g., rmax ∝ Q
1
2 .

A direct consequence of complete blowout is the formation of a narrow elec-

tron sheath around the blowout boundary. The above method for calculating

the blowout radius can also give an estimate for the width of this narrow region.

We can get such an estimate by calculating the maximum radius for an elec-

tron initially located at the blowout radius, r0 = rmax. The result is 1.287rmax.

Therefore, 0.287 can be a rough estimate of the ratio between the width of nar-

row sheath and the blowout radius. Real density profiles from PIC simulations

show that width is actually less, so generally we can treat the width of the narrow

sheath as a small fraction of the blowout radius. This will be a key approximation

in the theoretical model for blowout regime given in the next section.
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2.4 Wake Excitation in the Blowout Regime

In the previous sections, we have presented the basic theoretical framework for

wake excitation and some physical insight for the blowout regime. In this section

we use this framework and insight to develop a general model for wakefields in

the blowout regime. The key approximation is based on the observation that

the plasma density and current profile can be roughly divided into three distinct

regions: an ion channel, a narrow plasma electron sheath and a linear response

region where the perturbation of the plasma is very weak . The ion channel has a

sharp boundary. That is at the blowout radius the electron density rises from 0 to

a large value in an essentially infinitesimal distance. For much of the ion channel,

the channel boundary, rb(ξ), is also the trajectory of most inner electron. The

plasma electron density and axial current density profiles in the narrow electron

sheath are rather narrow at rb(ξ) and the width ∆s(ξ) is small compared with

rb(ξ) for most part of the ion channel except where rb is very close to zero. Indeed

the profiles are more like exponential decay than constant. Beyond the narrow

sheath, the perturbation of plasma density and current becomes very weak, so this

region can be described by linear fluid model. From linear theory, we know this

region has a typical width around one plasma skindepth c/ωp. The contribution

to the wakefield from the linear response region must be taken into account due

to its rather large width. For small blowout radius the contribution from this

outer linear response region is dominant.

At this point, we will assume the wake is excited by a bi-Gaussian electron

driver with a density profile

nb(r, ξ) =
N

(2π)3/2σ2
rσz

e−r
2/2σ2

re−ξ
2/2σ2

z (2.29)
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.

How the formalism is modified for a laser driver will be addressed later. In

addition, for laser drivers the assumption that the sheath is narrow is not neces-

sarily valid. By assuming azimuthal symmetry, we can rapidly obtain solutions

for Eq.2.7 and Eq.2.13 because of their Poisson like form. Inside the ion channel,

i.e., for r ≤ rb and for r >> σr,

φ = φ0(ξ)−
r2

4
+ λ(ξ) ln r (2.30)

Az = Az0(ξ) + λ(ξ) ln r (2.31)

where λ(ξ) =
∫ r>>σr

0
rnbdr and φ0(ξ) ≡ φ(r = 0, ξ) and Az0(ξ) ≡ Az(r = 0, ξ).

In addition,

Ar = σ(ξ)r (2.32)

where from the gauge condition,

σ(ξ) = −1

2

d

dξ
ψ0(ξ)

= −1

2
Ez0 (2.33)

ψ = ψ0 −
r2

4
(2.34)

We have also assumed that the beam is highly relativistic, i.e., ρb − Jb =

ρb(1 − vzb) → 0. The force on a plasma electron at r = rb(ξ) or for a beam

electron can therefore be written as
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F⊥ = −(Er − VzBθ) =
∂φ

∂r
− Vz

∂Az
∂r

+ (1− Vz)
∂Ar
∂ξ

= −1

2
r + (1− Vz)

λ(ξ)

r
+ (1− Vz)

dσ

dξ
r (2.35)

where the first term is due to the space charge of the unshielded ion channel,

the second and the third terms are due to the electric and magnetic fields from the

electron beam and to plasma radial currents respectively. Note that the focusing

force on a beam electron with Vz ∼ 1 is due solely due to the space charge of the

ion channel because the electric and magnetic forces from the plasma currents

and the beam’s self-forces each cancel. On the other hand for plasma electrons

for which −1 < Vz << 1 the force is due to the full electromagnetic character

of the wake. In order to uniquely calculate the force on a plasma electron at

r = rb(ξ), we next need to calculate σ(ξ) or equivalently ψ0(ξ).

The source term for ψ(r, ξ) is ρ− Jz. From the continuity equation it follows

that

d

dξ

∫
r(ρ− Jz)dr = 0 (2.36)

Far in front of the electron beam where the plasma is unperturbed ρ−Jz = 0

so
∫
r(ρ − Jz)dr = 0 for all ξ. This is a critical condition because it grants ψ a

global definition. At each ξ we assume

ρ− Jz = ρion + ρe − Jze (2.37)

where ρion = 1 for all r and ρe − Jze is zero for r < rb, rises sharply within a

sheath of thickness of ∆s and gradually falls to unity in a width ∆L. The region

defined by ∆L is where the plasma electrons respond nearly as they would have
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in a linear wake. This is illustrated in Fig.2.4 where the profile Jz/c− ρ vs. r is

plotted for an arbitrary value of ξ from Fig.2.1. It does not appear possible to

analytically determine the exact profiles of ρ − Jz within the sheath and linear

regions. However, the results are very insensitive to the forms of the profiles and

we find that very accurate results can be obtained by assuming Jz − ρ = −1 for

r < rb and is a constant

n∆ =
r2
b

(rb + ∆)2 − r2
b

(2.38)

for rb < r < rb + ∆. This is illustrated in Fig.3.

Figure 2.3: Jz/c− ρ profile from a PIC simulation

Obviously, more refined profiles can be used. Under these assumptions
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ψ =
r2
b (ξ)

4
(1 + β(ξ))− r2

4
(2.39)

for r ≤ rb where

β(ξ) =
(1 + α)2 ln(1 + α)2

(1 + α)2 − 1
− 1 (2.40)

α ≡ ∆

rb
=

∆L

rb
+

∆s

rb
(2.41)

.

We assume ∆s

rb
≡ ε << 1 except at the back of the blowout region where

rb << 1. To complete the analysis, we use these results to derive a single equation

for rb(ξ) by using the relativistic equation of motion for a plasma electron,

dP⊥
dξ

=
1

1− Vz
F⊥ (2.42)

.

We can rewrite the left hand side as

dP⊥
dξ

=
dγV⊥
dξ

=
d

dξ
γ(1− Vz)

d

dξ
r⊥

=
d

dξ
(1 + ψ)

d

dξ
r⊥ (2.43)

and use the expression for 1− Vz from Eq.2.12. The equation of motion for a

plasma particle at rb can now be written as
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d

dξ
[(1 + ψ)

d

dξ
rb] = rb{−

1

4
[1 +

1

(1 + ψ)2
+ (

drb
dξ

)2]

+(
dσ

dξ
) +

λ(ξ)

r2
b

} (2.44)

where ψ(rb(ξ)) is given by Eq.2.39. This can be simplified further if we assume

that the width, ∆, depends weakly on ξ, i.e.,

∂∆

∂ξ
≈ 0 (2.45)

,

so that dβ
dξ

= drb
dξ

∂β
∂rb

. Under this assumption Eq.2.44 reduces to

A(rb)
d2rb
dξ2

+B(rb)rb(
drb
dξ

)2 + C(rb)rb =
λ(ξ)

rb
(2.46)

where

A(rb) = 1 + [
1

4
+
β

2
+

1

8
rb
dβ

drb
]r2
b

B(rb) =
1

2
+

3

4
β +

3

4
rb
dβ

drb
+

1

8
r2
b

d2β

dr2
b

C(rb) =
1

4
[1 +

1

(1 + β
4
r2
b )

2
]

.

Recall that once rb(ξ) is solved for then ψ(r, ξ) is known (Eq.2.39) and

Ez(r, ξ) =
d

dξ
ψ(r = 0, ξ)

=
d

dξ
[
1

4
r2
b (1 + β(ξ))] (2.47)
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is known. We note here that for a laser driver C(rb) = 1
4
[1 +

1+a2

2

(1+β
4
r2b )2

] and the

right side of Eq.2.46 becomes −
d
dr

|a|2
4

1+β
4
r2b

, which comes from the laser’s ponderomo-

tive force.

We show the accuracy of our model by directly integrating Eq.2.46 for a

bi-Gaussian electron beam driver. We choose kpσr = 0.1 and kpσz =
√

2. In

Fig.4, we plot the trajectories of rb(ξ) for different values of beam charge, i.e.,

eN, and hence different maximum blowout radius ( rm varies from 0.18 to 4)

and compare these trajectories with the ion channel boundaries extracted from

fully nonlinear PIC simulations. The theory and PIC simulation results for rb

are essentially identical for each case. We used ∆s = 0.1rb and ∆L = 1 for each

case. Varying ∆L from 0 to 3 leads to only a 20 percent deviation in both the

blowout radius and the ion channel length. Fig.2.4 also compares the wakefields,

Ez, calculated from the model with those from PIC simulations. The agreement

is excellent until near the rear of the blowout region (large values of ξ). We

have determined that much of the disagreement comes from assuming constant

∆s/rb and ∆L, which is not exactly true near the rear of the first bucket where

rb becomes small. In Fig.4a, we also plot the wakefield, Ez, which is calculated

using a ∆L which depends on ξ. This gives better agreement near the rear of

the ion column. Although this simple model cannot give exact predictions for Ez

near the very rear of the ion channel, it provides the correct trajectory for rb and

hence the correct structure of the wakefield ,e.g., the peak decelerating field, the

useful accelerating field, the useful transformer ratio and the wake’s wavelength

for arbitrary shaped bunches. It also describes quantitatively how the wakefield’s

structure changes as rm increases. We also note that it is accurate enough to

treat the beamloading problem. Fig.4b shows the agreement between the theory

and simulation where a drive beam and a trailing beam are used. The agreement
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is exact within the trailing beam.

Figure 2.4: Comparison of the trajectories of rb(ξ) and the accelerating field

Ez(ξ) between theoretical calculations and PIC simulations: PIC simulation(red),

calculation using a constant profile (green), and calculation using a varying profile

(blue). The maximum blowout radius is (a) rm = 4 (b) rm = 4 with two beams

(c) rm = 2 (d) rm = 0.18

Much can be learned by examining Eq.2.46 in two distinct limits; namely the

non-relativistic blowout regime where rm << 1 and the ultra-relativistic blowout

regime where rm >> 1. Before providing details on these two distinct regimes in

the following two sections,we summarize some key features.

In the ion channel,r < rb , the wakefield Ez(r, ξ) can be expressed as
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Ez(r, ξ) =
∂

∂ξ
ψ(0, ξ) (2.48)

All three plasma regions (ion channel, narrow electron sheath and the linear

response region) contribute to ψ(0, ξ),

ψ(0, ξ) =

∫ ∞

0

dr

r

∫ r

0

(ρ− Jz/c)r
′dr′

= {
∫ rb

0

+

∫ rb+∆s

rb

+

∫ ∞

rb+∆s

}[dr
r

∫ r

0

(ρ− Jz/c)r
′dr′]

= ψion + ψs + ψLinear (2.49)

where ψion =
r2b
4

is the part contributed by ion channel and ψs is the part

contributed by the narrow electron sheath. Because the width of the sheath is

small compared with rb for almost all values of ξ, ψs is a small fraction of ψion.

The third term, ψLinear, is the part contributed by the linear response region.

This is a region of width around 1 ( c/ωp in unnormalized units), so its relevant

importance depends on the blowout radius rm. If rm >> 1 ( the ultra-relativistic

blowout), it will be much smaller than ψion. If rm << 1 (the non-relativistic

blowout), it will be the dominating part.

We can estimate the form of β(ξ) in these two limits:

When rm >> 1 the ratio α << 1, providing

β(ξ) ≈ α (2.50)

We can see that in this limit the ion channel is the dominant contribution to

ψ(0, ξ) because β(ξ) ≈ α << 1.

On the other hand, when rm << 1 the ratio α >> 1, leading to
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β(ξ) ≈ 2 lnα (2.51)

This logarithmic term provides a direct connection between linear fluid theory

and the linear response region. In this limit, the contribution from the linear

region is now much larger than that from the ion channel.

2.5 On the Transition between Linear Theory and the

Breakdown of Fluid Theory

In this section we use the results in the previous section for rm << 1 to make a

connection between blowout theory and the results of linear fluid theory.

In the linear fluid theory [49] for a narrow short electron driver ( e.g., kpσz =
√

2 and kpσr << 1), the maximum wakefield EzMax can be written as

eEzMax

mcωp
≈ 1.3

nb0
np
k2
pσ

2
r ln

1

kpσr
(2.52)

This formula has a logarithmically divergent term, ln 1
kpσr

. If we fix the charge

per unit length Λ ≡ nb0

np
k2
pσ

2
r and keep decreasing the beam spot size kpσr, Eq.2.52

predicts the wakefield will blow up. Indeed this divergence inherently exists in

the Green’s function of the wakefield for a point charge.

This nonphysical infinity arises from the breakdown of linear fluid theory.

When the spot size decreases, the beam density also increases, and eventually

will become larger than the backgroud plasma density. When the beam density is

much larger than the plasma density, clear blowout will happen and the wakefield

will saturate. Recently [49], we showed through PIC simulations that such a

saturation happens at nb0/np ∼ 10 where a clear blowout occurs at the front of
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the beam. We found [49] that an approximate formula for the wakefield after

clear blowout has the following form:

eEzMax

mcωp
≈ 1.3Λ ln

1√
Λ/10

(2.53)

Based on the present theory, it is easy to understand such a logarithmic

dependence on Λ. Once the beam spot size has decreased to a value such that

clear blowout occurs, decreasing the beam spot size further will not change the

plasma response to the beam. The linear response region beyond the maximum

blowout radius rm ( kprm ≈ 2
√

Λ, as shown in section III ) will give a such a

logarithmic dependence.

In the non-relativistic blowout regime (rm << 1), the plasma current induced

fields (e.g., ∂Ar

∂ξ
) are of 2nd order as compared with space charge fields (e.g., ∂φ

∂r

). In the linear response region no trajectory crossing occurs so plasma electrons

only feel the electric forces from the beam and the ions that they cross. Therefore,

the plasma response in the region r > rm + ∆s is the same as it would be from a

wider low density beam with the same Λ but with a width rm + ∆s. Therefore,

we can calculate an expression for ψLinear from linear theory.

For simplicity, we calculate this ψLinear for a bi-flat-top beam with spot size

a, length L and density nb0 (a << 1, L ≈ 2π).

From the linear theory [49], Ez(r, ξ) for this beam profile is:

Ez(r, ξ) = nb0R(r) sin ξ (2.54)

where R(r) =
∫ ∞

0
nb(r

′)I0(r<)K0(r>)r′dr′ is the radial function of the linear

wakefield.

Integrating this along ξ we get
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ψ(r, ξ) = nb0R(r)(1− cos ξ) (2.55)

R(r) can be expanded for a << 1 and r << 1,

R(r) ≈ R(0)− 1

4
(1−R(0))r2 (2.56)

where

R(0) ≈ a2

2
ln(

1.85

a
) (2.57)

For a = rm + ∆s ≈ rm and nb0 = 2 Λ
r2m

, we get

ψLinear(ξ) ≈ 2Λ ln(
1.12

rm
)(

1− cos ξ

2
) (2.58)

This expression reaches its maximum of 2Λ ln(1.12
rm

) at ξ = π , which is also

where rb(ξ) reaches its maximum rm. We can combine the three contributions to

ψ(0, ξ) and get ψ(0, ξ) near the maximum blowout radius rm (ξ ≈ π),

ψ(0, ξ) ≈ 2Λ ln(
1.12

rm
)(

1− cos ξ

2
) + (1 + ε(ξ))

r2
b

4
(2.59)

where ε ≡ ∆s

rb
. The wakefield Ez in the ion channel is therefore

Ez(r, ξ) ≈
1 + ε(ξ)

2
rb(ξ)

d

dξ
rb(ξ) + 2Λ ln(

1.12

rm
)
sin ξ

2
(2.60)

For small rb, the equation of motion for rb(ξ), Eq.2.46, can be reduced to

d2rb
dξ2

= −1

2
rb +

λ(ξ)

rb
(2.61)

which is identical to Eq.19. At the maximum blowout where ξ = ξ0 ≈ π,

drb
dξ

= 0. Therefore, to 1st order in (ξ − ξ0),
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rb(ξ)
d

dξ
rb(ξ) ≈ rm

d2rb
d2ξ

(ξ0)(ξ − ξ0) (2.62)

It thus follows that to lowest order, Ez(r, ξ) is

Ez(r, ξ) ≈ −(
1

4
r2
m(1 + ε)(1− 2c(ξ0)

r2
m

) + Λ ln(
1.12

rm
))(ξ − ξ0) (2.63)

Substituting rm ≈ 2.58Λ
1
2 into the above expression for Ez, and also noting

that ε and 2c(ξ0)
r2m

are both small, we obtain

Ez(r, ξ) ≈ −(Λ ln(
1√

Λ/5.3
))(ξ − ξ0) (2.64)

For very small blowout radius, the wakefield structure is close to a sinusoidal

form, so the slope at the point where Ez = 0 can be used to roughly determine

the maximum wake amplitude. This gives

Ezmax ≈ Λ ln(
1√

Λ/5.3
) (2.65)

Although this is calculated for a bi-flat-top beam, we can see it is very close

to the formula given in Eq.2.53 which was deduced from simulations [49].

2.6 The Ultra-relativistic Blowout Regime

In the ultra-relativistic limit where rm >> 1 ,β << 1 and βr2
m & 4, Eq.2.46

reduces to:

rb
d2rb
dξ2

+ 2[
drb
dξ

]2 + 1 =
4λ(ξ)

r2
b

(2.66)
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The bunch length is typically much shorter than the nonlinear ion channel

length, so we can ignore the driving term on the right hand side for much of the

trajectory. The equation for a circle is

rb
d2rb
dξ2

+ [
drb
dξ

]2 + 1 = 0 (2.67)

while Eq.2.66 gives

rb
d2rb
dξ2

+ 2[
drb
dξ

]2 + 1 = 0 (2.68)

with the right hand side set to zero. Near the top of a circle drb/dξ → 0, so

the trajectory rb(ξ) maps out a circle until the rear of the blowout region. The

effect of the “extra” [drb
dξ

]2 term is to bend the trajectory downward more quickly

as drb
dξ

becomes large. This is indeed what is observed in Fig.4.a. We can rewrite

the left hand side of Eq.2.66 as

d

dξ
[
1

2
rb
drb
dξ

] = −1

2
− 1

2
[
drb
dξ

]2 (2.69)

,

and since it follows from Eq.2.47 that Ez(ξ) ≈ 1
2
rb
drb
dξ

when β(ξ) can be

neglected for rb >> 1, we see that Ez has a slope ∂E
∂ξ

= −1
2

at the top of the

channel and the slope increases as drb
dξ

increases leading to the characteristic spike.

This is seen in Fig.4.a where a line with a slope of −1/2 is shown for convenience.

For most situations of interest, the driver is sufficiently short that the right

hand side of eqs.2.46 and 2.66 can be neglected at the point where rb(ξ0) = rm

. For ξ > ξ0 and for rm & 4 the trajectory for rb maps out a circle and the

ion column is a sphere, i.e., a bubble. The value of Ez = 0 at ξ = ξ0, and

Ez decreases linearly from 0 to −rm/2 in a distance Lc = rm. Therefore the
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nonlinear frequency ( or wave number ) is ωNL = π
rm
ωp and in terms of the

amplitude Ezmax = rm/2, ωNL = π
2Ezmax

ωp. Interestingly the same relationship

holds for nonlinear one-dimensional plasma oscillations [65] although the physics

is completely different. In these 3D wakes the wakefields are electromagnetic in

character. Besides the accelerating axial electric field, Ez, there are transverse

electric, Er, and magnetic fields, Bθ. The Er fields come from the ion column,

Erion = 1
2
r, and the radial plasma current, ErEM = −1

4
r while Bθ comes from the

radial plasma current, BθEM = −1
4
r. The total focusing field on a beam electron

is Er −Bθ = 1
2
r = Erion.

2.7 Formulas for Arbitrary Blowout Radius

We can also get expressions for arbitrary blowout radius by taking into account

all the terms in the equation of motion. First we can get the slope of the wakefield

near the top of the ion channel by expanding the equation of motion near the

maximum blowout radius. From Eq.2.45 the wakefield inside the ion channel is:

Ez(ξ) =
d

dξ
ψ(0, ξ) = (

1

2
+

1

2
β +

1

4
rb
dβ

drb
)rb
drb
dξ

(2.70)

At the maximum blowout radius ξ = ξm , rb = rm and drb
dξ

= 0. The blowout

radius rb(ξ) can then be expanded about ξ = ξm:

rb(ξ) ≈ rm +
1

2

d2rb
dξ2

(ξm)(ξ − ξm)2 (2.71)

This leads to
drb
dξ

≈ d2rb
dξ2

(ξm)(ξ − ξm) (2.72)

and
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Ez(ξ) ≈ [
1

2
+

1

2
β(rm) +

1

4
rm

dβ

drb
(rm)]rm

d2rb
dξ2

(ξm)(ξ − ξm) (2.73)

From the equation of motion for rb,

d2rb
dξ2

(rm) = −
[C(rm)− λ(ξm)

r2m
]

A(rm)
rm (2.74)

So the slope of Ez at ξ = ξm can be written as:

dEz
dξ

(ξm) = −[
1

2
+

1

2
β(rm) +

1

4
rm

dβ

drb
(rm)]r2

m

[1
4
[1 + 1

(1+βr2m)2
]− λ(ξm)

r2m
]

1 + [1
4

+ 1
2
β + 1

8
rm

dβ
drb

]r2
m

(2.75)

We can easily check this formula for the two limits. For non-relativistic

blowout where rm << 1, β(rm) >> 1, β(rm)r2
m << 1 and 1

4
rm

dβ
drb

(rm) ∼ −1
2
,

resulting in

dEz
dξ

(ξm) ≈ −1

4
β(rm)r2

m (2.76)

By substituting rm ∼ 2
√

Λ and β(rm) ∼ ln 1
r2m

, we can roughly recover the

scaling Λ ln 1
Λ
. The wakefield also scales the same way because the wavelength

in this limit is a constant. So we can roughly say that in the non-relativistic

blowout regime the accelerating field scales as r2
m.

On the other hand for ultra-relativistic blowout where rm >> 1, β(rm) <<

1,β(rm)r2
m >> 1 and 1

4
rm

dβ
drb

(rm) ∼ β(rm), leading to

dEz
dξ

(ξm) ≈ −1

2
(2.77)

In this limit, the slope is a constant, and the ion channel has a spherical shape,

so the accelerating field scales as rm.
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We can also get estimates for the ion channel length for arbitrary blowout

radius. For small blowout radius, the half length of the ion channel is fixed at

π/
√

2. For large blowout radius (rm & 4), half of the ion channel length is almost

the same as the blowout radius. For a blowout radius between (1 < rm < 4),

the ion channel is close to an ellipse , and the half length of this channel can be

calculated by assuming a constant wakefield slope.

Ez ≈
1

2
(1 + β(rm))rb

drb
dξ

≈ −ksξ (2.78)

Integrating once gives an equation for an ellipse,

r2
b +

2ks
1 + β

ξ2 ≈ r2
m (2.79)

Evaluating ξ for rb = 0 provies the half length of the ion channel, Lh ≈√
1+β
2ks

rm.

2.8 Differences between Laser Driver and Electron Beam

Driver

In previous sections, we treated both laser drivers and the beam drivers on the

same footing. We used the same sheath model for each and the analysis indicated

that the wake structure is basically dictated by the maximum blowout radius, rm,

so long as the laser or particle beam driver is sufficiently short.

In this section we will discuss the differences between the laser and the beam

drivers in several important aspects: driver spot size, blowout radius and the

matching condition.

For the electron driver case, the bunch is typically narrow, σr << rm, and
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the ultra-relativistic limit is generally not reached, rm ∼ 2. For example, in

the E164X experiments [48], N = 1.8 × 1010, σz = 30µm, σr = 10µm and the

plasma density was 5 × 1016cm−3. Therefore nb/np ≈ 7 and Λ ≈ 1. For these

parameters, kprm ≈ 2. For such an rm, both the ion channel and linear response

regions contribute significantly to the wake excitation.

For the laser driver case, narrow lasers (W0
ωp

c
<< 1 ) cannot be guided

because even a fully evacuated channel can not provide an index of refraction

with enough depth to compensate the laser diffraction. This can be seen from

the linear guiding condition. For a transverse Gaussian laser profile with spot

size W0, the normalized channel depth ∆nc/np needed to guide the laser is[85]

∆nc
np

=
4

(kpW0)2
(2.80)

Complete blowout occurs when ∆nc

np
∼ 1 and kpW0 > 2 is the requirement for

optical guiding. In order for a laser with such a spot size to cause blowout, the

normalized vector potential a0 also needs to be larger than 1. Therefore, laser

powers larger than Pc (the critical power for relativistic self focusing [55] ) are

needed to generate blowout. Since the blowout radius will exceed the laser spot

size, when using laser drivers, one is often in the ultra-relativistic blowout regime

or bubble regime.

Unlike the space charge force of an electron beam, the ponderomotive force

of the laser only extends out to the edge of the laser. For a given laser power P

and plasma density np, there is a matched spot size which produces well defined

sheaths and good guiding properties for the laser. If the spot size is much larger

than this matched size, the normalized vector potential a0 will be too small to

cause blowout initially. However, relativistic self focusing will also result in the

back of the pulse focusing down to a spot size ∼ c/ωp which will then lead to
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blowout [55]. Conversely, if the laser is focused to a spot size smaller than the

matched size, the normalized vector potential is so large that electrons near the

axis will be blown out very rapidly while the electrons at the laser edge will feel

a very small ponderomotive force so they move very little. This leads to a very

wide sheath. In addition, the laser will diffract because its spot size is too small

to be guided. To form a well defined narrow sheath which is a key assumption of

our model, one needs the laser spot size to roughly be the same as the blowout

radius, W0 ∼ rm. Under this condition, electrons at an initial radius near W0

will experience an impulse before the ion channel forces have fully developed.

These electrons then move outward until the ion channel force brings them to

rest. This suggests the blowout radius can be estimated by balancing the laser

ponderomotive force on a single electron and the ion channel force. Typically,

we also choose a laser pulse length around rm, which is short enough that the

impulse approximation is reasonable. Balancing the two forces to get an estimate

of the matched spot size gives

a2
0

γ̄kprm
∼ kprm (2.81)

and by substituting γ̄ ∼ a0, we get

kprm ∼ 2
√
a0 (2.82)

where the factor of 2 is deduced from full PIC simulations. Estimating the

blowout radius in this manner was also done in references [79] and [80]. In these

references give an estimate a factor of two smaller. In addition, it is also how the

requirement for electron cavitation was determined in Ref.[55].

The need to use a matched laser spot size is illustrated in Fig.2.5 where the
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plasma density is plotted from simulations with matched and unmatched spot

sizes for the same laser power and plasma density. In Fig.5a kpW0 = 4 while in

Fig.5b kpW0 = 3.

Our simple sheath model only works well for the matched case ( Fig.2.5a ),

therefore for the other value of W0 our model(Fig.2.5.b ) does not work as well.

From the formula for rm, Eq.2.82, we can see that the ultra-relativistic limit,

rm & 4, can be reached when a0 & 4 and W0 ∼ rm ∼ 2
√
a0. Reaching this limit

requires a laser power a2
0W

2
0 ∼ 8Pc where Pc is the critical power for relativistic

self-focusing [84]. For current stat-of-the-art lasers [60, 61, 62, 59], 15 . P .

100TW , reaching the ultra-relativistic blowout (bubble) regime therefore requires

the use of plasma densities between 2× 1019 & np & ×1018cm−3 respectively.

Figure 2.5: Plasma density plots from PIC simulations with matched and un-

matched spot sizes for the same laser power P and plasma density np, P/Pc = 8

(a) matched case with kpW0 = 4 and a0 = 4 (b) unmatched case with kpW0 = 3

and a0 = 5.3
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2.9 Summary

We have described a nonlinear, kinetic ( non-fluid) theory for describing multi-

dimensional plasma wave wakefields generated by relativistic electron beams or

intense short lasers with matched spot sizes propagating in plasmas. These wake

fields are generated when all electrons within a radius rb are expelled leaving

behind an ion channel. The expelled electrons form a narrow sheath. The theory

permits the derivation of an equation of motion for an electron at the blowout

radius. Integrating this equation directly for electron beam drivers provides ac-

curate agreement with fully nonlinear particle-in-cell simulation results. For laser

drivers, the maximum blowout radius is determined from force balance and the

equation of motion can then be used to determine the shape of the ion channel

behind the laser. We have examined the consequences of this equation in the

limit that rb << c/ωp and when rb >> c/ωp. For the small rb limit we show how

linear fluid theory breaks down and how the logarithmic divergence in the linear

Green’s function saturates for small radii. For the large rb limit we show that the

trajectory for rb maps out a circle. We also discuss the differences between lasers

and electron beam drivers. For e-beam drivers the spot size is typically much less

than c/ωp and for typical parameters the maximum blowout radius is . 2c/ωp.

On the other hand, for lasers a matched spot size is required, kpW0 ≈ 2
√
a0, and

the maximum blowout radius is typically & 4.
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CHAPTER 3

Some Applications of the Nonlinear Wakefield

Theory

3.1 Introduction

The nonlinear theoretical framework presented in last chapter can be used to un-

derstand many physical problems that occur in the blowout regime. This chapter

will describe several such examples in several short sections. These examples

include determining the plasma density which optimizes the wake amplitude for

given beam parameters, calculating the number of electrons that can be accel-

erated (nonlinear beam loading), calculating the transformer ratio for a ramped

electron driver, and developing the proper equation for describing the electron

hosing instability of short, intense bunches.

3.2 The optimum Plasma Density for Plasma Wakefield

Excitation in the Blowout Regime

Experimentalists always want to get useful information from theorists in terms of

formulas which are easy to use. One can then plugs in the numbers to get what

he needs without going through a maze of symbols. In plasma based accelera-

tion, one simple but very important question an experimentalist may ask is the
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following: If one has an electron beam driver with given parameters (e.g., total

charge N , energy γ , spot size σr and duration σz), what will be the optimum

plasma density to obtain the largest wakefield? Is it possible we have a simple

engineering formula for it?

It should be noted determining the optimum density can be obtained via

laboratory and simulation experiments. However, the parameter scan needed

could be formidable. Therefore, even a theoretical model which is not exact but

that catches the key physical effects is always useful and even needed. For such

a highly nonlinear problem the interplay between the insight obtained through

experiments and simulations and through a theoretical model are crucial. The

idea is to use the theoretical model to identify a limited parameter space for

which experiments and simulations are carried to precisely answer the question.

Let’s get back to our special question here. We can first look at this question

about the optimum plasma density in the linear plasma wakefield case. Linear

theory is based on the assumption that the beam density nb is assumed to be

much smaller than the plasma density np so the density perturbation δn is small

comparing with np. For narrow bunches this must still be true otherwise complete

blowout (trajectory crossing) will occur. We can get the expression for wakefield

amplitude for a bi-Gaussian beam as:

EzMax = [
mcωp
e

]

√
π

2

nb
np
kpσz(kpσr)

2[e−k
2
pσ

2
z/2+k

2
pσ

2
r/2Γ(0, k2

pσ
2
r/2)] (3.1)

where Γ(x, y) =
∫ ∞
y
tx−1e−tdt. Recently Lu et. al showed that for a beam

with a small aspect ratio (σr/σz << 1), the maximum wakefield is achieved when

kpσz ≈
√

2.

This is the generally accepted condition for the optimum plasma density. How
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different will the prediction of nonlinear theory be compared with the above linear

result?

From the previous chapter we know that the total charge per unit length Λ is

an important parameter in wakefield theory as long as fkpσz & 1. We can rewrite

Λ for a bi-Gaussian electron driver as:

Λ =
nb
np

(kpσr)
2

= [(2π)3/2nbσ
2
rσz][(2π)−3/2k2

pn
−1
p σ−1

z ]

=

√
2

π
[
re
σz

]N (3.2)

Where N = (2π)3/2nbσ
2
rσz is the total electron number and re = mc2/e2 is

the classical electron radius. This formula suggests that for a constant N , Λ is

independent of plasma density np and the beam spot size σr although both appear

in its definition. As we know from the previous chapter, for Λ to be a meaningful

parameter, two implicit assumptions are made: one is that the beam is not much

shorter than a plasma skin depth k−1
p , otherwise blowout does not occur within

the bunch and plasma electrons simply receive an impulse; the other is that the

beam density nb should be comparable or larger than the plasma density np so

that the condition for blowout is satisfied. For given beam parameters (N , σr, σz),

the first condition gives a lower limit for the plasma density, e.g., kpσz & 0.2; The

second gives an upper limit for the plasma density, e.g., nb & np or kpσr .
√

Λ.

For a plasma density much lower than the lower limit (e.g., kpσz . 0.2), the

meaningful parameter for the beam plasma interaction should be the normalized

total charge Q ≡ Λkpσz because it is only impulse that matters. The parameter Q

increases when the plasma density increases from zero to the lower limit, therefore

both the normalized and the absolute wakefield amplitudes increase.
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When the plasma density is in the intermediate range (e.g., kpσz & 0.2 and

kpσr .
√

Λ, typically σr < σz), the normalized wakefield amplitude is mainly

determined by the normalized blowout radius kprm, which for this density range

is roughly given by kprm ≈ 2
√

Λ. Since for fixed beam parameter (N , σz, σr)

Λ does not depend on the plasma density, the normalized wakefield amplitude

is insensitive to the density. Therefore, the absolute wakefield amplitude will

increase with the plasma density in this density range.

For a plasma density above the upper limit ( e.g., nb/np . 1 or kpσr &
√

Λ),

the beam plasma interaction is close to linear. Therefore, linear theory is valid

for this density range. If kpσz <
√

2, the absolute wakefield amplitude will get its

maximum value at kpσz ≈
√

2. If kpσz >
√

2, the absolute wakefield amplitude

will decrease with plasma density; therefore, the maximum wakefield amplitude

is reached for nb/np ∼ 1.

As noted in chapter 2, there are two different regimes for blowout: non-

relativistic blowout where Λ << 1 and relativistic blowout where Λ & 1. In the

non-relativistic blowout regime, the field amplitude scales as Λ log 1
Λ
, which is

close to the prediction of linear theory. Therefore, based on the above analysis,

for Λ << 1 the optimum plasma density for which the wakefield amplitude is

maximum close to the results from linear theory, i.e., kpσz ≈
√

2. However from

the arguments in the preceding paragraph, for the relativistic blowout regime,

Λ & 1, the optimum plasma density for which the absolute wakefield amplitude

is maximum is approximately np ∼ nb. When np ∼ nb and Λ & 1 then kpσr >& 1.

To see the implications of the simple arguments given above, we consider the

beam at SLAC. A typical bunch has, N ∼ 1010, or ∼ nC of charge ( interestingly,

this is also similar to the value of N for a bunch of the proposed ILC). At SLAC

the value of N can not be increased. Therefore, Λ is mainly determined by the
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Figure 3.1: The normalized beam dimensions kpσr, kpσz and the normalized

blowout radius kprm (the driver is a bi-Gaussian beam with N = 1.8 × 1019,

σz = 32µm and σr = 10µm)

beam duration ( cτ or σz ). For N ∼ 1010 and pulse durations on the order of

picosecond, the beam plasma interaction is in the non-relativistic blowout regime,

Λ << 1. For example, in the original E157 experiment carried out at SLAC,

N = 1.9 × 1010, σz = 700µm (cτ ∼ 2ps) and σr = 30µm, these parameters give

Λ = 0.06. Experiments and simulations both showed that the optimum plasma

density for this beam is around np = 1.4× 1014cm−3, which is close to the linear

prediction np = 1.2× 1014cm−3 for a bi-Gaussian beam.
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Figure 3.2: The normalized and absolute peak wakefield amplitudes (the driver

is a bi-Gaussian beam with N = 1.8× 1019, σz = 32µm and σr = 10µm)

Recently, the bunch duration was shortened to . 100fs, and when τ = 100fs,

Λ ∼ 1. Several experiments were carried out using the shorter bunches. In one

set of experiment, E164/E164x, the beam parameters were N = 1.8 × 1019,

σz = 32µm and σr = 10µm, which give Λ = 1.27 and nb = 3.6 × 1017cm−3.

Our analysis suggests that the optimum plasma density is near nb for this case.

This is nearly ten times larger than the optimum plasma density obtained from

linear theory (np = 3.5 × 1016cm−3 when the fully linear expression is used).

To verify the nonlinear prediction, we show the results of a plasma density scan

using PIC simulation in Fig.3.2 and Fig.3.2. In Fig.3.2, the normalized beam
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dimensions, kpσr, kpσz, and the normalized blowout radius kprm are shown. In

Fig.3.2, the normalized and absolute peak wakefield amplitudes are shown. In

these simulations, the plasma densities range over two orders of magnitude (

from 1× 1016cm−3 to 1× 1018cm−3). Several points are worth noting. First, the

normalized blowout radius kprm changes very little over the full density range

( the average is about 2.2, very close to our estimate of 2
√

Λ ≈ 2.25, and after

np & 2nb, the blowout is not complete so the value of kprm is very rough). Second,

the trend of the absolute wake amplitude increasing with density agrees with our

analysis and the optimum density, np ≈ 4× 1017cm−3, is close to the prediction

of 3.5 × 1017cm−3. In light of the factor of ten difference of the plasma density

between the linear and nonlinear predictions , this agreement clearly shows the

usefulness of the nonlinear analysis.

For even short electron bunches, e.g., sub 30fs (σz . 10µm), the beam plasma

interaction is in the ultra-relativistic blowout regime ( Λ >> 1). For example,

if the beam duration in the E164 experiment was shorten by a factor of 3 ( to

10µm or 30 fs), we get Λ ≈ 4 and kprm ≈ 4. In this case, the ion channel will

have a spherical or bubble shape behind the driver.

From the above discussions, one can see that the parameter Λ has a very

important meaning in the blowout regime. The optimum plasma density for

maximizing the wakefield amplitude, predicted by linear theory (kpσz =
√

2) is

only useful in non-relativistic blowout regime, i.e., for Λ << 1. In the relativistic

blowout regime (Λ & 1), linear prediction can be too low by one order of magni-

tude for certain beam parameters and the nonlinear analysis indicates that the

optimum plasma density is roughly equal to the peak beam density. When Λ & 1

and nb ∼ np then the spot size is kpσr =
√

Λ ∼ kprm/2. Therefore, the absolute

wake is maximized when the spot size is roughly matched to the blowout radius.
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3.3 Beam Loading in the Blowout Regime

In plasma based acceleration, a charged particle beam of sufficient charge must

be loaded into a plasma wakefield. Determining how much charge can and should

be loaded into the wake while achieving high beam loading efficiency and beam

quality ( i.e., the energy spread and emittance) is a key question. If both the

plasma wake excitation and the beam loading are in the linear regime, linear

plasma wakefield theory can be used to address these problems. The beam loading

and relevant issues in the linear regime were comprehensively discussed in the

seminal work of Kasouleas et al. in 1986. Much has changed and much has been

learned since 1986. The main topic of this dissertation is nonlinear wake in the

blowout regime. Clearly, analysis based on linear theory will not work. There has

been little to no analysis on beam loading of nonlinear wakes because of the lack

of a general theory for wake excitation in the blowout regime. The theoretical

framework introduced in chapter 2 can be used to analyze wake excitation by

shaped electron bunches and to explore beam loading in the blowout regime.

In this short section, we will use the blowout theory to simply estimate the

number of particles that can be loaded into the wake driven by a sufficiently short

driver in the ultra-relativistic blowout regime. A direction for future research is

to use eqn.2.46 to determine the best shape for the electron beam profiles and

how to choose the relative phase between these bunches to achieve better beam

loading efficiency and more uniform acceleration. However, much insight into

beam loading in the blowout regime can be immediately seen from eqn.2.46 and

2.47. When a trailing beam is placed in the rear of the bubble, its space charge

forces ( it corresponding to λ on the RHS of eq.2.46) will slow down the rate at

which rbξ is decreasing. If drb
dξ

is smaller then from eqn.27 Ez is reduced.One way

to determine the maximum number of particles that can be loaded is to see how
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large a Λ is needed to have drb
dξ
→ 0 at the back of the beam. Another, which we

employ here is to calculate the total energy in the wake and use energy balance.

In the ultra-relativistic blowout regime driven by a sufficiently short driver (

either electron beam or laser pulse), the ion channel has a spherical shape and

the wake fields inside the channel have a special form. If we normalize the fields

to mcωp/e and the length to c/ωp, we have Ez = − ξ
2
, Bθ = r

4
, Er = − r

4
.

The total energy of the electromagnetic fields inside the ion channel Et can

be decomposed as the sum of the energy of the longitudinal field ( Ez ) and the

energy of the transverse focusing fields ( Bθ and Er ):

Et =

∫
E2
z + E2

r +B2
θ

8π
dV

=

∫
E2
z

8π
dV +

∫
E2
r +B2

θ

8π
dV

= Ew + Ef (3.3)

By carrying out the integration, we get

Ew =

∫
E2
z

8π
dV

=

∫
Ē2
z

8π
dV̄ (

m2c5

e2ωp
)

=

∫ kpRm

−kpRm

dξ

∫ √
(kpRm)2−ξ2

0

1

8π

ξ2

4
2πrdr(

m2c5

e2ωp
)

=
1

120
(kpRm)5(

m2c5

e2ωp
) (3.4)
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Ef =

∫
E2
r +B2

θ

8π
dV

=

∫
Ē2
r + B̄2

θ

8π
dV̄ (

m2c5

e2ωp
)

=

∫ kpRm

−kpRm

dξ

∫ √
(kpRm)2−ξ2

0

1

8π

r2

8
2πrdr(

m2c5

e2ωp
)

=
1

120
(kpRm)5(

m2c5

e2ωp
) (3.5)

The above calculations show that the wakefield energy equals the focusing

field energy, therefore the total field energy is:

Et =
1

60
(kpRm)5(

m2c5

e2ωp
) (3.6)

The field energy scales as kpRm to the 5th power. Therefore, a variation of

about 15% in kpRm will lead to 100% variation in Et. It is also worth noting

that the real field energy inside the ion channel will be larger than this estimate

because the real fields have larger field amplitudes near the tail of the ion channel.

Next we can get an approximate estimate for the number of electrons N that

can absorb all the energy in the ion channel. We can balance the energy gained

by N electrons as by the longitudinal field in a distance of 2Rm with the energy

of the wake in one bucket, eNEz2Rm = Et. with the energy loss for a distance

of 2Rm (the length of the full ion channel). It is worth noting that the energy

absorbed by the beam should also include a fraction of the plasma kinetic energy

because the beam can reduce the plasma kinetic energy by changing the motion

of the plasma boundary. The kinetic energy also scales as (kpRm)5. If we assume

that the kinetic energy absorbed by the beam is about the same amount as the

field energy, we can write

63



eN × Ezave × 2Rm ≈
1

30
(kpRm)5(

m2c5

e2ωp
) (3.7)

Where Eave is the average accelerating field the beam experiences. We chose

Eave as half of the maximal Ez (Ezmax = (kpRm/2)(mcωp/e)). This gives

N ≈ 1

30
(kpRm)3(

1

kpre
) (3.8)

where re = e2/mc2 is the classical electron radius. To compare with the beam

loading formula obtained from linear wake field theory, we rewrite this formula

as

N ≈ 1.4× 105√npAeffε (3.9)

here Aeff = πR2
m is the effective area of the wake and ε = kpRm/2 is the

normalized field amplitude in the wake. Preliminary simulations have verified

this estimate.

The result from linear theory also has a similar form:

Nlinear ≈ 5× 105√npAlinearεlinear (3.10)

Where Alinear is the effective area of the beam. For a wide beam with kpa >>

1, it is just πa2, for a narrow beam with kpa << 1, it is on the order of c2/ω2
p

( Alinear ≈ πc2/ω2
p[−2/(0.577 + ln kpa/2)], where Alinear = (0.6 to 2 ) c2/ω2

p for

kpa = 10−4 to 10−1) . εlinear is the normalized wave amplitude δn/np. Therefore,

for narrow beams the maximum beam loading efficiency is between (.6 to 2) /π =

20% to 60% for kpa = 10−4 to 10−1.
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From these similar formulas, we can see that the total charge obtained for

a narrow beam in the blowout regime can be much larger than that obtained

from the linear formula. This is because the wakes in the relativistic blowout

regime have both larger effective area, i.e, Rm >> c/ωp, and large amplitude.

For example, in linear theory for εlinear ∼ 1/2 and kpa = 10−4 one gets N ∼ .6×

109/
√
np(1016cm−3). While for kpRm = 4 we get N ∼ 3.5×1010/

√
np(10

16cm−3).

3.4 The Transformer Ratio for a Ramped Electron Beam

As mentioned in last section, our nonlinear theoretical framework can be used

to address the problem of how wake excitation depends on the pulse shape in

the blowout regime. In particular, determining the bunch shape that optimizing

the transformer ratio of the wakefield is of much interest. It can be shown using

1D linear theory of beam driven plasma wakefield, that the transformer ratio of

the wakefield E+/E− from a symmetric longitudinal profile is always less than

two. To increase the transformer ratio, an asymmetric profile can be used. A

particularly interesting example to achieve large transformer ratio is to use a

linearly ramped beam profile with a sharp termination. It was also shown that in

1D larger transformer ratios can be obtained in the nonlinear regime. However,

it is now well established that the 1D nonlinear regime is inaccessible because

blowout will occur instead. It is natural to ask what bunch shapes lead to constant

decelerating field in the blowout regime. For a linear ramped drive beam in the

blowout regime, we can think about the transition from the 1D linear regime to

the 3D nonlinear blowout regime as follows. We assume a fixed longitudinal beam

profile and the total beam charge. Initially, we choose a very large spot size such

that nb/np << 1. In this case linear theory predicts a nearly uniform decelerating

field within the beam and a large transformer ratio. If we keep decrease the spot
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size, eventually it will reach the blowout regime. So will these special properties

based on predictions from linear theory still hold when blowout is reached?

It will be helpful to gain some insight from a PIC simulation. In fig.3.4 , a

linearly ramped electron beam driver is used to excite the plasma wake in the

relativistic blowout regime. This beam has a normalized length kpL0 ≈ 22 and a

flat top transverse profile (nb0 = 100 for kpr < 0.5 and drop to zero linearly at

kpr = 0.6). These parameters give Λ0 ≈ 15. In this simulation, the maximum

blowout radius is about 7.5, which is very close to 2
√

Λ0 = 7.75 . We can see that

the decelerating field within the driver is still close to uniform as in the linear case

and has an amplitude near 0.7. It turns out that the fact that the decelerating

field within a wedge shaped driver remains constant can be explained by simple

arguments from the nonlinear theory of chapter 2.

In the relativistic blowout regime, approximately we have,

ψ(0, ξ) ≈ r2
b (ξ)

4
(3.11)

for rb & 1. For a long electron beam with an adiabatically increasing current

profile Λ(ξ) = ξ
L0

Λ0, where Λ0 is calculated at the maximum beam density, the

blowout radius rb(ξ) also increases adiabatically, so

rb(ξ) ≈ 2
√

Λ(ξ) (3.12)

It is worth discussing the origin of the factor of two in the above expression.

In the non-relativistic blowout regime, the adiabatic blowout radius for a long

beam driver is rb ≈
√

2Λ because the dominate force on the plasma electrons is

the transverse electric force from the beam. In the relativistic blowout regime,

the plasma electrons in the narrow sheath move backward in the longitudinal
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direction with speed comparable to the speed of light. Therefore they also feel

the magnetic field from the driver. Since the electric and magnetic fields from

an ultra-relativistic electron bunch are nearly the same amplitude (for cgs units

), the total force on a plasma electron is doubled when it moves backwards with

the speed of light. As a result, the adiabatic blowout radius , which scales as the
√
Force, will increase by

√
2. Therefore rb ≈ 2

√
Λ. It is interesting to note that

this expression is also very accurate for the non-adiabatic case for either a large

or small blowout radius for a short driver.

With this expression of rb, we get

ψ(0, ξ) ≈ ξ

L0

Λ0 (3.13)

and hence

Ez(ξ) =
dψ

dξ

≈ Λ0

L0

(3.14)

Therefore, the decelerating field is roughly a constant that is mainly deter-

mined by the peak beam current Λ0 and the beam length L0. To see the accuracy

of this result we substitute in the simulation parameters, Λ0 = 15 and L0 = 22,

giving Ez ≈ 0.68, which is very close to the simulation result.

We can also get an estimate of the transformer ratio if we assume that the

beam current is terminated sharply at ξ = L0, then the wake field behind the

beam is mainly determined by the maximum blowout radius rm, so the maximum

useful accelerating field Emax ≈ 1
2
rm ≈

√
Λ0 (the peak field is roughly two times

larger than the useful field). Therefore, the transformer ratio for this beam driver

is
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E+/E− ≈
√

Λ0/(
Λ0

L0

) =
L0√
Λ0

(3.15)

It is worth noting that in the linear case it was necessary to use a precursor

to get a constant decelerating field. In the nonlinear blowout regime, this is not

necessary.

3.5 The Electron Hosing Instability in the Blowout Regime

The three examples in sections 3.2, 3.3 and 3.4 are solely based on our nonlinear

theory of wake excitation in the blowout regime. It is obvious that this theory

of wake excitation can not give direct answers for any beam plasma instabilities

in the blowout regime because the beam evolution and the coupling between the

beam and the plasma must be taken into account. However, we will show in

this section that significant understanding of arguably the most important beam

plasma instability in the blowout regime, the electron hosing instability, can be

achieved if we combine our nonlinear wake excitation framework with a linear

perturbation method on the blowout boundary. We will clarify how the linear

hosing growth is affected by the blowout radius, the relativistic mass and the

longitudinal velocity and the self-force from the plasma sheath. In this short

section, only the main ideas to obtain this hosing theory will be given. More

detail on the derivation and the simulation verification can be found elsewhere

(see C. Huang’s thesis, several plots are copied from there for convenience).

3.5.1 What is the Electron Hosing Instability?

In the blowout regime, plasma electrons are completely evacuated by the space

charge force from an intense electron beam or the ponderomotive force from a
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short laser pulse forming an ion channel with a narrow laminar layer of electrons

at its boundary. How does this electron sheath interact with a self-injected or

externally injected electron beam on the time scale of the beam evolution is of

fundamental importance for plasma based acceleration. In early 1990’s, a fast

growing instability was found by Whittum et al. from a fluid model for an

equilibrium geometry, where the ion channel is either pre-formed or adiabatically

formed by an electron beam with long bunch length, i.e., L >> k−1
p . This

instability will cause the oscillation of beam centroid to grow, therefore degrading

the beam quality. They called it the electron hosing instability. The central result

from their analysis is the following coupled equations:

∂2xc
∂ξ2

+ ω2
0xc = ω2

0xb (3.16)

∂2xb
∂s2

+ ω2
βxb = ω2

βxc (3.17)

where xc(s, ξ) and xb(s, ξ) are the centroids of the ion channel and the electron

beam respectively, ωβ = ωp/
√

2γ is the betatron frequency of the beam and

ω0 = ωp/
√

2. A moving window in (x, y, s = z, ξ = ct − z) coordinates is used

with s being the propagation distance and ξ being the position in the beam.

For the above equations to be valid, three conditions are assumed. First,

the bunch length L should be long compared with the plasma wavelength, i.e.,

L >> k−1
p , such that the channel is balanced by the force from the electron beam

and the force from the ion channel. Therefore the channel radius rc is equal to the

charge neutralization radius rneu ≡
√
nbσ2

b/np, where nb and np are the density

of the beam and the plasma density and σb is the radius of the beam. Second,

the channel radius rc should be much smaller than a plasma skin depth c/ωp such

that the return current of the plasma sheath is negligible , or equivalently the
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parallel velocity of the electrons in the sheath is much smaller than the speed of

light. Third, the radius of the electron beam σb should be much smaller than the

channel radius rc such that the electron beam can be treated as a point charge

in each slice.

However, under the current or future experiment conditions, most of these

assumptions are not valid. First, the channels are generally non-adabatically

formed by relatively short bunches, i.e., L ∼ k−1
p , so the channel boundary is

highly curved. Second, the blowout radiuses are generally comparable or larger

than the skin depth so the parallel motion of the plasma electrons and the effect

of magnetic field are important. Third, the beam width can be comparable with

the channel width. For example, as mentioned in section 3.2, for relativistic

blowout, the maximum wakefield amplitude is reached when the beam width is

comparable to the channel width.

How these conditions can change the hosing instability is of much interests. In

ref , the hosing instability in the non-adiabatic blowout regime was investigated

using fully explicit 3D Particle-In-Cell(PIC) simulation. It was shown that the

hosing is much less severe than the adiabatic theory predicts. However, the rea-

sons for this reduced growth were not clearly identified and related to the beam

parameters. Furthermore, there is no applicable theory for relevant parameters

of current or future PWFA and LWFA experiments, such as the proposed “af-

terburner” parameters. These are the motivations for our theoretical analysis in

this section.

Before touching the detail of our analysis, it may be helpful to see what

hosing looks like in a simulation. Fig. 3.4 shows a real space plot of the beam

when hosing occurs and saturates for the nominal parameters used in Fig. 5 of

Ref. . Three regions along the beam which exhibit different behavior can be
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identified from this plot. The first is the region near the head of the beam, i.e.,

the yellow box in Fig. 3.4. The lack of hosing in this region is observed in many

simulations. Instead a self-aligning effect that the latter part of the head aligns

with the former part happens gradually. It is difficult to quantify this behavior

exactly. However, some qualitative explanations can be provided. At the very

front of beam where Λ << 1, the analysis of transverse two stream instability

may apply and the growth rate is generally orders of magnitudes smaller than

the hosing instability. Further back in the beam where Λ increases, the electrons

begin to blow-out yet there are a lot of trajectory crossing and phase mixing.

The ion channel is not completely formed in this situation, thus reducing the

focusing force on the beam. The combination of these effects will certainly leads

to a much smaller growth rate. In addition, this region is too short for any hosing

instability to grow significantly. Therefore, for practical reason we may assume

there is no hosing in this region.

The second region is around the area indicated by the blue arrow. In this

region, the ion channel is clearly formed and the electron motion in the plasma

sheath is highly laminar. Consequently the shape of the ion channel can be

represented by a single particle’s trajectory. Hosing causes the beam centroid

to oscillate with a spatiotemporal growth. The growth rate is linear for small

amplitudes and begins to saturate for large amplitudes. Fig. 3.5 shows the linear

and the saturation stages for the ξ point indicated by the blue arrow in Fig. 3.4

with the comparison to the asymptotic solution from the fluid hosing theory for

the same parameters.

Further back in the beam a third region of the hosing behavior exists where the

beam centroid oscillation amplitude becomes comparable to the channel radius.

The beam hits the boundary of the ion channel and particles are lost when they
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get out of the channel. Therefore the maximum centroid oscillation amplitude is

limited by the width of the ion channel. This region is indicated by the green

arrow in Fig. 3.4.

For a narrow electron beam (σb << rc), we can simply divid the hosing in-

stability into four different regimes , namely non-relativistic adiabatic blowout

(kprc << 1 and rc = constant), non-relativistic non-adiabatic blowout (kprc << 1

and rc 6= constant) , relativistic adiabatic blowout (kprc & 1 and rc = constant)and

relativistic non-adiabatic blowout (kprc & 1 and rc 6= constant).

3.5.2 Toward a more General Hosing Theory for a Narrow Electron

Beam

In many problems in physics, the following two statements are often true. One

is that a more general theory should be able to easily reproduce a theory for a

specific regime. Another is that some parts from a special theory can still be

valid in a more general one.

By carefully checking the assumptions of the existing hosing theory, we have

the following observations. There are two distinct time scales in these two coupled

equations. The beam centroid evolves on the betatron period ω−1
β and the channel

centroid is determined on the plasma response period ω−1
0 . Since ω−1

0 << ω−1
β ,

one can determine the channel centroid by assuming the beam centroid is still

fixed. No surprise, this is just the quasi-static approximation. If the change of

the channel shape is negligible, which is very reasonable when the oscillation am-

plitudes of xc and xb both are small, the transverse force on the beam centroid is

still linearly depending on the relative displacement between the beam centroid

and the channel centroid. Therefore, the equation for the beam centroid in ex-

isting theory will still be valid even when the channel is non-adabatically formed
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or the plasma responses are relativistic.

With this key observation, the search for a new hosing theory is reduced to

find out how the channel centroid responds to the beam centroid on a short time

scale. This is just what our nonlinear framework of the blowout regime can do!

The first try following this line is to reproduce the old theory, or a little bit

better, to get a theory for non-relativistic blowout (kprb << 1) including both

adiabatically and non-adiabatically formed channels. This is the simplest case

because in non-relativistic regime the motion equation of the channel is

d2rb
dξ2

+
1

2
rb =

λ(ξ)

rb
(3.18)

which is solely determined by the beam parameter λ(ξ) due to that the self-

generated plasma fields are negligibly small in this case. Indeed, the theory for

this case is our first result . It reproduced exactly the old theory in the non-

relativistic adiabatic regime, therefore give us the confidence that we are on the

right track.

However, for simplicity we will not give the derivation for this case alone. In-

stead, we will directly perform a derivation for the most general case ( relativistic

non-adabatic blowout) since the essential steps are very similar in all cases.

We start from the motion equation of the ion channel boundary obtained in

chapter 2.

2
d

dξ

[
(1 + ψ)

dr

dξ

]
= −(Er − VzBθ)

[
1 + (

dr

dξ
)2 +

1

(1 + ψ)2

]
. (3.19)

To calculate the small deviation from a cylindrically symmetric blowout, we

can linearly perturb the motion equation for both the upper boundary r+ and
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lower boundary r−. The center of the channel can be defined as xc(ξ) = (r+(ξ)−

r−(ξ))/2. (r+ + r−) is the diameter of the channel, the change of this quantity is

assumed to be a higher order effect and is consequently dropped in our analysis.

When the beam is straight, i.e., there is no perturbation, the solution of

the motion equation is r0(ξ) and the fields and potential are E0, B0 and ψ0.

The longitudinal velocity and the Lorentz factor are denoted as V0(ξ) and γ0(ξ)

respectively. Here we drop the subscript denoting the direction of the fields and

velocity. Next we perturb this solution by a small amount and the perturbation

variables are denoted by subscript “1” in the following equations.

r = r0 + r1, V = V0 + V1,

E = E0 + E1, B = B0 +B1, (3.20)

ψ(r0 + r1) = ψ0(r0). (3.21)

Relationship in Eq. (3.21) follows from the assumption that the channel shape

does not change and the channel is simply displaced by r1. By substituting the

above expressions into Eq. (3.19) and ordering the resulting terms, we obtain the

0th order equation which has the same form as Eq. (3.19). It is rewritten into

the following form for the Lorentz force. Here we adopt the convention ′ ≡ d/dξ.

−(E0 − V0B0) =
1 + ψ0

γ0

[(1 + ψ0)r
′′
0 + ψ′0r

′
0] . (3.22)

The 1st order equation is,

2ψ′0r
′
1 + 2(1 + ψ0)r

′′
1 + 2(E0 − V0B0)r

′
0r
′
1

= −2(E1 − V0B1 − V1B0)
γ0

(1 + ψ0)
. (3.23)

One can further simplify Eq. (3.23) by substituting the 0th order Lorentz
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force from Eq. (3.22), then Eq. (3.23) becomes,

r′′1 +

{
ψ′0

1 + ψ0

− 1

γ0

[(1 + ψ0)r
′′
0 + ψ′0r

′
0] r

′
0

}
r′1

= − γ0

(1 + ψ0)2
(E1 − V0B1 − V1B0). (3.24)

Eq. (3.24) is a second order ODE for r1. The coefficients depend on the 0th

order quantities and their ξ derivatives which are both determined by the current

profile of the drive beam. One can obtain the exact values of all these coefficients

in a simulation or approximate them using our simple model in chapter 2 as

we will do later. The perturbation −(E1 − V0B1 − V1B0) is the sum of the

perturbation from the beam and the change in the plasma self-force. However,

it is difficult to calculate the charge and current profiles of the plasma response

and their changes. We express this sum in terms of the perturbation from the

beam with a numerical factor cl(ξ) in Eq. (3.25) (For simplicity, cl(ξ) is assumed

to be independent of the hosing amplitude.),

−(E1 − V0B1 − V1B0) = Fb1 + Fe1 = Fb1cl(ξ), (3.25)

where Fb1 = −(Eb1 − V0Bb1) is the perturbation to the Lorentz force from

the beam, and Fe1 = Fb1(cl(ξ) − 1) is the change in the force from the plasma

response. Eb1 and Bb1 are the change of the electric and magnetic fields from the

beam when the centroid is shifted by xb,

Eb1 = Bb1 = −2πnbσ
2
b

[
1

r0 + r1 − xb
− 1

r0

]
. (3.26)

Therefore, when |r1 − xb| << r0,

Fb1 ≈
2πnbσ

2
b (1− V0)

r2
0

(xb − r1). (3.27)

Finally, Eq. (3.24) is written as,

r′′1 +

{
ψ′0

1 + ψ0

− 1

γ0

[(1 + ψ0)r
′′
0 + ψ′0r

′
0] r

′
0

}
r′1

= crcψclω
2
0(xb − r1), (3.28)
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where ω2
0 = 2πn2

p, cψ(ξ) = 1/(1 + ψ0) and cr(ξ) = nbσ
2
b/(npr

2
0).

Eq. (3.28) is for the upper trajectory r+ = r0 + r1. For the lower trajectory

−r− = −r0−r2, r2 can be solved from a similar equation. So the channel centroid

xc = (r+ − r−)/2 = (r1 − r2)/2 satisfies,

x′′c +

{
ψ′0

1 + ψ0

− 1

γ0

[(1 + ψ0)r
′′
0 + ψ′0r

′
0] r

′
0

}
x′c

= crcψclω
2
0(xb − xc). (3.29)

If we ignore ψ′0 and r′0, this result can be cast into a form comparable to the

channel centroid equation from the fluid theory.

x′′c + crcψclω
2
0xc = crcψclω

2
0xb. (3.30)

For adiabatically formed channel with small blow-out radius, plasma electrons

are pushed to the charge neutralization radius slowly with Vr << 1 and Vz0 << 1.

The fields from the plasma sheath is weak, so are the changes in the fields when

there is a perturbation. In this case, cr ≈ cψ ≈ cl ≈ 1, therefore we recover

the result of whittum. If the beam-plasma interaction becomes more intense, the

following effects need to be taken into account: 1) The blow-out radius varies

along the blow-out trajectory; 2) The relativistic mass will change the resonant

frequency and the plasma electrons may also gain substantial longitudinal velocity

so the magnetic field becomes important; 3)The plasma sheath generates strong

electric and magnetic fields which tend to reduce the perturbation from the beam.

These effects change the coupling coefficients cr, cψ and cl, therefore changing

the hosing growth. The fluid analysis does take into account of effects 1 and 3,

however they are included in an inconsistent manner, e.g. the effect of cr only

appears in the RHS of Eq. (3.30) not the LHS. Generally, for a relativistic non-

adiabatic ion channel, crcψcl < 1, therefore the hosing growth is reduced by the

combination of all these effects.
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To see how well this simple theory can be in describing the hosing instability,

a lot of 3D PIC simulations using QuickPIC have been done by C. Huang. Very

good agreements between theory and simulations have been achieved. Here I will

not go into the detail of these simulations. Instead I will just show two plots of

the comparisons between simulations and theory.

Fig.3.6 show the density plots of the beam and the plasma for these four

different regimes. In the simulations for the adiabatic regime, two beams are

used to create an equilibrium channel. The first one is short and narrow to blow

out a channel. The second beam follows the first beam and its density is chosen

to keep the channel radius constant. In Fig.3.7, hosing growth for four different

regimes are shown.
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Figure 3.3: Plasma wake driven by an electron beam with a linearly ramped

current profile nb/np = 100, kpa = 0.5, L0 = 22 (a) plasma phase space x2x1 (b)

color plot of E1 (c) lineout of E1
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Head Tail

Ion Channel

Figure 3.4: A plot of the beam on top of the plot of the ion channel in the nominal

“afterburner” simulation.
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Figure 3.5: The centroid oscillation |xb| (blue curve) in a self-generated channel

and the prediction (red curve) from the fluid theory for an equilibrium channel.

The black line is a linear fit for the initial growth in the simulation before the

nonlinearity occurs. This initial growth is one order of magnitude smaller than

the result for a equilibrium channel.

79



(1) (2)

(3) (4)

Figure 3.6: Density plots of the beams (red) and plasma (blue) in (a) the adiabatic

non-relativistic regime; (b) the adiabatic relativistic regime; (c) the non-adiabatic

non-relativistic regime; (d) the non-adiabatic relativistic regime. The beams

move to the left in these plots.
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Figure 3.7: Hosing growth in four regimes.
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CHAPTER 4

On Wave Breaking and Particle Trapping in

Plasma Waves

4.1 Introduction

A fundamental question in plasma physics is what is the maximum possible am-

plitude of a nonlinear plasma wave? And a related question is what limits the

amplitude? The literature is filled with papers that address these questions. In

the 1D limit, these questions have essentially been answered for non-relativistic

phase velocity / cold plasmas [65, 66], for non-relativistic phase velocity / warm

plasmas [67], for relativistic phase velocity / cold plasmas [65] , and for relativis-

tic phase velocity / warm plasmas [68, 69, 70, 71, 72, 73]. For multi-dimensional

plasma waves, there has been much recent work[79, 80], however, in our opinion

there is no unified understanding yet. With this extensive literature, it might

appear that for 1D waves, this topic may be solved. Because this appearance,

the 1D theoretical limits are often used as a guide for the multi-dimensional

waves. However, there has been recent work that purports to offer new results

for 1D relativistic wave in warm plasmas. However, in multi-dimensional waves

trajectory crossing, wave steepening, and particle trapping are not equivalent, so

there is no clear definition for wave breaking in this case. Furthermore, in 1D or

multi-dimensional simulations, field amplitudes near the 1D expressions are mere
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obtained for high γφ. In this chapter will resolve some of these issues.

For any physical problem, it is always attractive to have some kind of unified

picture if possible. It is thus interesting to ask the following question: Can we give

an unified physical picture on wave breaking for both 1D and multi-dimensional

plasma waves with constant phase velocities?

Indeed, before answering this question, one at least needs to know what “wave

breaking” exactly means. Unfortunately there is no clear definition. The term

is loosely used whenever phenomena like wave incoherence, particle trapping, or

particle trajectory crossing occurs.

It seems that it is therefore imperative to “wave breaking” a clear definition.

It should be broad enough to include interesting physics but also narrow enough

to avoid ambiguity. To obtain such a definition we approach the issue as fol-

lows. First, we need to clearly understand how the concept of “wave breaking”

originally arose when the 1D limits were derived. Second, we need to clearly un-

derstand the similarities and differences between 1D and multi-dimensinal waves.

Lastly, we discuss its meaning for driven plasma wave in both 1D and multidi-

mensional cases .

4.1.1 What Does “Wave Breaking ” Mean in One-dimensional Plasma

Waves

The concept of “wave breaking” in plasma waves originates from an interesting

discovery: A cold non-relativistic plasma can only support a self-sustained trav-

eling wave with constant phase velocity up to a maximum electric field amplitude

given by , E = mvφωp/e.

This was first shown as a fact of mathematics, e.g., the nonexistence of travel-

ing wave solution of the cold fluid equation for amplitudes beyond a limit. Later
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it was shown that the breakdown of fluid equation is directly due to the parti-

cle trajectory crossing, i.e., sheet crossing. It is worth noting that in 1D cold

fluid model, that particle trapping and complete wave steepening ( of the electric

field) occur simultaneously with sheet crossing. Based on the analogy of an ocean

wave breaking when it steepens, this limit for plasma wave was called the wave

breaking limit.

For 1D plasma wave with relativistic phase velocity, i.e., vφ ∼ 1 or γφ >> 1,

the same reasoning can be directly applied to a cold 1D relativistic fluid model and

a new limit can be derived:
√

2(γφ − 1)mcωp/e. In fact the relativistic formula

was derived first but the physical picture of sheet crossing, particle trapping, and

wave breaking came later. The wave breaking limit for 1D planar self-sustained

cold plasma oscillations is well defined. However, possible confusion comes into

play if a warm plasma is considered or a driver is used to excite such a large

amplitude wave. First, let’s look at how wave breaking limits for warm plasmas

were derived in literature.

To get these limits, one still uses a fluid description of plasma and follows

the logic for deriving cold limits. The fluid equations are closed by choosing

a proper equation of state, i.e., one finds an expression for pressure which is a

function of the plasma density. As we know, for a fluid model to be valid for

describing plasma waves, one requirement is that the main body of the velocity

( momentum) distribution function is far below the phase velocity of the wave.

If this is not so, the details of velocity distribution become important and the

fluid model is not adequate for describing the plasma. For such cases, a nonlinear

kinetic model ( e.g., BGK modes) must be used. Indeed, it is well known that

one can construct a BGK mode with arbitrarily large amplitudes by choosing

a self-consistent distribution function. So the concept of wave breaking, which
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originated from waves in a cold plasma, can not be properly defined if the main

body of the velocity distribution function does not start well below the phase

velocity of the wave, i.e., vth << vφ.

For a plasma with velocity distribution below the phase velocity of a periodic

traveling wave, a reasonable description on how wave breaking occurs may be as

follows. First, assume a small amplitude wave with a given phase velocity has

been excited everywhere. For a sufficiently small amplitude, all the particles in

the plasma travel through the wave without getting trapped. For such periodic

traveling waves, the total energy in the fields and the kinetic energy of the plasma

are constant. If the wave amplitude is slowly increased everywhere then this

remains true until the wave amplitude is larger than some critical value. When

the wave gets sufficiently large a significant number of the plasma particles start

to get trapped in the wave. When enough particles get trapped they damp or

beam load the wave so that a traveling wave structure can not necessarily be

sustained.

The waterbag model can describe the above picture accurately. Historically,

the wave breaking limit for both non-realtivsitc and relativistic phase velocities in

a warm plasma were all first derived using a waterbag model. The waterbag mod-

els allow one to rigorously close the fluid equation and still have some physical

intuition regarding when the fluid description breaks down. The fluid equations

are then used to derive an equation for a wave potential assuming periodic wave-

like solutions. For large enough amplitudes, the fluid model breaks down. This

can be seen by divergences of ∂π/∂v or by when a particle at the upper boundary

of the waterbag velocity distribution gets trapped. While these two conditions

look different, it can be shown that they give identical results.

It is worth noting that a warm fluid model can break down before any particle
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gets trapped if an ill-behaved equation of state is chosen. Different equations of

state used in literature are the major source for the disagreements and confusions

on the warm wave breaking limits. For example, there are different results in the

literature on the wavebreaking limit for relativistic warm plasma in the regime

γ2
φβ >> 1, where β is the plasma temperature. The waterbag model predicts

that the wavebreaking limit goes to infinity if the phase velocity of the wave goes

to the speed of light. However, some authors got finite results by using different

equations of state derived from certain warm plasma models. The reason for this

is that the assumptions of these models for the above mentioned regime are not

valid, leading to incorrect equations of state.

4.1.2 What Does “Wave Breaking ” Mean in Multi-dimensional Plasma

Waves

The structure of multidimensional plasma waves can be very different than those

in 1D. As discussed in chapter 2, generally it is not possible to get periodic

traveling wave solutions over full space with a 3D structure. This is mainly due

to the reason that particles tend to have different oscillation frequency depending

on their positions and their trajectories will cross each other over time, leading to

the damping of the wave amplitude due to phase mixing. However, it is possible

to excite multi-dimensional wakes which are not periodic through a driver that

moves through the plasma. The phase velocity of the wake is equal tot the velocity

of the driver. So for multidimensional waves, we directly face the existence of a

driver. In front of the driver, the plasma is not disturbed yet, and behind the

driver, a plasma wave with 3D structure is excited. Far behind the driver, the

wave amplitude decreases due to the effect of trajectory mixing. Of course, a

fluid model can not be used when trajectory mixing occurs.
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We will show shortly that even in 1D there are some profound differences

between the periodic traveling wave solutions to the fluid equations and the wakes

excited by a driver.

How can we define “wave breaking” for these multidimensional driven plasma

waves? If we define it as the occurrence of trajectory crossing and the subsequent

breakdown of the fluid model, (which is what we used in chapter 2 following

Dawson’s work), then we will conclude that plasma wakes in 2D or 3D always

break, even for very small amplitudes. In order to to make closer connection

to the 1D wave breaking limit, another possible definition for wave breaking

of multidimensional wakes is the occurrence of particle trapping. For driven

plasma waves, a non-evolving wake in the driver’s frame is still possible until

particle trapping occurs. Continuous particle trapping will also reduce the wake

amplitude behind the driver. For these reasons we prefer to view wavebreaking

and particle trapping as equivalent.

4.1.3 “Periodic ” vs. “Driven” Waves

We will show that even if particle trapping is used as the definition for wave

breaking of multi-dimensional driven wake, there is no a unique wave breaking

amplitude for driven wakes. This is because different drivers can produce different

wake structures, which will affect how particles get trapped in the first bucket.

Indeed this is also true for 1D driven waves. This fact has not been recognized

until now. This is most likely due to the existence of periodic traveling wave

solutions in 1D. It appears that researchers believed that waves with amplitudes

up to the 1D wave breaking limits (derived by assuming no driver) can be excited

when a driver is used.

In fact, this is not true. For example, in last subsection we discussed the
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finiteness of wave breaking limit of a warm plasma in the limit that γ2
φβ >> 1.

As γφ tends to infinity, the wave breaking limit also tends to infinity. However,

amplitudes near 2
√
γφ − 1 for large γφ have never been observed in simulations of

wakefields. In published results from Vlasov simulations in which a non-evolving

electron beam driver was used to excite the plasma wave, it was found that

changing the γ of the driver does not increase the wake amplitude at which the

wave starts to break, i.e., trap electrons. They believed that this finite result was

due to the thermal effects. To our knowledge the observation of trapping at wake

amplitudes substantially below the accepted wave breaking amplitudes has been

observed by many others using PIC simulations. This was sometimes believed to

be due to resolution issues.

It turns out that the finite limit of the wave amplitude in these simulations is

not the result of a warm plasma or resolution. Instead it is due to the fact that

particle trapping can occur at much lower wake amplitudes when a driver is used

to excite the wave. In all the calculations on 1D wave breaking limit, the plasma

waves were assumed to be periodic oscillations over full space. Later we will show

how this finite limit is the result of a driver by showing simulation results for a

cold plasma. It is kind of interesting that despite over 50 years of research no one

has recognized that the periodic traveling wave soltuions can not be excited by a

driver. Therefore, it is difficult to see how they could be excited in a laboratory.

As we can see from above discussions, particle trapping is important to un-

derstand wave breaking. In 1D, it occurs when the fluid models break down. In

2D and 3D, the break down of fluid models is only a necessary condition for trap-

ping. When a wake is excited by a driver, the trapping condition is very different.

Therefore, it will be very useful to provide a general analysis for trapping that is

valid in in arbitrary traveling wave fields. This is the topic of next section.
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4.2 General Formalism for Particle Motion in Fields with

Translational Symmetry

Within the framework of classical physics ( electromagnetic field theory and spe-

cial relativity), the motion of a charged particle in a general electromagnetic field

is described by the Lorentz force equation:

dp̄

dt̄
= q̄(Ē + v̄ × B̄) (4.1)

Here normalized units are used for convenience. Time is normalized to ω−1
0

(arbitrary frequency ), length is normalized to cω−1
0 , momentum is normalized to

mc ( m, particle rest mass), energy is normalized to mc2, velocity is normalized to

the speed of light c, charge is normalized to e (electron charge), electromagnetic

fields are normalized to mcω0/e and potentials are normalized to mc2/e.

In the Hamiltonian formalism, the canonical momentum P̄ is defined as

P̄ = p̄ + q̄Ā (4.2)

and the Hamiltonian H then is defined as:

H̄ =
√

1 + |P̄ − q̄Ā|2 + q̄φ̄ (4.3)

The equation of the motion are then

dr̄

dt̄
=

∂H̄

∂P̄
dP̄

dt̄
= −∂H̄

∂r̄
(4.4)
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If we write them out explicitly, they become,

dr̄

dt̄
= v̄

d(p̄ + q̄Ā)

dt̄
= q̄(∇Ā · v̄ −∇φ̄) (4.5)

The fields can be written in terms of the potentials as

Ē = −∇φ̄− ∂Ā

∂t̄

B̄ = ∇× Ā (4.6)

and the total change in time of the vector potential dĀ
dt̄

, can be rewritten as

( ∂
dt̄

+ v̄ · ∇)Ā. By using the following vector identity

v̄ ×∇× Ā = ∇Ā · v̄ − v̄ · ∇Ā (4.7)

the original equation of motion is reproduced readily.

If we are interested in the change of some quantity Q̄(P̄ , r̄, t), we can write

the change in time of Q̄ as:

dQ̄

dt̄
= {∂H̄

∂P̄
· ∂Q̄
∂r̄

− ∂Q̄

∂P̄
· ∂H̄
∂r̄
}+

∂Q̄

∂t̄
(4.8)

For example, when we replace H̄ for Q̄ , we will get dH̄
dt̄

= ∂H̄
∂t̄

, or when written

explicitly,

dH̄

dt̄
= q̄(

∂φ̄

∂t̄
− v̄ · ∂Ā

∂t̄
) (4.9)

89



One obvious conclusion is that if the electromagnetic fields are static ( they

do not explicitly depend on time), the total energy, H̄, is conserved. But a static

field in one frame is not a static field in a moving frame (Lorentz transform); as

a consequence, in the moving frame, H̄ is not conserved. For electromagnetic

fields in a wake which moves with a constant velocity ( depending on time and

space only by the combination of x − vφt, e.g., Ē(r̄⊥, x − vφt) ), we can make

a Lorentz transformation to the moving frame, in which the fields are static. A

natural question is what is the conserved quantity in the lab frame?

The answer is H̄ − v̄φP̄x. Let’s look at how can we show this.

If a field, e.g, φ, has the form φ(r̄⊥, x− vφt), then it satisfies the equation:

(
∂

∂t̄
+ vφ

∂

∂x̄
)φ = 0 (4.10)

For fields with the above form, i.e., wake fields, we have

dH̄

dt̄
= −q̄vφ(

∂φ̄

∂x̄
− v̄ · ∂Ā

∂x̄
) (4.11)

It can then readily be shown that

dH̄ − v̄φP̄x
dt̄

= 0 (4.12)

which can be rewritten explicitly as:

γ − vφpx + q(φ− vφAx) = Const (4.13)

For convenience, we define ψ ≡ −q(φ − vφAx). If the initial condition for a

particle is known, e.g., λ ≡ γ0 − vφpx0 and ψ0 are known, eq.(4.13) becomes
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γ − vφpx = λ+ δψ (4.14)

where δψ ≡ ψ − ψ0. It is obvious to see that λ + δψ > 0. By using this

algebraic equation, we can express γ, px and vx in terms of δψ and p⊥.

Moving vφpx in eq.(4.14) to the right side and squaring both sides, we get an

equation for px ( we used γ2 = 1 + p2
⊥ + p2

x):

[1− v2
φ]p

2
x − 2vφ[λ+ δψ]px + [1 + p2

⊥ − (λ+ δψ)2] = 0 (4.15)

This is a second order algebra equation (i.e.,ax2 + bx + c = 0). To see if this

equation has real roots, we check the sign of ∆ ≡ [b2 − 4ac]/4:

∆ = (λ+ δψ)2 − (1− v2
φ)(1 + p2

⊥)

= γ2(1− vφvx)
2 − (1− v2

φ)(γ
2 − γ2v2

x)

= γ2(vx − vφ)
2 ≥ 0 (4.16)

This implies that eq.(4.15) has two real roots. They can be solved directly as:

px =
vφ(λ+ δψ)±

√
∆

1− v2
φ

(4.17)

=
1 + p2

⊥ − (λ+ δψ)2

vφ(λ+ δψ)∓
√

∆

=
1 + p2

⊥ − (λ+ δψ)2

vφ(λ+ δψ)∓
√

(λ+ δψ)2 − (1− v2
φ)(1 + p2

⊥)

We can also solve for γ and vx,
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γ = (λ+ δψ) + vφpx (4.18)

=
vφ(1 + p2

⊥)∓ (λ+ δψ)
√

∆

vφ(λ+ δψ)∓
√

∆

=
vφ(1 + p2

⊥)∓ (λ+ δψ)
√

(λ+ δψ)2 − (1− v2
φ)(1 + p2

⊥)

vφ(λ+ δψ)∓
√

(λ+ δψ)2 − (1− v2
φ)(1 + p2

⊥)

vx =
px
γ

(4.19)

=
1 + p2

⊥ − (λ+ δψ)2

vφ(1 + p2
⊥)∓ (λ+ δψ)

√
∆

=
1 + p2

⊥ − (λ+ δψ)2

vφ(1 + p2
⊥)∓ (λ+ δψ)

√
(λ+ δψ)2 − (1− v2

φ)(1 + p2
⊥)

To see the meaning of the two branches, we check vx − vφ:

vx − vφ =
−∆± vφ(λ+ δψ)

√
∆

vφ(1 + p2
⊥)∓ (λ+ δψ)

√
∆

(4.20)

=
−γ2(vx − vφ)

2 ± γ2vφ(1− vxvφ)|vx − vφ|
vφ(γ2 − γ2v2

x)∓ γ2(1− vxvφ)|vx − vφ|

= |vx − vφ|{
−|vx − vφ| ± vφ(1− vxvφ)

vφ(1− v2
x)∓ (1− vxvφ)|vx − vφ|

}

= |vx − vφ| · T

This equation implies that T must be ±1 and its sign depends on the sign of

vx− vφ. It is now possible to see the difference of the two branches. If we choose

−/+ (− sign in numerator and + sign in the denominator ), then T < 0 can be

seen immediately. This means that T = −1 and vx < vφ. (note: if vφ = 1, we

only have this branch). It can also be easily verified that if vx < vφ, T = −1.
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For the other branch (+/−), we have T = 1 so that vx > vφ. The fact that

T = 1 can be directly checked by assuming vx > vφ. If instead we assume vx < vφ

(so T = −1), the T calculated from the equation is
1−v2φ

(1−v2x)+(vφ−vx)2
> 0, which

contradicts the assumption.

The above discussion indicates that if p⊥ and δψ are known, one can directly

get expressions for γ, px and vx as functions of p⊥, λ, and δψ. If vx > vφ, the +/−

branch should be used, otherwise the −/+ branch should be used. For vx = vφ,

both branches give the same result.

4.2.1 The General Trapping Condition

In order for a particle to get trapped it starts with a vx < vφ and it then has a

vx > vφ. The occurrence of trapping arises when vx = vφ. So let us see what

the above expressions give when vx = vφ. Notice that ∆ = 0 with this equation

occurs and we can get the following relationships:

px =
1 + p2

⊥ − (λ+ δψ)2

vφ(λ+ δψ)
(4.21)

γ =
1 + p2

⊥
λ+ δψ

(4.22)

Eq.(4.22) can therefore be viewed as the condition for trapping to happen.

We can rewrite it as:
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λ+ δψ =
1 + p2

⊥
γ

=
γ2 − γ2v2

φ

γ

=
γ

γ2
φ

= { γ
γφ
} 1

γφ
(4.23)

Hereγ/γφ =

√
1−v2φ

1−v2φ−v
2
⊥

. For 1D motion, v⊥ = 0 so γ = γφ when vx = vφ, and

we recover the well known 1D condition for trapping. Consider 2D or 3D motion

and γφ >> 1, then if γ/γφ is bounded and the bound is much smaller than γφ,

we can see that for 2D or 3D motion the trapping condition is close to the 1D

result. If γ/γφ is not bounded ( e.g., the surfatron), this condition can be very

different to the 1D result.

4.2.2 The General Particle Energy Bounds

We can rewrite the particle energy γ (eq.4.2) as the following:

γ =
vφ(1 + p2

⊥)∓ (λ+ δψ)
√

∆

vφ(λ+ δψ)∓
√

∆

= λ+ δψ +
vφ[1 + p2

⊥ − (λ+ δψ)2]

vφ(λ+ δψ)∓
√

∆

= λ+ δψ + γ2
φvφ[vφ(λ+ δψ)±

√
∆]

= λ+ δψ + γ2
φvφ[vφ(λ+ δψ)±

√
(λ+ δψ)2 − (1− v2

φ)(1 + p2
⊥)] (4.24)

where γφ = 1/
√

1− v2
φ. For vx < vφ, ”−” is chosen and for vx > vφ, ”+” is

chosen.
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We can now check the particle energy for the two different branches. For

vx < vφ, we have

γ = λ+ δψ + γ2
φvφ[vφ(λ+ δψ)−

√
(λ+ δψ)2 − (1− v2

φ)(1 + p2
⊥)]

= λ+ δψ + γ2
φvφ[vφ(λ+ δψ)− (λ+ δψ)

√
1− (1 + p2

⊥)

γ2
φ(λ+ δψ)2

]

=
λ+ δψ

1 + vφ
+
vφ(1 + p2

⊥)

2(λ+ δψ)
+O(

vφ(1 + p2
⊥)2

8γ2
φ(λ+ δψ)3

) (4.25)

In the limit γφ >> 1, we have vφ ≈ 1 and the first two terms in the expansion

reduce to the familiar form used in chapter 2:

γ =
1 + p2

⊥ + (λ+ δψ)2

2(λ+ δψ)
(4.26)

As long as |p⊥| < γφ(λ+δψ)√
2

is satisfied, the above expression is very accurate

(it gives a value slight larger than the exact value, with an error less than 5%).

For vx > vφ, we have

γ = λ+ δψ + γ2
φvφ[vφ(λ+ δψ) +

√
(λ+ δψ)2 − (1− v2

φ)(1 + p2
⊥)]

= λ+ δψ + γ2
φvφ[vφ(λ+ δψ) + (λ+ δψ)

√
1− (1 + p2

⊥)

γ2
φ(λ+ δψ)2

]

= γ2
φvφ(λ+ δψ)[vφ +

√
1− (1 + p2

⊥)

γ2
φ(λ+ δψ)2

] (4.27)

This formula clearly shows the upper and low bounds for γ for vx > vφ

γ2
φv

2
φ(λ+ δφ) < γ < γ2

φvφ(vφ + 1)(λ+ δψ) (4.28)

because the term in the square root is between 0 and 1.
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We can check the validity of this expression for some well known special

cases. For example, for the 1D linear wakefield case (γφ >> 1 ,Ex = E0 sin(vφt−

x)θ(vφt − x) and E0 << 1). In this case, ψ = [E0 − E0 cos(vφt − x)]θ(vφt − x).

Supposing a particle is injected with vx = vφ at the tail of the accelerating field

(vφt−x = 2π) where ψ = 0, this particle will be accelerated along x direction until

it runs into decelerating region ( vφt− x = π where ψ = 2E0). At this time, the

upper bound will be achieved since p⊥ << 1 so we get γ = γ2
φvφ(vφ+1)(λ+δφ) ≈

2γ2
φ(

1
γφ

+ 2E0). If γφE0 >> 1, it reduces to the well known 1D result γ ≈ 4γ2
φE0.

One interesting use of this formula is for getting the particle energy when an

intense laser pulse (a0 >> 1) interacts with a very underdense plasma (ωp/ω0 <<

1). In next chapter, we will use it to show that when a0 . ω0/ωp, the energy

gain of the particles scales as a2
0 which leads to a constant etching back velocity

of the laser front.

One simple conclusion one can draw from the about energy bound is that

the energy gain is bounded if the potential ψ is bounded. In the case of plasma

wake field driven by a laser pulse or a charged particle beam in a non-magnetized

plasma, the driver only has a finite spot size and so does the wake field. Far away

from the driver ( in the transverse dimensions), ψ is zero so ψ is bounded.

In some very special cases, unlimited acceleration is possible. For example,

in the Surfatron concept there is a uniform magnetic field aligned in a transverse

dimension. The vector potential associated with such a field ( Ax ) is not bounded

in the y direction so ψ is not bounded.
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4.3 Wave Breaking of Driven Plasma Waves

In previous subsections, we defined wave breaking condition for plasma wave

wakes driven by a non-evolving driver as when a plasma electron initially at

rest (before the driver) gets trapped at the back of the first wavelength. We

also provided a general particle trapping condition in arbitrary traveling waves.

Based on these definitions and conditions, we can now discuss wave breaking for

driven plasma waves in both 1D and 3D.

For a relativistic driven plasma wake (γφ >> 1) in a cold plasma, the electrons

initially have λ0 = 0 and ψ0 = 0 before the driver. An exception is when electrons

are born inside the wake due to ionization. Electrons born this way can be more

easily trapped. The trapping condition for electrons beginning in front of the

driver is therefore

1 + ψ = { γ
γφ
} 1

γφ
(4.29)

or 1 + ψmin < γ/γ2
φ.

In the 1D limit, this reduces to

1 + ψ =
1

γφ
(4.30)

We can see that the trapping condition in 1D only depends on ψ and γφ.

In both 1D and 3D, when ψ approaching −1, particles can get large forward

momenta and keep in phase with the accelerating field until they get trapped.

For γφ >> 1, the potential ψ is determined by the accelerating field E‖.

E‖ =
∂ψ

∂ξ
(4.31)
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or

ψ(ξ) =

∫ ξ

−∞
E‖(ξ

′)dξ′ (4.32)

Since the the wake’s structure (E‖) within the first wavelength just behind

the driver generally depends on the profile and intensity of the driver, the wake’s

amplitude at wave breaking also depends on the driver (although the value of

ψ is the same). If one fixes the profile of the driver and increases the intensity

of the driver (beam charge for beam driver, laser intensity for laser driver) from

very small to very large, the wake behind the driver will change from weakly

nonlinear sinusoidal structure to highly nonlinear triangle like structure. At a

certain intensity (wake amplitude), particle trapping occurs. The wake amplitude

at this point can be defined as the wave breaking amplitude for this specific driver

profile. As we will show the critical amplitude derived from this point of view is

profoundly different than the well accepted 1D cold wave breaking limits derived

for infinitely long wave trains.

A better way to make this point clear is to show some PIC simulation results

for plasma wakes driven by ultra-relativistic electron beam drivers. In these

simulations, γφ ∼ γb = 60000. The cold wave breaking limit, E = 2
√

2γφ − 1,

for this γφ is about 346mcωp/e. In fig.4.3, a weakly nonlinear wakefield driven

by a 1D electron beam driver is shown. We can see the coherent wave structure

far behind the driver and see that there are no trapped particles in phase space.

In fig.4.3, the very nonlinear wakefield is driven by a 1D beam with much more

charge. From the phase space plot and the lineout of the wakefield, one can see

large number of particles get trapped near the tail of the field spike causing the

wave to lose coherence immediately behind the first peak. The plot of potential

ψ clearly show that ψ ≈ −1 near the spike. The maximum amplitude of the
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wakefield in this case is less than 15mcωp/e, which is more than 20 times smaller

than the theoretical limit. This significant difference between waves with and

without a driver is due to the fact that a driver changes the symmetry between

decelerating field and accelerating field so that ψ can reach −1 at much lower

wave amplitude.

Figure 4.1: A weakly nonlinear coherent wake field driven by an 1D electron

driver: nb/np = 0.1, kpσz = 1.5 (a) color plot of E1 (b) lineout of E1 (c) lineout

of ψ (d) phase space p1x1

Not surprisingly, similar physics occurs in wakes excited in the blowout regime

(3D). Fig.4.3 shows a very nonlinear wake driven by a 3D electron beam driver in

the blowout regime. We can see large amounts of trapped particles and a broken

wave behind the first bucket. We can also see that ψ approaches −1 near the tail

of the ion channel.
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Figure 4.2: A strongly nonlinear wake field driven by an 1D electron driver:

nb/np = 0.1, kpσz = 1.5 (a) color plot of E1 (b) lineout of E1 (c) lineout of ψ (d)

phase space p1x1 (e) ψ near −1

An interesting difference between the nonlinear 1D and 3D wakefields is that

for 1D wakes the slope of the wake is constant until very close to the spike, while

for 3D wakes slope rapidly increases at a finite distance in front of the spike. This
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difference make the particle trapping easier in 3D than in 1D because it cause ψ

to increase.

Figure 4.3: A strongly nonlinear wake field driven by an 3D electron driver:

nb/np = 100, kpσz =
√

2, kpσr = 0.5 (a) color plot of phase space x2x1 (b) color

plot of E1(c) lineout of E1 (d) lineout of ψ (e) ψ near −1 (f) phase space p1x1

From the above analysis and simulations, we can see clearly that the theoret-

ical wavebreaking limit for 1D periodic ( infinitely long) plasma oscillations is of
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little use for wakefields driven by a typical driver. For a periodic 1D oscillation,

the symmetry of the field structure ( only the part within the very high density

spike is asymmetrical), makes the field amplitude necessary for reaching trap-

ping (∆ψ ≈ −1) strongly dependent on γφ such that very high field amplitudes

, E =
√

2(γφ − 1)mcωp/e are needed for trapping to occur. On the other hand

for the driven waves, the symmetry between accelerating and decelerating field

is broken by the driver. For typical drivers, wave amplitudes only a few times

larger than the non-relativistic wavebreaking limit, mcωp/e, are needed in order

for ψ to be very close to −1 near the tail of the first wavelength. Therefore, large

amounts of particles can keep in phase with the wave spike and keep gaining

energy from the wave, leading to a heavily damped wake behind the first bucket.
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CHAPTER 5

LWFA Scaling in the Blowout Regime

5.1 Introduction

In plasma based acceleration a short laser pulse or ultra-relativistic particle beam

creates a plasma wave wakefield with a phase velocity close to the speed of light,

c. [27, 35]. The acceleration gradients in these wakefields can easily approach 50

GeV/m which is three orders of magnitude larger than that achieved in conven-

tional RF technology. A particle injected in such a wave with sufficient initial

energy can interact, i.e., stay in phase, with the longitudinal component of the

electric field for a time long enough that its energy gain is significant.

Although this idea seems very simple, in reality it is highly nonlinear and

hence difficult to describe theoretically and to simulate numerically. Further-

more, it pushes laser and particle beam technology to the limit so it is very hard

to realize it experimentally. To do full scale three-dimensional PIC simulations

on LWFA requires huge computing power, which has only been available for the

past five years. To experimentally demonstrate LWFA, one needs three different

types of equipment or technology, namely a high power laser, a uniform plasma

and an injector such as a RF accelerator. Furthermore, each must work together

and be synchronized. Due to the lack of a sufficiently short-pulse, high-power

laser, longer pulses were used to excite wakes in the 1980’s and 1990’s. Despite

all these technological difficulties, steady progress was still made in the early age
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of this field (middle 80s to middle 90s) through beat wave excitation or Raman

forward scattering type instabilities. The first milestone was the demonstration

that relativistic plasma waves could be excited. This was accomplished by the

UCLA group in middle 80s. The second milestone was to prove that such waves

can be used to accelerate a electron beam. This was also done by the UCLA

group after nearly a ten years struggle. Both milestones were achieved using

PBWA ( Plasma Beat Wave Acceleration), in which two long pulses with a fre-

quency difference equal to the plasma frequency are used to form a beat pattern.

In 1990’s, advances in short-pulse high-power laser, especially the invention of

chirped pulse amplification (CPA) and of the development of Ti:Sapphire laser

systems led to steady progress in SMLWFA results, including what is called the

forced LWFA regime. These results include the observation of 100 MeV elec-

trons and gradient ∼ 1TeV/m. However, there was 100% energy spread and

the acceleration distance was limited to 100µm − 1mm. A recent important

development in the LWFA concept was the simulation and experimental obser-

vations of highly-nonlinear 3D wakefield structures and the formation of quasi-

monoenergetic self-trapped electrons [58, 59, 60, 61, 62, 48]. In these experiments

quasi-monoenergetic beams of electrons with energies on the order of 100 MeV

and charge about nC were generated by shooting 10 ∼ 30TW 30 ∼ 50fs laser

pulses into mm scale target (some with channels ) with plasma density between

6× 1018 ∼ 2× 1019cm−3[60, 61, 62].

These new results are exciting, at same time they also raise many questions:

Can these results be scaled to higher energy with better beam quality? Can the

results be more reproducable? Can LWFA be the basis of a real high energy

physics accelerator? Full scale 3D PIC simulations of these experiments show

that the energetic electron generation mechanism involves an interplay of many

complex phenomena , e.g., significant evolution of the laser excitation of three
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dimensional wake fields, self-trapping of electrons and significant beam loading on

the wake. In light of the complexities involved in these experiments, it is clear that

these questions can not be fully answered before we have a clear understanding

of the underlying physics.

Luckily, after more than 25 years’ of progress, our abilities to get answers

have been expanded significantly. In the early days the understanding of the

underlying physics were quite limited. The theory was most one dimensional

and/or weakly nonlinear, simulations were limited to one or two dimensional and

as alluded to earlier, experiments were limited by laser technology. To put things

in perspective, even 10 years ago a 1D PIC simulation for a 1GeV stage could

not be done easily. Now we have the ability to simulate such a stage in 3D. Ten

year ago, 1TW Ti:Sapphire laser systems were not widely available. Now many

10TW to 100TW systems exist in small labs around the world. With all these

new capabilities, this field is rapidly progressing and the basic understanding of

the underlying physics is improving. It is therefore now the time to carefully

consider the path towards a real LWFA stage.

In this chapter, we will give one possible path to a real accelerator. We will

first define some important conditions for a real accelerator. Then after analysis

based on weakly nonlinear theory, we will demonstrate that the highly nonlinear

blowout regime is preferred. After that, we will present the relevant physics in

detail and provide a phenomenological theory for it. This theory leads to a group

of scaling laws which we then use to design parameters for future experiments.
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5.2 What Do We Need for a LWFA as an Useful Acceler-

ator?

Accelerators based on traditional technology are very robust machines. They can

be operated continuously with just regular maintenance. In most applications

for accelerators, it is critical that a accelerator operate robustly. Although the

technology for building accelerator will evolve, this basic requirement of robust-

ness will always be an essential part of a future workhorse accelerator. Besides

this general requirement for all accelerators, different applications need different

beam parameters and overall efficiency, e.g., a large facility needs a high wall

plug efficiency to reduce the operating costs. The most important parameters

are beam energy, beam current, beam emittance and repetition rate.

Experiments on LWFA have already demonstrated huge accelerating gradi-

ents. But a critical question still remains: Is there parameter space for LWFA

such that it can satisfy all the requirements for a real accelerator?

To answer this question to some extent, we need to be more specific on the

requirements for a useful accelerator. We assume the following four requirements

are essential:

1. The accelerating structure must remain stable over long propagation dis-

tances. In particular, the amplitude and phase velocity of the wake need to be

relatively constant. This requires that the laser be guided with a constant, i.e.,

match, spot size and with little group velocity dispersion.

2. The conversion efficiency from the laser energy into the accelerating struc-

ture must be high. This requires that the effective acceleration length, e.g., the

dephasing length be close to the pump depletion length.

3. The conversion efficiency from the plasma wake into the accelerated beam
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must be high while at the same time the quality of the beam, i.e., its energy

spread and emittance, must remain high. This requires that the wake amplitude

vary little across and along the beam, and that the focusing force be linear in the

transverse coordinate.

4. The repetition rate of the accelerator must be high. This requires that

high rep rate lasers be used. And in order to keep the overall efficiency of the

accelerator high, the laser must have a high wall-plug efficiency.

We next see what can be concluded from linear theory if one tries to meet the

above requirements.

5.3 What Does Linear Theory Tell Us?

The simplest and most well developed theoretical framework for the plasma based

acceleration is the linear and weakly nonlinear theory. This framework assumes

that the laser vector potential a0 is much smaller than unity (the beam density

nb << np for charge particle drivers ) and the plasma density perturbation δn

from the laser or beam driver is much smaller than the ambient plasma density

np. Under these conditions, well developed mathematic tools (e.g., small param-

eter perturbation expansions, variational principles ) can be used to construct

theoretical models. Indeed, most theoretical work to date in the plasma based

acceleration belong to this category. One can think these theories as natural ex-

tensions of traditional nonlinear optics theories for crystals to a richer and more

complex situation, namely, the weakly nonlinear laser plasma or beam plasma

interaction. Within this framework, many important aspects of plasma based

acceleration have been addressed theoretically, e.g., the wakefield excitation, the

beam loading, the laser guiding by plasma density channel , and growth rates
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for numerous laser plasma or beam plasma instabilities. Although for situations

of interest, e.g., highly nonlinear 3D wake structures, non laminar plasma flow,

and cavitation blowout, linear theory is not appropriate, it can still serve as a

knowledge base for understanding the field of plasma based acceleration.

As a starting point, it is useful to know what kind of parameter regime should

be chosen based on the well developed linear and weakly nonlinear theory. Fol-

lowing the requirements raised in last section, we will discuss separately the issue

of the stability of the wake, the laser guiding, the laser to wake efficiency, the

beam loading efficiency and beam quality in the following subsections.

5.3.1 Stability Consideration

Stability is the most important issue for any accelerator design. In traditional

accelerators, many instabilities arise when the beam current is too high and col-

lective coupling between beam and accelerating cavity becomes strong. They are

limiting factors for the performance of accelerators. The typical mechanism for

these instabilities is the coupling between the beam current and its wakefield in

a metallic cavity. A real cavity has a finite conductivity and some resistance.

When a charge particle moves through a cavity, it produces a wakefield by in-

ducing surface currents in the walls. In a non-ideal cavity, the charged particles

in the wall get out of phase with the beam. This leads to an instability via the

coupling between the beam and the surface current in the cavity wall. This inter-

action is detrimental to the beam quality, and it puts a limit in the beam current

So generally speaking, in traditional accelerators, the wakefields due to collective

motion of charges in the accelerator need to be avoided.

For plasma based acceleration ( LWFA and PWFA), the situation is totally

different. We are trying to utilize a wakefield to accelerate a beam of particles.
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To be useful the wakefield must be stable and change little as the laser driver

propagate long distances. Since the wake is driven by the laser this requires that

the laser evolve in a well controlled, i.e., stable, manner. A plasma with its many

degrees of freedom can support numerous instabilities. In fact during the early

days in plasma based acceleration research, there were many critics for just this

reason. Significant effort was made in the early years to identify and understand

the numerous instabilities for short-pulse lasers and particle beams propagating

through plasma. Not surprisingly it was found that most of the growth rates for

laser plasma instabilities increase from the head of the pulse to the tail, so the

longer the pulse, the more likely it is unstable. These theoretical analyses based

on weakly nonlinear theory suggest that only pulses with pulse length smaller

than plasma wavelength may be able to support stable propagation over long

distances. These theories also demand a plasma density channel to guide the

laser over distances that greatly exceed the laser Rayleigh length Zr.

In the early experimental work in plasma based acceleration, very long pulses

compared to the wake’s wavelength were used to driven large wakefields due to

the lack of sufficiently short-pulse lasers. As noted earlier, this was done using

the beat wave or self-modulated LWFA methods. While both of these methods,

PBWA and SMLWFA, produced large gradients and high energy electrons, they

are not attractive for a real accelerator due to the fact that the wakefields are

excited by an instability ( SMLWFA) or the plasma wave is susceptible to in-

stabilities or degradation to its phase velocity ( PBWA). Therefore, we are of

the option that the LWFA scheme is desirable. This has also been verified in

fully nonlinear simulations. As we will show, there are still issues regarding the

stability of the wake for LWFA. In particular the spot size of the laser and the

frequency content of the laser should remain relatively constant.
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5.3.2 Efficiency Consideration: Pump to Wake

We next consider the constraints imposed by requiring that there must be high

conversion efficiency from the driver ( laser) to the wake. The basic idea is that

in order to obtain high efficiency the acceleration length, typically the dephasing

length, must be a large fraction of the pump depletion length. We will define a

laser to wake (LW) efficiency ηlw ≡ Ldp/Ldp where Ldp is the dephasing length

and Lpd is the pump depletion length. We will use approximate expressions for

Ldp and Lpd obtained from linear theory.

Ldp ∼=
ω2

0

ω2
p

λp

Lpd ∼= 2
ω2

0

ω2
p

λpa
−2
0 (5.1)

Note we assume a linearly polarized laser. These formulas suggest that ηlw

scales as a2
0/2 for a2

0 < 1, therefore, in order to achieve enough efficiency a0 ∼

1 should be used. However, it should be stressed that the expression for ηlw

obtained above is probably an upper bound (there has been little or no research

on how to optimize the efficiency by shaping the pulse and tailoring the frequency

chirp). The true efficiency is several times smaller. There are two main reasons

for this. First, in a 3D linear wake, half of the accelerating region of the buck

also has defocusing fields. Therefore, the dephasing length is actually a factor of

2 smaller. Second, the central frequency of the laser will decrease due to photon

deceleration as the laser pump depletes. This means that unless one is clever in

choosing the correct frequency chirp the laser will distort significantly before all

of its energy is deposited in the wake. Once it distorts the quality of the wake

will degrade.

To quantify the best case efficiency in the linear and/or weakly nonlinear
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regime we performed PIC simulations. We use a0’s of unity or slightly higher.

In Fig. we show the results from two simulations with different a0 (1 and 2) and

fixed plasma and laser parameters ( kpcτ = π(FWHM) ). In both cases, the

laser propagates into the plasma for a 3D linear dephasing length (Ldp =
ω2

0

ω2
p
λp/2).

Using this “3D” Ldp we get ηlw = a2
0/4. We then compare the pulse at this

propagation distance to the original one to determine the energy that remains.

Figure 5.1: A laser pulse with a0 = 1, kpcτ = π propagating through a plasma

with np/nc = 0.00287, (a) E3 at time t = 400ω−1
0 (b) E3 at time t = 20400ω−1

0

(c) E1 at time t = 400ω−1
0 (d) E1 at time t = 20400ω−1

0

For the a0 = 1 case, Fig.5.1, the simulation shows that more than 80% of the

laser energy remains after one linear dephasing length. This agrees reasonably

well with ηlw = a2
0/4. After two linear dephasing lengths, there is still more

than 50% of the laser energy remaining. These results agree very well with our
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Figure 5.2: A laser pulse with a0 = 2, kpcτ = π propagating through a plasma

with np/nc = 0.00287, (a) E3 at time t = 800ω−1
0 (b) E3 at time t = 20400ω−1

0

(c) E1 at time t = 800ω−1
0 (d) E1 at time t = 20400ω−1

0

discussions above. For the case a0 = 2, Fig.5.2, about 40% remains after one

linear dephasing length.

The main point of the discussion is that to obtain high efficiency it is necessary

for a0 to be larger than unity (one way around this would be to increase the

dephasing distance using a density ramp, an asymmetrically shaped laser pulse

or a laser with a frequency chirp. However, each of these options also leads to

additional issues). This a0 corresponds to a laser intensity I ∼ 1019W/cm2.

Supposing we fixed the laser intensity I around 1019W/cm2, then what deter-

mines the other parameters like plasma density np, laser spot size W0 and laser
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pulse length cτ?

To answer these questions , we first check the energy gain for given laser

intensity and plasma density. From weakly nonlinear theory, it scales as a2
0
k2
0

k2
p

for a0 . 1. This suggests that for a given plasma density, higher intensities give

higher energy gain. It also suggests that for a given intensity lower plasma density

gives higher energy gain. The efficiency arguments indicate that a0 ∼ 1 and now

from this well known expression for the energy gain, we can choose the proper

plasma density np and the pulse length cτ ( which is half the plasma wavelength

for maximizing the wakefield) to provide the desired energy.

To chose the laser spot size W0, and hence the spot size of the wake, we need

to consider how this choice impacts the evolution of the laser (e.g., laser guiding

through the effective accelerating length) and the transverse plasma wakefield

structure (relevant to beam loading efficiency and beam quality). We discuss

these two issues separately.

5.3.3 Laser Guiding

A laser with a finite spot sizeW0 will diffract in vacuum. The characteristic length

for such diffraction is the Rayleigh length Zr = 1
2
k0W

2
0 . The ratio between the

dephasing length Ldp and the Rayleigh length Zr is 4π
k2

pW
2
0

k0
kp

. This implies that

3D diffraction may only be omitted when very large spot sizes are chosen, e.g.,

kpW0 > (4πk0/kp)
1/2, so that the laser does not evolve much transversely within

the effective accelerating distance. large spot size with the fact that a0 ∼ 1

implies very large laser power, e.g., P (TW ) > 15(1019cm−3

np
)3/2. For example, if

one need a density of 1017cm−3 then the necessary power would be 15PW and

the spot size would be 1mm. Such large power and spot size are unpractical for

a variety of reasons. Most importantly, as we will argue shortly, such large spot
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sizes lead to very inefficient beam loading. These beam loading arguments provide

the condition that W0 needs to be ∼ of a few plasma skin depths. This needs

a method to optically guide the laser through many Rayleigh lengths needed for

LWFA. For the short-pulses ( cτ ∼ λp/2), weakly nonlinear theory suggests that

the only viable method to guide the pulse is to a plasma density channel. Such

channels have the lowest plasma density on axis and can be approximated with

a parabolic density profile like n(r) = np(1 + r2

W 2
0
∆n). To guide a laser with spot

size W0 without significant spot size oscillation, the channel depth ∆n should

be chosen as ∆nc = 4
(kpW0)2

np. However, the channel depths are usually a small

fraction of the plasma density np because of limitations for the technologies used

to form plasma channels and because substantial phase mixing can occur. For

∆nc/np << 1, then kpW0 must be larger than ∼ π for the matched channel

condition to be met. If a0 ∼ 1 and kpW0 > π then the laser will have a power

near or exceeding the critical power for relativistic self-focusing. This will cause

the tail of the laser to distort significantly.

5.3.4 Beam Loading and Beam Quality

The constraints imposed by linear theory on beam loading and beam quality were

addressed in detail in the work of Katsouleas et al.. In this paper it was shown

the maximum number of particles that could be accelerated in a linear wake of

amplitude eE/mcωp ≡ ε was

N = kpnpAε ≈ 5× 105√npAε (5.2)

Where A is the cross sectional area of the wake. Furthermore, it was shown

that in order that the emittance remain sufficiently small that the radius of

the loading bunch, σr, be much smaller than the spot size of the wake, W . In
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particular,

σr
W

∼ (
εN
W

)1/2(
1

γε
)1/4 (5.3)

Where εN ≡ γσrvr/c is the normalized emittance of the electron beam. Kat-

souleas et al. also showed that high beam loading efficiency ( transfer of wake

energy to accelerated particles) could only be achieved ifW ∼ c/ωp and σr << W .

This can be accomplished because linear theory predicts that a very narrow parti-

cle bunch excites a wake that is ∼ c/ωp wide because it takes a c/ωp to shield the

electromagnetic fields of the beam particle. For a narrow bunch the maximum

number of particles that can be accelerated are

N ≈ 5× 105√npAeffε (5.4)

Where Aeff = 2πσ2
r/[1 −

√
2kpσrK1(

√
2kpσr)]. In reality N is less such that

the loaded wake does not vanish. When kpσr << 1, then Aeff ∼ .6 to 2 times

c2/ω2
p for

√
2kpσr = 10−4 to 10−1. Therefore, for narrow trailing bunches

N ≈ εnp(c/ωp)
3 ≈ 1.4× 108√

np(1018cm−3)
ε (5.5)

.

For plasma densities in the range of 1016 ∼ 1018cm−3 and for ε ∼ 1, the above

expression gives a total amount of charge between 200pC and 20pC, which are

much smaller that the typical numbers in existing colliders.

There are additional restrictions when constraints on energy spread are im-

posed. In order that the energy spread remains small the trailing bunch can only

fill a small phase of the bucket, e.g., kpσz ≡ ∆φ . 1. Therefore, constraints on
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the beam density, nb, and charge per unit length, Λ, can be estimated. The beam

density is

nb =
N

(2π)3/2σ2
rσz

=
εnp

(2π)3/2k2
pσ

2
r∆φ

(5.6)

which is much larger than np when k2
pσ

2
r << 1 and ∆φ . 1. Furthermore, the

charge/unit length is

Λ =
ε

(2π)3/2∆φ
(5.7)

Which is much smaller than unit (about 0.06 for ε ∼ 1 and ∆φ ∼ 1).

Recently, Lu et al. showed that for a narrow electron beam with nb/np >> 1

and Λ << 1, a non-relativistic blow occurs within the bunch and an channel

is formed. However, the normalized field amplitude ε is still close to the linear

prediction except a slowly changing logarithmic term. This suggests that the

charged particle number obtained from the linear analysis is still valid in this

case.

If more charge is needed, i.e., nC, the linear analysis suggests that it can not

be supported by a linear wake. Indeed, if one calculates the charge/unit length

for this amount of charge ( assuming ∆φ . 1), Λ is about 0.3 for np = 1016cm−3

and 3 for np = 1018cm−3. In both cases, the electron bunch will generate an

ion channel with radius larger than the plasma skin depth. So we may draw the

conclusion that weakly nonlinear regime is not able to support sufficient charge

(nC).
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5.3.5 Summary

We can summarize our conclusions on how to choose parameters based on weakly

nonlinear theory from above discussions. First, stable operation needs short

pulse about a plasma wavelength long. Second, high laser to wake efficiency

needs the intensity to be larger than 1018W/cm−2 ( a0 > 1, as shown in PIC

simulation, a0 ∼ 2 is better). To satisfy this condition, one needs the laser to be

tightly focused. Third, the requirement for guiding over many Rayleigh length by

shallow plasma channel needs the spot size of the laser to be at least half plasma

wavelength wide. Fourth, the conservation of the eminence needs the spot size

of a loaded electron beam to be much smaller than the laser spot size. Last, the

driver can also not be much wider than plasma skin depth because the focusing

field will be small and the beam loading efficiency for a narrow beam will be

small.

We can also notice that even all the above requirements are satisfied, the over

all efficiency is still very small ( a few percents) if we choose to operate in this

weakly nonlinear regime. The total charge that can be accelerated is around

10 ∼ 100pC. Other than these, for high energy gain like GeV or beyond, the

accelerating distances are typically tens or hundreds of Rayleigh length. In these

cases, the very weak instabilities for short pulse may still grow enough to play

significant roles.

If we stop now and with all the above in mind, we may draw the conclusion

that the plasma based accelerator is not interesting to pursue. Indeed, the real

situation is not that bad. We can notice that the regime suggested by the above

parameters is already not quite weakly nonlinear, some new physics may happen

to rescue. This will be the topic of next section.
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5.4 Does Nature Force Us to the Blowout Regime?

As we can see from last section, the possible optimum regime suggested by the

weakly nonlinear theory is not weakly nonlinear at all. The laser vector potential

a0 is about 1 ∼ 2 (The weakly nonlinear assuming at least a0 < 1), the laser

spot size is about half to one plasma wavelength ( kpW0 ≈ π ∼ 2π). In 1D

theory it is known that when a0 ≈ 1 ∼ 2, the density perturbation δn is on the

order of plasma density np. Since it is 1D, the density perturbation only exists

longitudinally. In the 2D or 3D geometry and with laser spot size around the

plasma wavelength, the transverse laser ponderomotive force is almost as large

as the longitudinal part, therefore the transverse plasma motion becomes very

important. In this case the plasma electrons will move outward radially and a

low electron density region will be formed inside. Furthermore, if the intensity

is high enough (a0 ≈ 2), the electrons initially inside will move faster than those

initially outside such that their trajectories cross each other (the plasma can not

be treated as a single fluid any more). This results in a nearly pure ion region

( called ”ion column”, ”bubble”) surrounded by a narrow electron sheath with

high density and high flow velocity (on the order of speed of light).

As we already mentioned many times in this dissertation, this remarkable

strongly nonlinear phenomena was first predicted by Sun et al. in 1987. In his

work, the equilibrium profiles for both laser and plasma density are calculated for

a self-guided short laser pulse ( the pulses are much longer than electron plasma

wavelength but much shorter than ion plasma wavelength, so the ions are treated

as immobile). This is the first work trying to treat this problems self-consistently.

Previous works on relativistic self-focusing all assumed the plasma density is

uniform across the transverse dimensions so only the relativistic mass increase

contributes to the self-focusing. As pointed out by Sun et al., this assumption

118



indeed is only valid for very large laser spot size and for the laser power near the

threshold for relativistic self-focusing, Pc. For power slightly larger than Pc, the

equilibrium electron density profile becomes highly non-uniform near the laser

axis (nearly evacuated up to some radius) and this density channel contributes

equally to the self-focusing as relativistic mass increase. This hollow structure is

called ”cavitation” by Sun et al. due to its similarity to some fluid phenomena.

The radius of the channel is on the order of plasma skin depth and increases slowly

as the laser power increases. In fact, it is simply estimated by the balancing

between the laser ponderomotive force and the electric force of the pure ion

column. It is also interesting to note that the equilibrium laser profile inside the

channel is not Gaussian but more close to a zeroth order Bessel function. This

simply implies that the Gaussian profile assumed in most of the works for laser

propagation in plasma may not be good enough. Since this work is for relatively

long pulses where the wakefield effect is negligible, its implication for acceleration

was not discovered until a few years later.

In 1991, Rosenzweig et al. found an interesting regime for electron beam

driven plasma wakefield through 2D PIC simulations. In this regime, a short (

about plasma wavelength) and narrow ( spot size smaller than plasma skin depth)

electron bunch with sufficient charge can blow the plasma electrons away from

its path and form a pure ion region around and behind it. This phenomena is

totally similar to what Sun et al. found for laser case. The difference is just that

in the laser case it is the ponderomotive force pushing electrons while in the beam

case it is the electromagnetic force from the beam. Since the beam is short, the

wakefield is significant. Rosenzweig et al. pointed out that the accelerating field

inside the channel is uniform across the transverse dimensions and the focusing

force inside a cylindrical symmetric channel depends linearly on the radius. Both

properties are very attractive comparing with the weakly nonlinear wakefield (
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as we can see from last section, the linear wake suffers significantly from the non-

uniformity accelerating field and nonlinear focusing fields). This highly nonlinear

multidimensional wakefield regime was later called the ”blowout” regime.

At the same year (maybe even a little bit earlier), Mori et al. showed similar

regime can be reached for a laser driver by 2D PIC simulations and they also

pointed out the advantage of uniform accelerating field and linear focusing force.

But at that time, the laser power was too low and the pulse length too long to

reach this regime.

Now let’s come back from the history and observe the consequence of pa-

rameters based on weakly nonlinear theory. Let’s calculate the peak power for

a linearly polarized laser in terms of the power for relativistic self-focusing Pc

(Pc = 17(GW )
k2
0

k2
p
). The formula is:

P

Pc
=

1

32
(kpW0)

2a2
0 (5.8)

For those parameters suggested by weakly nonlinear theory ( a0 ≈ 1 ∼ 2 and

kpW0 ≈ π ∼ 2π), this gives P/Pc ≈ 0.3 ∼ 5. We can see that for reasonable

pump to wake efficiency (40%), P/Pc is larger than two. According to Sun et

al. ( although their results are for longer pulses), this will lead to cavitation

or blowout. This can be confirmed by 3D PIC simulations. In Fig.5.3, a 30fs,

6TW short laser pulse propagates through a plasma channel with a minimum

density on axis np = 5 × 1018cm−3. The laser spot size W0 is chosen as 6.7µm

and the plasma channel depth is chosen to match the laser spot size. For these

parameters, we have P/Pc ≈= 1 , a0 ≈ 2, kpcτ ≈ π and kpW0 ≈ 2.83. We can

see that the blowout occurs immediately after the laser going into the plasma.

We would like to know what is the advantage for operating in such a regime.

Indeed there are many. For example, it has better laser to wake efficiency, much
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Figure 5.3: A 30fs, 6TW short laser pulse with a0 = 2, kpcτ = π and kpW0 ≈ 2.83

propagating through a plasma channel with np/nc = 0.00287 on axis, note that

kpcτrise/π = 0.7 and kpcτfall/π = 1.3

better beam loading efficiency and beam quality, it also reduce various instabili-

ties not avoidable in linear setups. In the next section, the details of many aspects

in the blowout regime will be provided. Here we just point out briefly what leads

to these good properties of this regime. Two major points are the following: The

first one is , as pointed out by Rosenzweig et al. and Mori et al., the uniform

accelerating field along the transverse dimensions and the linear focusing force.

These can significantly improve the beam loading efficiency without degrading

the beam quality ( energy spread and emittance growth). The second is that this

regime is more stable comparing with weakly nonlinear regime. one of the major

reasons is that the tail part of the laser pulse is inside a region with very low

plasma density ( the ion channel) so that the coupling between laser and plasma
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is significantly reduced.

As you can see from the discussions in this and the previous sections, we

started from the weakly nonlinear theory and ended with the conclusion that

weakly nonlinear regime is not the choice for LWFA. We then found that the

hints we got from weakly nonlinear theory lead us to a new regime where even

the fully nonlinear fluid theory is not applicable. Just like many other fields in

the nature science, new physics shows up when the old model breaks down. And

it seems that this is not avoidable if the requirements for a real accelerator are

considered. Instead of asking question in the title of this section, we conclude by

the end of this section that nature does force us to the blowout regime although

if it will work eventually is not fully answered yet.

5.5 Physics in the Blowout Regime

As shown in previous sections, the blowout regime has many advantages for

laser wakefield acceleration. Therefore it is important to understand the relevant

physics for plasma based acceleration. In this section, we will carefully look at

each relevant topic in some detail, and hopefully an integrated physical picture

can be presented. These topics include: under what condition does the trajectory

crossing and clear blowout happen? For given laser power and plasma density (

also the laser profiles) , what is the matching condition for stable propagation?

What is the structure of the wakefield, including both longitudinal and transverse

fields? How does laser lose energy to the wake and how fast can it moves ? Is

self-guiding possible and under what conditions? the mechanism of self-injection

or external injection and how the loaded beam changes the wake? What kind of

instabilities are there and how severe they can be?
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5.5.1 Blowout and Matching Condition

For laser driven plasma wakefield, the blowout process and the matched laser

propagation are two different but closely related concepts. The major distinction

between these two concepts are the time scales during which these processes

occur: the blowout process occurs on the plasma response time scale ( ω−1
p ),

while the laser intensity profile evolves on a much longer time scale, e.g., the

time for laser to propagate one Rayleigh length Zr ( which is much larger than

ω−1
p if the plasma is very underdense ( ωp << ω0 ) and the laser spot size is on

the order of plasma skin depth c/ωp). These two processes are closely coupled:

on one hand, the fast time scale blowout process determines the slow time scale

laser profile evolution by its induced channel of index of refraction, on the other

hand, the changed laser profile also changes the blowout process. In order for

the matched propagation to occur in the blowout regime ( the laser is guided

either by self-guiding or by plasma density channel guiding), the laser profiles are

needed to be properly chosen such that both the laser profile and the shape of

the plasma blowout channel change very little during the evolution.

We first look at the characteristics of the channel shape formed by the laser

on the fast time scale. As already mentioned in chapter one, there are significant

differences between the blowout for laser drivers and that for the electron beam

drivers: in the electron beam driver case, the beam spot sizes are typically small

than plasma skin depth, c/ωp, and very nice electron sheath can always be formed

no matter how the beam spot size evolves as long as it is much smaller than the

blowout radius. These nice features are mainly due to the long range form of the

electromagnetic force from the beam charge and current because these sheath

electrons always feel nearly the same force when they are outside of the electron

driver . For the laser driver, the ponderomotive force responsible for the electron
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blowout is short range in nature, which only exists where there is laser intensity

gradient. For the same laser power, what the sheath looks like depends strongly

on how large the spot size is chosen. If the laser spot size is very large so that the

intensity is very small, there is very small ponderomotive force, it then follows

that on the short time scale the laser plasma interaction can be well described

by weakly nonlinear theory, so on this time scale no electron trajectory crossing

and blowout will happen. On the contrary, if the laser spot size is initially

chosen very small so that the laser intensity is large, the plasma electrons within

the laser intensity profile will feel very strong transverse ponderomotive force so

that they will move outwards transversely. But the electrons initially outside

the laser intensity profile will not feel any ponderomotive force so they do not

move transversely at all. This different behavior of electrons inside and outside

the laser profile generally leads to a wide sheath and an irregular ion channel :

electrons inside the laser profile move strongly in the transverse dimension and

reach position far beyond the laser intensity profile; electrons outside the laser

profile just go through the laser without any motion. Due to these features, a nice

narrow sheath can be formed for a laser driver only when the laser spot size is

within a narrow range where the laser spot size W0 roughly matches the blowout

radius Rm: W0 ∼ Rm. In this case, the transverse ponderomotive force of the

laser kp∇a2
0/γ ∼ a0/(kpW0), is roughly balanced by the force of the ion channel

Er ∼ kpRm, which pulls back the ponderomotively expelled electrons. Equating

these two expressions yields :

1

γ0

a2
0

kpW0

∼ kpW0 → kpW0 ∼
√
a0 (5.9)

Such force balance argument was first used by Sun et al. [55] for matched

propagation of a long laser pulse in underdense plasma (although it assumed the
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ions were fixed). He showed that for intense and narrow lasers the transverse

ponderomotive force can lead to complete electron blowout (cavitation) when the

laser power slightly exceeds the critical power for relativistic self-focusing Pc and

the laser is focused tightly. In the large radius limit (kpRm >> 1 and P/Pc >> 1),

his result gives the same scaling as the above equation. When using ultra-short

pulses as in the laser wakefield acceleration, e.g., cτ . w0, a rigorous derivation for

the coefficient of the above matched spot size is not currently available. Through

simulations we have found that a more refined condition in the spot size is:

kpRm ' kpw0 = 2
√
a0 (5.10)

We can use eq.5.10 to reformulate the matched beam spot size condition as:

a0 ' 2(P/Pc)
1/3 (5.11)

and

kpRm ' kpw0 ' 2
√

2(P/Pc)
1/6 (5.12)

The above matching condition origins from the requirement for a nice electron

sheath to be formed, so it is a concept on the fast time scale. It turns out that such

condition is also the requirement for the matched propagation on the slow time

scale. This close relation between the condition for the forming of a narrow sheath

and that of matched laser propagation can be seen in the following arguments.

First, one can see that the matched laser propagation will not occur if the

laser spot size is too large: as we discussed in previous section, the laser power

needs to be larger than the power of relativistic self-focusing Pc. So in this case,

the rear part of the pulse will tend to focus during propagation. This tendency
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of focus can not stop until there is enough plasma density cavitation be formed.

This focusing behavior is contradict with the assumption of matched propagation.

Second, the matched laser propagation will also not occur if the laser spot

size is too small: in this case, the laser intensity tends to be too large to expel

all the electrons inside the laser pulse, therefore the main part of the laser can

not feel a channel of index of refraction because a real electron vacuum inside the

laser.

So a matched propagation is only possible when the laser spot size matching

the size of the channel, which is just the condition for the nice sheath to be

formed.

To get eq.5.10, we assumed a0 >> 1 so that P/Pc >> 1. But for P/Pc = 1,

the above expressions give a0 = 2 and kpRm = 2
√

2. Through PIC simulations,

We find that the matching condition still holds for a0 & 2. In Fig.5.4, we show

the matched blowout for the same parameters in Fig.5.3 at different propagation

distances ( 0.57Zr, 2.85Zr, 6.27Zr and 10Zr). In this simulation, a plasma density

channel with ∆nc/np ∼ 1/2 was used to guide the leading part of the laser pulse

( more discussion about guiding later).

5.5.2 Wake Excitation

For the matched laser profile, the theoretical model in chapter 2 can be used

to describe the motion of the ion channel boundary ( the back part where the

plasma electrons are within a narrow sheath). For the regime interesting for

LWFA, the blowout radius Rm & 3 ( P/Pc & 1 and a0 & 2 ) so it is in the

ultra-relativistic blowout regime: the ion channel is close to a spherical cavity

of radius Rm; the accelerating field Ez is nearly linear for most part of the ion

channel and is with a normalized slope about 1/2; The transverse fields Er and
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Figure 5.4: Plasma density plots for matched blowout of a laser driver, P/Pc = 1,

a0 = 2, kpW0 = 2
√

2, kpcτ = π and np/nc = 0.00287, (a) at 0.57Zr (b) at 2.85Zr

(c) at 6.27Zr (d) at 10Zr

Bθ are of the same magnitudes but with a different sign and linearly depend on

the radius ( Er = −Bθ = r/4).

Together with the matching condition, we can predict the maximum useful

accelerating gradient Ezm for given laser power P and plasma density np.
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eEzm/mcωp ≈
kpRm

2
≈
√
a0 ≈

√
2(
P

Pc
)1/6 (5.13)

5.5.3 Local Pump Depletion and Laser Front Etching

As the laser pulse propagates through the plasma, it excites the plasma wake thus

loss part of its energy. In the blowout regime, the laser only strongly interacts

with the plasma electrons near the front of the ion channel, where the plasma

density is high. Within the ion channel, the electron density is near zero, therefore

the laser loses very little energy there. Due to these reasons, the energy loss of

laser is dominated by the loss at the front, therefore the front part of the laser will

etch back during its propagation. This phenomena is called local pump depletion

and was first observed by Decker and Mori [86] in 1D PIC simulation of high

intensity (a0 >> 1) laser plasma interaction. It is worth noting that the local

pump depletion for 2D or 3D is slightly different with that of 1D. In the 1D limit,

plasma electrons can only move in the longitudinal direction so that the plasma

density can never be zero. Indeed, 1D nonlinear theory and PIC simulations both

show that the plasma density behind the laser driver is half the original plasma

density. In the 2D or 3D limits, plasma electrons can also move transversely so

that an ion channel can be formed. Despite this key difference, the high electron

density region formed in the laser front by its snow plaw effect is very similar

in 1D, 2D and 3D ( assuming that matched laser profiles are used such that

significant transverse oscillation of laser profile can be avoid ) and this is also the

region where the laser lose most of its energy. This similarity between 1D and

2D/3D is mainly due to the fact that the ion channel has not been formed in this

region.

Many PIC simulations were performed to check this similarity between 1D
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and 2D/3D. For fixed plasma density and longitudinal laser profile, we vary the

normalized laser vector potential a0 from small to very large ( for 2D/3D simu-

lations, we use the matching condition to choose the laser spot size).

Two major conclusions can be drawn from these simulations. The first is

that the laser loses energy similarly between 1D and 2D/3D for very high laser

intensity, i.e., a0 >> 1. This is mainly due to the local pump depletion discussed

before. This conclusion implies that we can use the 1D etching rate to estimate

the 2D/3D etching rate. In Fig.5.5 and Fig.5.6, we compare the longitudinal

laser profiles for two group of parameters in 1D and 3D after the lasers have lost

a significant portion of their energy. In Fig.5.5, the initial laser vector potential

a0 is only 2 and the plasma density np is 0.00287nc. In the 3D case, a channel

with ∆nc/np = 1/2 is used to guide the laser. In Fig.5.6, the initial laser vector

potential a0 is 40 and the plasma density np is 0.04nc. In both cases, the 3D laser

fronts are quite similar to the 1D results ( in the 3D a0 = 2 case, a plasma density

channel is used, so the comparison for this case is not rigorous. In this case the

local pump depletion is also not rigorous because the plasma density spike in the

laser front is not very sharp. But the main point here is to show that even in

this case, 3D is not very different from 1D.)

The second conclusion is that the etching rate is independent of the intensity

until a0 reaches a plasma density dependent critical value and then it will drop

for very larger a0. In ref.[86], Decker and Mori analyzed the laser front etching

by using a 1D nonlinear model, and got an estimate of the etching rate, i.e., the

etching velocity, as:

υetch ' c
ω2
p

ω2
0

(5.14)

We can see that this result has no dependence on the laser intensity, i.e., a0.
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Figure 5.5: Lineouts of E3 for 1D and 3D simulations for a0 = 2

andnp/nc = 0.00287 at t = 2500ω−1
0 (a) 1D simulation (b) 3D simulation with

laser spot size kpW0 = 2
√

2 and a plasma channel depth ∆nc/np = 1/2

In deed, two simple physical arguments can show how to get this. The first one

is based on the 1D nonlinear wake field theory. For a nonlinear 1D plasma wake

driven by a short laser pulse, the wake amplitude and the nonlinear wavelength
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Figure 5.6: Lineouts of E3 for 1D and 3D simulations for a0 = 40 andnp/nc = 0.04

at t = 12000ω−1
0 (a) 1D simulation (b) 3D simulation with matched laser spot

size kpW0 = 10

are linearly proportional to the laser intensity a0. If one balances the energy inside

the wake with the energy loss at the laser front, the above scaling of the etching

rate can be deduced immediately. However the 1D nonlinear theory assumes a
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very underdense plasma, i.e., ωp/ω0 << 1, therefore no limit on the laser intensity

for this etching rate to be valid can be deduced directly. The second argument

is based on single particle motion in a a laser field. In a very underdense plasma

(ωp << ω0), the influence of plasma on the laser is very small so roughly the single

particle interaction between plasma electron and the laser can be used. In the 1D

single particle limit and for large a0, the energy of the electrons is dominated by

the longitudinal part rather than the transverse part : P⊥ ∼ a0, Pz ∼ a2
0/2 and

γ ∼ 1 + a2
0/2. This implies that the energy loss rate is proportional to npa

2
0. On

the other hand, the laser energy density is proportional a2
0nc ( one can think laser

as photon gas so the energy density is the photon number density ω0a
2
0 times

single photon energy ~ω0). Due to local pump depletion, the laser etching rate is

obtain by
npa2

0

a2
0nc

. We can see the a2
0 is cancelled leading to the independence of a0.

In the above single particle picture, There is also no upper limit of a0 because

the laser is assumed to move with the speed of light in vacuum, c. Therefore,

the a2
0 scaling is valid for arbitrarily large a0. In a plasma, this scaling can only

be approximately valid because the laser moves slower than the speed of light

in vacuum. As shown in chapter 4, the particle energy scales as p2
⊥/2 in a wave

moving with finite γφ only if v‖ < vφ. If p⊥ ∼ γφ, v‖ ∼ vφ, the energy gain will

saturates. In the laser field, p⊥ ∼ a0, so this saturation transition occurs when

a0 ∼ γφ ∼ ω0

ωp
.

In Decker et al.’s work, they verified this etching rate by several 1D and 2D

PIC simulations. Through numerous 1D and 3D PIC simulations, We find that

this etching rate is valid in 1D and 3D and its valid range for intensity is roughly

2 . a0 . 2
√

nc

n0
.

Due to this front etching, the laser will be depleted after a distance. We can

get this so called pump depletion length as :
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Letch '
c

υetch
cτFWHM '

ω2
p

ω2
0

cτFWHM (5.15)

In an observing frame moving with c, the front of the laser, that excites the

wake, moves backward as the pulse etches back with υetch. The phase velocity of

the wake can therefore be expressed as

υφ ' υg − υetch ' c[1− 3ω2
p/(2ω

2
0)] (5.16)

where υg is the linear group velocity of light in a very underdense plasma (

ω2
p � ω2

0). The reason to have this term is that the intensity of the very leading

front of the laser is always small so it moves roughly with the linear group velocity.

With this phase velocity, we can easily estimate the dephasing length for

trapped electrons traveling until they outrun the wave :

Lφ '
c

c− υφ
R ' 2

3

ω2
0

ω2
p

R (5.17)

Where R is the wave length of the accelerating field.

5.5.4 Guiding : Self-Guiding or Channel Guiding

Stable optical guiding of the short laser pulse over many Rayleigh lengths is a

critical issue for plasma based acceleration. A light pulse can be guided with

a nearly constant (matched) spot size by a plasma channel that has a parabolic

refractive index/density profile with a maximum/minimum on axis. In the weakly

nonlinear regime, the index of refraction in a plasma can be expanded as[85, 26]

η = ck/ω ' 1− 1

2

ω2
p

ω2
0

(
1 +

∆nc
np

r2

w2
0

+
∆n

np
− a2

0

8

)
(5.18)
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where ∆nc parametrizes an external density channel, ∆n is a density depletion

from the transverse ponderomotive force and the term a2
0/8 is due to relativistic

mass corrections. The characteristic density change required to optically guide

such a profile with little spot size oscillation is ∆nc = 1/(πrew
2
0) [85],where

re = e2/mc2 is the classical electron radius and w0 is the laser spot size. If the

density depression is normalized to the plasma density np, this condition becomes

∆nc/np ' 4/(kpw0)
2 (5.19)

An equivalent change to the index of refraction from relativistic mass cor-

rections can also self-guide a laser if a2
0/8 > 4/(kpw0)

2 or P ≥ Pc, where Pc =

17ω2
0/ω

2
p[GW ] is the critical power for relativistic self focusing [55]. As shown by

Sun et al. [55] and the discussions in previous subsections, the electron blowout

could also be achieved when P ≥ Pc and the spot size is sufficiently small (a

few plasma skin depths). This will also enhance the effect of guiding. Unfortu-

nately, the index of refraction in a plasma needs a distance on the order of c/ωp

to build up. This is because that the radiation pressure from the leading edge

of an intense laser pushes plasma forward leading to a density compression that

nearly cancels the relativistic mass increase to the index of refraction. Therefore,

it is often thought that a short pulse laser τ . 1/ωp cannot be self-guided and

some form of external optical guiding is needed. However, as described in ref.[86],

for P/Pc >> 1 a degree of self-guiding for short pulses is possible because the

leading edge of the laser locally pump depletes before it diffracts and the back of

the pulse is still guided in the ion column region.

This effect of self-guided propagation is seen in numerous 2D and 3D PIC

simulations. These simulations also confirmed that for plasma density larger

than 1× 1018cm−3 and laser power P/Pc & 8, the short pulse laser can be guided
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by itself if the spot size is initially chosen as matched. A 3D simulation to show

this will be given later.

For even lower plasma density, it is not currently affordable to test the self-

guided propagation by fully 3D PIC simulations. However, we can get some

roughly scaling based on the physical picture presented above.

we can start from to quasi-static theory where the index of refraction is

η ' 1− 1

2

ω2
p

ω2
0

1

1 + ψ
(5.20)

and it satisfies

∂2ψ

∂ξ2
+
k2
p

2

[
1 + a2

(1 + ψ)2
− 1

]
= 0. (5.21)

As noted earlier 1
1+ψ

− 1 ' −ψ must equal 4/(kpw0)
2 in order for guiding to

occur. For |ψ| � 1, we assume

∂2ψ

∂ξ2
' −

k2
p

2
a2, (5.22)

therefore −ψ builds up to the necessary value in a distance ∆ξ which scales

as

∆ξ ∼ (k2
pw0a0)

−1 ∼ (kpa
3/2
0 )−1. (5.23)

The length of the laser that is lost due to diffraction each Rayleigh length

(ZR) will also scale as (kpa
3/2
0 )−1 . Self guiding can be achieved if the length lost

due to pump depletion in each Rayleigh length also scales the same way:

υetch
c

' np
nc
∼ ∆ξ

ZR
⇒ a0 ∼ (nc/np)

1/5 (5.24)
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As we can see, this is a rather weak dependence on the plasma density. From

PIC simulations for np & 1 × 1018cm−3, we can deduce the coefficient of this

scaling roughly as 1.

5.5.5 Injection and Beam Loading

The electron beam riding on the wake can be either self-injected or externally

injected from some other source. For self-injection, particles in the rear of the

blowout region must be able to catch up with the wake. How the self-trapping

processes occurs for a driven plasma wave has already been extensively discussed

in chapter 4. The conditions can be summarized as the following two: one is

that the field structure is asymmetric due to the existence of the driver ( the

decelerating part has a sinusoid structure but the accelerating part has a triangle

structure and with a deep spike at the tail) so the electrons starting from the

laser front can gain more acceleration than deceleration; the other is that the

wakefield amplitude should be large enough such that the potential ψ can reach

the trapping threshold (' −1). To satisfy the latter condition in 3D wakes,

simulations show that the blowout radius should be larger than 4 ∼ 5.

Indeed we can also analyze the trapping processes just based on physical

pictures: In the blowout regime, two physical conditions need to be satisfied

for trapping. first, the blowout radius should be large enough so that when

the particles reach the rear of the ion channel, they move predominately in the

forward direction with speed close to the speed of light. Second, at the rear

portion of the ion channel, trajectory crossing occurs leading to a narrow sheath

with the highest accelerating and focusing fields. Therefore, even though electrons

initially have energy γ substantially below the wake’s Lorentz factor γφ, they

can easily achieve sufficient energy as they are accelerated while they slowly drift
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backwards (relatively to the pulse) in the sheath. In our sample simulation (shown

in next section), the effective γ of the wake is around 20 and the normalized

blowout radius is around 4. The initial energy γ of those trapped electrons is

substantially smaller than 20. For even lower plasma densites, we have also

performed a number of simulations, where an electron beam with γ exceeding

10000 was used as the driver instead of a laser and we observed self-injected

electrons in each case for a normalized blowout radius around 5. This indicates

that for laser wavelengths in the 0.8µm range and plasma densities of interest,

self-injection will always happen when we keep the normalized blowout radius

around 4 ∼ 5.

As laser propagating, more and more electrons can get trapped in the rear

region. When enough charge is accumulated there, the trapped charge may be

able to absorb significant amount of energy inside the wake so stop further trap-

ping. This effect is called beam loading and it can be used to estimate how much

charge can be accelerated in the wake.

5.5.6 Possible Laser Plasma Instabilities and Laser Pulse Distortions

As we have mentioned before, one great advantage to operate in the blowout

regime is the significantly reduced growth rate of various kinds of instabilities.

Among these instabilities, some are well understood in the weakly nonlinear

regime, for example Raman forward, Raman backward, envelope self-modulation,

laser filamentation, laser hosing, laser asymmetrical self-focusing etc.; For these

instabilities, although the basic coupling mechanisms do not change fundamen-

tally, their growth rates are significantly changed due to the special characteristics

of blowout regime. Most of the growth rate obtained from weakly nonlinear mod-

els are unable to give reasonable predictions in the blowout regime. There are

137



also some other instabilities which only exist in the blowout regime. One example

is the electron beam hosing instability when an electron beam is loaded in the

wake.

Generally it is very hard to analyze these instabilities theoretically in the

blowout regime. There are at least three major difficulties: The first one is the

non lamina nature of the plasma flow due to trajectory crossing. This makes

it impossible to describe plasma motion by PDEs (partial differential equation).

The second one is the highly nonlinear plasma motion due to both fluid and

relativistic effects. The third one is the inherent 3D geometry, which makes the

description of laser pulse also very difficult. Furthermore, different instabilities

tend to couple together. So even in some cases the growth rates for certain insta-

bilities can be derived (e.g., the electron hosing), the coupling between different

instabilities and their nonlinear developments will still be too hard to be treated

by any simple analytical model. Due to the above reasons, full scale 3D PIC

simulations will be the major tool to understand the instabilities in the blowout

regime.

Despite the unavailability of quantitative theoretical models, we can still get

some rough qualitative understanding about why this regime is more stable com-

paring with weakly nonlinear regime. We can attribute this low growth of insta-

bilities to the following three reasons:

The first one is the relativistic mass increasing when high intensity is used.

The plasma electrons tend to respond slower so that the growth rate will be

reduced. This argument is applicable for both 1D and 3D cases. Indeed in

the 1D case, Decker et al. analyzed the reduced growth rates for several 1D

instabilities.

The second reason is that the laser and the plasma only interact strongly at

138



the front part of the ion channel. and this part keep etching away due to the

local pump depletion before the instabilities can real grow up. This argument is

also applicable to 1D case.

The third one is that the major part of the laser is propagating inside an ion

channel where the electron density is very low or even zero. In this region the

laser plasma interaction can be ignored.

These arguments may well explain the very small growth of most destructive

instabilities mentioned above. Indeed many of them are even not observed in

full scale 3D simulations that have been done so far. For example, the Raman ,

the envelope self-modulation, filamentation are not observed and it seems they

will play very little role in the blowout regime. For some others like laser hosing,

asymmetrical self-focusing and electron hosing, the roles they can play are still

not very clear although current 3D simulations do not show their growth.

Here we can show some observations from a group of 3D PIC simulations to

see how stable this regime is. The parameters for these simulations are basically

the same as we showed in Fig.5.1. A 30fs, 6TW laser propagates in a shallow

plasma density channel with np = 5 × 1018cm−3 and ∆nc/np = 0.5. For this

laser power and plasma density, P/Pc = 1, therefore the matched laser spot size

is chosen as kpW0 = 2
√

2. In this simulation, a clear blowout occur at the very

beginning as shown in Fig.5.1 and the laser propagates stably for more than 10Zr

without noticeable oscillation of the laser centroid (the laser hosing).

Furthermore, we also did simulations with asymmetric spot sizes (10% dif-

ference in two transverse dimensions) or with non-Gaussian shape (two identical

laser pulses with center off each other by half spot size). Both cases show no

evidence of either laser hosing or asymmetrical self-focusing.

These simulations are very different with the predictions from weakly nonlin-

139



ear laser hosing theory. The growth rate of laser hosing for a short laser pulse in

the weakly nonlinear regime is:

Ne =
3
√

3

4
(α3

P

Pc
k2
pξ

2 Z

Zr
)1/3 (5.25)

where α3 =
√

2(2 − P
Pc

)−1/2. For the parameters of our simulations, the e-

folding number for kpξ ≈ π is about 6.4. Even the initial noise of the laser

centroid is very small (e.g., less than 0.001W0), the laser can still has large cen-

troid oscillation (comparable to the spot size). However, in these simulations, we

hardly see any oscillation of the centroid.

In the future, the stability for even longer distances ( e.g., 100Zr) will be

checked by simulations when they become affordable.

Other than instabilities, there are some other effects that may induce laser

pulse distortion during laser propagation. Photon deceleration and GVD ( group

velocity dispersion) are two examples. Luckily, current simulations show that

they may not significantly affect the accelerating structure until close to pump

depletion. More detailed study is needed in the future.

5.6 Phenomenological Scaling and Its Verification by PIC

Simulations

Based on the physics discussed in previous sections , we can draw the follow-

ing conclusions: a practical LWFA should operate in the blowout regime with

matched laser profile; the laser pulse guiding can be achieved by either self-

guiding or plasma channel guiding; The accelerated electron beams can be either

self-injected or external injected. In this section, we will derive a group of scaling

laws and their coefficients for electron beam energy, beam charge and efficiency for
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the blowout regime. These scaling laws give a recipe for how to extend the results

from the recent experiments towards a more stable regime conducive to making

an accelerator. These scaling laws suggests that by using near term lasers in the

0.1 to 3PW range it will be possible to generate of 1 − 13GeV mono-energetic

electron beams with nC of charge in a single stage without the need for external

guiding, and if external guiding is used, energies up to 120GeV can be achieved.

To verify our results, we have carried out many computer experiments using

the 3D, particle-in-cell code OSIRIS [?], that explore a wide range of plasma

densities, laser powers, and spot sizes. We highlight one simulation that is very

relevant to near term experiments. In this simulation, a diffraction limited 30fs

(FWHM) 0.8µm laser pulse containing 200 TW of power is focused to a spot

size w0 = 19.5µm at the entrance of a 1.5 × 1018cm−3 density plasma to give

a normalized vector potential of a0 = 4. The laser is circularly polarized (with

normalized vector potential 4/
√

2 in each direction) and has a Gaussian transverse

profile and a symmetric temporal profile of 10τ 3 − 15τ 4 + 6τ 5 where τ =
√

2(t−

t0)/τFWHM . The total plasma is 0.75cm long which corresponds to more than 5

Rayleigh lengths. The computational window of this simulation is of dimension

101.9 × 127.3 × 127.3µm3 which moves at the speed of light. The number of

gridpoints is 4000×256×256 = 2.62×108. The resolution in the laser propagation

direction z is k0∆z = 0.2. We assume a preformed fully ionized plasma with

uniform density profile. The resolution in the transverse direction is kp∆x =

kp∆y = 0.116. We use 2 electrons per cell and a smooth neutralizing immobile

ion background (the total number of particles is roughly 500 million). The total

simulation time-steps is 300, 000.

With given laser peak power P and the plasma density np, we need to choose

the matched laser spot size for stable wake excitation. As discussed in last section,
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the normalized vector potential a0 and normalized laser spot size kpw0 can be

calculated from the following formulas:

a0 ' 2(P/Pc)
1/3 (5.26)

and

kpw0 ' 2
√

2(P/Pc)
1/6 (5.27)

With these proper chosen laser intensities and spot sizes, the laser pulses can

be either self-guided or channel-guided over long interaction distance without

significant variations. In figure 5.7, The stable self-guiding of an intense short

pulse over five Rayleigh lengths is illustrated.

To achieve self-guiding, the laser power needs to be much larger than the

critical power for relativistic self-focusing Pc. A rough condition is derived in last

section:

a0 ' 2(P/Pc)
1/3 & (nc/np)

1/5 (5.28)

If the self-guiding condition is not satisfied, a plasma density channel needs

to be used. To get the proper channel depth, we first calculate the matched laser

spot size from the above formulas ( P/Pc & 1 is needed for this calculation to

be meaningful), then we calculate the channel depth ∆nc from linear guiding

formula:

∆nc =
4np

(kpw0)2
(5.29)

142



Under the conditions for stable wake excitation, we can estimate the energy

gain of a self-injected or external injected electron beam by using the obvious

equation

∆E = qELWLacc = εLW laccmc
2 (5.30)

where ELW is the average accelerating field of the beam loaded wake, Lacc is

the acceleration length, εLW ≡ eELW/(mcωp) and lacc = ωpLacc/c.

The desired acceleration length is the dephasing length obtained in last sec-

tion:

Lacc = Lφ '
c

c− υφ
Rm '

2

3

ω2
0

ω2
p

Rm '
4

3

ω2
0

ω2
p

√
a0k

−1
p (5.31)

Based on the discussions on laser etching and pump depletion, we impose the

condition

Letch & Lφ ⇒ cτFWHM & 2Rm/3 ≈ 4
√
a0k

−1
p /3 (5.32)

If the pulse is too short dephasing will not be reached, and the electron beam

may have significant energy spread. We note that this condition is approximate,

since the laser starts diffracting as soon as its intensity is insufficient to sustain

self focusing and this happens before the pulse is completely pump depleted. Ad-

ditionally the injected particles need to slightly pass the dephasing point (phase

space rotation) so that the energy spread is minimum. On the other hand, the

length of the pulse should not be too large, because the laser field could interact

with the trapped electrons and degrade the beam quality.

εLW is the average accelerating field experienced by an electron, 〈Ez〉. From

the discussions on the wakefield structure in last section, we know that for a0 & 2
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and kpRm & 3, the ion column roughly formed a sphere and that the accelerating

field, for the most part, depends linearly on the distance from the middle of the

sphere (figure 5.8(a)). This can be also seen in figures 1(a)-(c) where the region

void of electrons roughly forms a circle and in figures 2(a),(b) where a lineout of

eEz/(mcωp) along the axis is shown.

The blowout region is roughly a sphere and the electrons are either self or

externally injected at the rear, the electrons can travel a relative distance Rm

before they dephase. The peak useful accelerating field is eEz,max/(mcωp) =
√
a0

and because the wakefield is roughly linear, the average field is half of the peak:

εLW ≡ eEz,max/(2mcωp) '
√
a0/2 (5.33)

With the expressions for lacc and εLW , We can therefore write the approximate

equation for the energy gain as:

∆E ' 2

3
mc2

(
ω0

ωp

)2

a0

' mc2
(

P

m2c5/e2

)1/3(
nc
np

)2/3

∆E[GeV ] ' 1.7

(
P [TW ]

100

)1/3(
1018

np[cm−3]

)2/3(
0.8

λ0[µm]

)4/3

(5.34)

We can see that there is a much stronger dependence of the beam energy

on the plasma density np than on the input laser power P . However, when the

plasma density is lowered for fixed power, ensuring self-guided propagation of

the leading edge of the laser is more challenging. This can be accomplished by

plasma channels and to some degree by self-guiding. As we argue in last section,

for self-guiding to occur P/Pc needs to increase as the plasma density decreases.

On the other hand, if plasma channel is used, P/Pc can be kept as low as 1.
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We can rewrite equation (5.34) in terms of the critical power for relativistic

self-focusing, Pc:

∆E[GeV ] ' 3.8

(
P

Pc

)−2/3
P [TW ]

100
(5.35)

This equation reveals that for a constant ratio P/Pc the trapped particle energy

scales linearly with the laser power. So we can simply scale one group of param-

eters to achieve higher energy by increasing the laser power and decreasing the

plasma density by the same ratio.

The number, N , of electrons that are accelerated can be estimated from energy

balance. Hence we examine the partition of field and particle energy within the

first bucket. The fields inside the ion column have Ez, Er, and Bφ components.

In addition there is kinetic energy in the sheath. In a 3D linear or 1D nonlinear

wake the fields and kinetic energy scale together. This is not the case for these

3D nonlinear wakes where an increasing percentage of energy ends up to the

electron sheath for higher laser intensity. Integrating the field energy in the ion

channel we find equipartition between the energy in the longitudinal field El and

the focusing fields Ef :

El ' Ef '
1

2
E =

1

120
(kpR)5

(
m2c5

e2ωp

)
(5.36)

The trailing particles can only recover the energy in the fields and much of

the kinetic energy is left behind. By equating E with the energy absorbed by N

particles that travel across the ion channel (we assume the average field felt by

these particle is Ez,max/2), we obtain:

N ' 1

30
(kpR)3 1

kpre
=

(
β3

α

)
8/15

k0re

√
P

m2c5/e2
(5.37)
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where α = kpw0/(2
√
a0) and β = kpR/(2

√
a0). Using equation (5.10) α '

1 ' β we obtain:

N ' 8/15

k0re

√
P

m2c5/e2
' 2.5 · 109λ0[µm]

0.8

√
P [TW ]

100
(5.38)

The efficiency scales as the total energy Eb in the accelerated electron beam

(energy gain equation (5.34) times particle number from equation (5.37)) devided

by the total laser energy ET (assuming cτ ' 2
√
a0c/ωp):

Γ ∼ Eb/ET ∼ 1/a0 (5.39)

which indicates that a0, i.e., (P/Pc)
1/3 cannot be too large if one needs high

efficiency.

For a 200TW , 0.8µm pulse equation (5.38) predicts 0.6nC of charge. The

charge measured from the simulation for the first bunch is 0.3nC. We have also

verified these scaling laws by monitoring how the wake is loaded by externally

injected electron bunches.

As shown in figure 5.7(d), the acceleration process stops before the accelerat-

ing bunch dephases. This will not lead to any considerable modifications of the

aforementioned formulas, particularly because the pump depletion length scales

as the dephasing distance and the accelerating wakefield decreases as the trapped

electrons approach the center of the sphere.

The beam energy seen in the simulation, 1.5 GeV, is close to that calculated

theoretically from Eq. (5.34) which is (5.34) ⇒ ∆W ' 1.6GeV . Using formulas

(5.15)-(5.31) we see Lφ ' 1.31cm > 0.96cm ' LT which is in agreement with

our observation that pump depletion happened before dephasing. In fact, as

mentioned earlier the pulse started diffracting at 0.75cm < 0.96cm, that is to say
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before all of its energy was lost. Therefore, even though eq. (5.34) is not strictly

valid for our simulation the estimate from it is excellent.

In spite of the complexity of the physics associated with this interaction, the

predictions by the simple formulas presented in this article are very close to 3D

PIC simulation results. Good agreement is also achieved between these scaling

laws and recent experimental results [60, 61, 62] which where slightly below the

“threshold” for the blowout regime. To be in the regime identified by a spherical

channel, one needs a0 & 4 or equivalently P/Pc & 8 and cτ < 2
√
a0c/ωp which

leads to the condition that P & 30(τ/30fs)TW . These conditions can be relaxed

for channel-guided lasers for which P/Pc may be smaller. It is then written as

a0 & 2 or P/Pc & 1. We present the comparison between the scaling law for the

energy Eq. (5.34) and the aforementioned results in figure 5.10.

Other than the beam energy, charge, the quality of the electron beam is also

very important for any practical application. In the regime presented here the

self-injected electron bunches are highly localized in space with a half-width of

the first bunch of only ∼ 10fs, i.e. 1c/ωp. Once a sufficient number of electrons

have been trapped the trapping process terminates, as seen in figure 5.7(c). The

first electron bunch reaches an energy of 1.5 GeV and its energy spectrum is

presented in figure 5.8(c). The normalized emittances are shown in figure 5.9.

They may be estimated as the product of the beam spot size, which roughly

scales with 1/
√
np, with the uncertainty in the momentum perpendicular to the

acceleration direction, which scales with a0. These simple considerations show

that as we move to lower densities in order to achieve higher energy particles

the emmitances of the self-injected electrons will increase. This suggests that for

the electron beam to be useful for high energy physics or light source, external

injection may be more attractive. As an interesting aside, simulations also reveal
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the trapping and acceleration of a second distinct bunch in the second bucket

(see figure 5.8(c)), which has a lower energy because the average electric field it

experiences is smaller.

To summarize, the scalings derived above and the underlying physics predict

that it is advantageous to use moderate intensities and very low plasma densities

to increase the output energy and keep the efficiency high. The simulations

also show that the injection process can be clamped and the energy spread of

the electron beam is much less in the regime we are proposing, which indicates

that this regime is also amenable to accelerating externally injected beams while

maintaining good beam quality.

5.7 Comparison with the Scaling Based on Similarity The-

ory

It is interesting to point out the differences between the scaling laws we derived

here with those obtain from a similarity theory by by Gordienko and Puhkov

(GP) [80]. In their work, they are more interested in the so called ”bubble”

regime where very high laser intensity (a0 >> 1) and high plasma densities

(np ∼ 0.01 ∼ 0.08nc) are used. They argued that for a0 >> 1 the speed of

all plasma electrons is very close to the speed of light. Under this condition all

quantities will scale with a single similarity parameter, S ≡ np

nca0
. The coefficients

in front of the scalings are determined from simulations (or experiments). The

resulting expressions are therefore only strictly valid so long as the laser’s trans-

verse and longitudinal profile, aspect ratio etc. remain the same. In contrast,

our approach presented here is to use a phenomenological description. We iden-

tify the important physics as wake excitation (amplitude and phase velocity),
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pump depletion (pulse evolution), dephasing (between particles and wake), and

beam loading. We then use these concepts to develop expressions for predicting

the number of electrons, the electron energy, and overall efficiency, including the

coefficients.

It is instructive to compare the scaling laws described here for the blowout

regime against those obtained in ref.[80] using a similarity theory for the “bub-

ble” regime. The key assumption of ref.[80] was that a0 >> 1. For the energy

gain,they obtained

Emono ≈ 0.65mc2

√
P

m2c5/e2
cτ

λ
(5.40)

This formula also implies a dependence on plasma density because cτ ≈ w0 ≈
√
a0c/ωp is assumed. Under these optimum conditions, formula (5.40) can be

rewritten as

Emono ≈ 0.16mc2
cτ

w0

(
P

m2c5/e2

)2/3(
nc
np

)1/3

(5.41)

Comparing with the formulas obtained in last section, we can immediately

notice the stronger dependence of the energy on the power in these formulas.

It turns out that the difference between the scaling laws presented here and

those from similarity theory lie in the scaling for Lacc. We have argued in previous

sections that Lacc is limited because the pulse pump depletes primarily by giving

kinetic energy to the electrons. An electron at the front of the laser is pushed

forward and to the side. As argued in ref. [86] and in previous sections, each

electron gains an amount of energy that scales as (a2
0/2)mc2. Since the laser’s

energy also scales as a2
0 this “1D like” pump depletion distance is independent

of laser intensity. However, for extremely large a0 electrons can move forward
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with a velocity greater than the velocity of the leading edge of the pulse; which

is at most the linear group velocity. Equating the forward going velocity of a

single electron to the linear group velocity gives an estimate for a critical value

for the laser amplitude, a0c ≈ 2
√
nc/np. We can see that for high plasma density

np/nc ≈ 0.01 ∼ 0.08 the critical value for a0 is a0c ≈ 20 ∼ 8, but for lower plasma

densities np/nc ∼ 0.001, a0c & 70.

For laser amplitudes above this critical value the laser will pump deplete more

slowly because the kinetic energy given to the each electron will no longer scale

as a2
0. In this limit a constant percentage of the energy may go into the fields of

the wake and Γ ∼ constant as predicted by ref. [80]. The pump depletion length,

Lpd, can then be estimated from energy balance,

E2
0

8π
cτ ≈ E2

z

8π
Lpd ⇒ Lpd ≈

a2
0

ε2
ω2

0

ω2
p

cτ ≈ 1

4
a0
ω2

0

ω2
p

cτ ∼ a0Letch (5.42)

which does depend on a0. Using this scaling for Lacc in equation (5.30) pro-

vides the same scaling for the particle energy as obtained from similarity theory.

However, even for this high intensity limit dephasing will still occur because the

leading edge cannot move faster than the linear group velocity of the highest

frequency component, since at the very front the amplitude is small.

It may be interesting to see the differences between all available scaling laws

for LWFA in just one table. In Table 5.1, we made such a list. These include

the linear scaling laws in a 1996 paper. In this paper design formulas based on

1D linear theory was presented. This paper also gave a version of 1D nonlinear

scaling. However this nonlinear version is incorrect. So a well known 1D nonlinear

scaling is also listed in the table. We also list our scaling and the similarity scaling

from GP.
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Table 5.1: Comparison of Different Scaling Laws

a0 kpW0 ε kpLd kpLpd kpλw γ∗φ ∆W/mc2
∗∗

Linear < 1 2π a2
0 γ2

φ a−2
0 (ω0/ωp)

2 2π ω0/ωp a2
0(ω0/ωp)

2

(1996) ωpτ (use Ldp)

Nolinear > 1 2π a0 a−2
0 (ω0/ωp)

2 a−1
0 (ω0/ωp)

2

1D (1996) ωpτ ωpτ

Nolinear > 1 2π a0 4γ2
φa0 (ω0/ωp)

2ωpτ a02π (ω0/ωp) a2
0(ω0/ωp)

2

1D a
1/2
0 (Lpd, ωτ = a0)

Nolinear > 2 2a
1/2
0 a

1/2
0 γ2

φa
1/2
0 (ω0/ωp)

2ωpτ 4a
1/2
0 (ω0/ωp)

4
3
a0(ω0/ωp)

2

3D /
√

3

Matched

GP > 20 a
1/2
0 a

1/2
0 a0(ω0/ωp)

2 a
3/2
0 (ω0/ωp)

2

ωpτ ωpτ
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5.8 Parameter Design for Future

We can easily extrapolate the blowout regime to 10GeV and beyond. As suggested

by the scaling laws, if we keep P/Pc fixed, then the laser power and inverse of the

density scale with the desired electron energy and the pulse length will scale as the

electron energy to the 1/2 power. If we scale up our sample simulation, to obtain

15GeV we need a 2PW , 100fs laser and a plasma with density of 1.5×1017cm−3.

From the discussions on self-guiding, we know that for this low plasma density and

laser power, channel guiding is needed. If self-guiding is preferred for the same

laser power, the scaling on self-guiding suggests that we can P/Pc ' 28 ⇒ a0 ' 6

and a density n = 4× 1017cm−3. For these parameters stable self guiding should

occur and lead to acceleration of 2nC charge at approximately 9GeV after 10cm

of laser propagation. Carrying out a full-scale PIC simulation for the 10cm of

propagation distance is beyond current capabilities. However, we have carried

out a 3D PIC simulation for a short propagation distance to verify that electrons

will still be self-injected. Results are shown in figure 5.11.

If both the technology for making meter scale ( 0.1m ∼ 1m) low density

plasma channels for guiding and for synchronized external injection are developed,

then much higher energy gain can be achieved for the same laser power. For

example, using P/Pc ' 1 and a plasma density channel with channel depth

∆nc/np = 0.5, a 10GeV electron beam with 0.7nC charge could be obtained with

a 250TW , 100fs laser and a 43cm long plasma channel with a minimum density

n = 1.2× 1017cm−3. Extrapolating the parameters furrther, we can predict that

a 120GeV electron beam with 2nC charge can be generated by using a 3PW ,

350fs laser and 18m long plasma channel with density n = 1.0× 1016cm−3.

In Table 5.2, we show a list of designs in two different setups for reaching the

same energy scale. The first setup is using external guiding and external injection
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by keeping P/Pc = 1 and ∆nc/np = 60%. The third setup is using self-guiding

and self-injection by choosing P/Pc just enough for self-guiding.

Table 5.2: Parameter Design for GeV and Beyond

P (PW ) τ(fs) np(cm
−3) W0(µm) L(m) a0 ∆nc/np Q(nC) E(GeV )

0.02 30 1× 1018 14 0.016 1.76 60% 0.18 0.99

0.10 30 2× 1018 15 0.009 3.78 0% 0.40 1.06

0.20 100 1× 1017 45 0.52 1.76 60% 0.57 9.9

2.0 100 3× 1017 47 0.18 5.45 0% 1.8 10.2

2.0 310 1× 1016 140 16.3 1.76 60% 1.8 99

40 330 4× 1016 146 4.2 7.6 0% 8 106

20 1000 1× 1015 450 500 1.76 60% 5.7 999

1000 1000 6.5× 1015 460 82 12.1 0% 40 1040
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Figure 5.7: A sequence of 2-dimensional slices (x − z) reveals the evolution of

the accelerating structure (electron density, blue) and the laser pulse (orange).

Each plot is a rectangular of size z = 101.7µm (longitudinal direction, z) and

x = 129.3µm (transverse direction, x). A broken white circle is superimposed

on each plot to show the shape of the blown-out region. When the front of the

laser has propagated a distance, (a) z = 0.3mm the matched laser pulse has

clearly excited a wakefield. Apart from some local modification due to beam

loading effects, as seen in (b) this wakefield remains robust even as the laser

beam propagates though the plasma a distance of 7.5mm (as seen in (c) and

(d)) or 5 Rayleigh lenghts. After the laser beam has propagated 2mm (as seen

in (b)) into the plasma, one can clearly see self-trapped electrons in the first

accelerating bucket. The radial and longitudinal localization of the self-trapped

bunch is evident in part (c). After 7.5mm the acceleration process terminates as

the depleted laser pulse starts diffracting.
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Figure 5.8: (a) A lineout of the wakefield along the z axis after 0.3mm shows

that within the first bucket the slope of the wakefield is nearly constant and equal

to eEz/(mcωp) ' ξ/2 where ξ = (kp(ct − z)). After 5.7mm of propagation (b)

the wakefield has been modified by beam loading (flattening of the wake between

400 − 450c/ωp). This is corroborated by the pz vx z plot that is superimposed

on the lineout of the wakefield. Pictures (a) and (b) reveal that the acceleration

mechanism is extremely stable during the simulation. The energy spectrum after

7.5mm (c) exhibits an isolated spike of 0.3nC at 1.5GeV with energy spread

∆γ/γ = 3.8% corresponding to the first bucket and a second spike of 50pC at

700MeV with energy spread ∆γ/γ = 1.5% corresponding to the second bucket.
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Figure 5.9: The normalized emittance [εN ]i = π
√
〈∆p2

i 〉〈∆x2
i 〉 − 〈∆pi∆xi〉2

(where ∆pi is normalized as indicated by the figure and the emittance is in units

of ∆xi) and is the approximate area in phase space pixi. For the pictures above

which correspond to the first bunch this formula yields: [εN ]x ' 35π ·mm ·mrad

and [εN ]y ' 29π · mm · mrad. An upper limit for the emittance can be found

by multiplying the typical divergences shown in the figure; this method leads to

an overestimation which for this case is about 25%. For the second bunch of

accelerated electrons (not shown in this figure) the emittances are significantly

lower: [εN ]x ' 10π ·mm ·mrad and [εN ]y ' 11π ·mm ·mrad.
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Figure 5.10: E[GeV ] vs. power P [TW ] and density n/nc from equation 5.34

: The blue lines of constant power show the strong dependence of the energy

of the self-trapped electrons to the density. The black points correspond to:

(a) experiment [60], (b) experiment [61] which uses a channel for guiding, (c)

experiment and 3D PIC simulation [62], (d) 3D PIC simulation [59] which uses

a channel for guiding, (e) A 3D PIC simulation in [58], (f) 3D PIC simulation

presented in this article. Each of these points is very close to one of the blue lines

indicating agreement with our scaling law.
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Figure 5.11: Picture (a) shows the laser electric field with orange on top of the

electron density with blue after 0.4mm of propagation. The laser front is chosen

sharper than the back because it has been found through simulations that this

leads to more stable propagation. The blowout region is well formed. Picture

(b) shows that particles at the rear of the ion channel have already reached

velocities higher than the laser velocity and therefore are trapped. The region in

z direction plotted in picture (b) corresponds to the z region between the broken

lines in picture (a).
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CHAPTER 6

Prospects for Plasma Based Acceleration in the

Blowout Regime

6.1 Summary

The electron “cavitation” or “blowout” is a remarkable nonlinear phenomena in

laser-plasma and beam-plasma interaction. It can occur naturally when an in-

tense short-pulse laser or short ultra-relativistic electron beam interacts with a

underdense plasma. In literature, the term “blowout regime” is used when this

phenomena occurs. Recently, the blowout regime has attracted great interests

in plasma based acceleration for accelerating electrons. Many important simu-

lation and experiment results are reported for both LWFA and PWFA. Among

them the following two are most exciting: the self-injected mono-energetic elec-

tron beams with energy range from 100MeV to GeV and with duration less than

50fs, energy gain up to 42GeV of the tail of an incoming 42GeV electron beam

in less than one meter. Clearly, there is much need for the understanding of the

relevant physics in this regime. Indeed, much simulation work have been done

to compare with experiments. However, there is little progress in the theoret-

ical understanding of many important issues in this regime until very recently.

The major reason for this is that this regime is highly nonlinear (e.g., relativis-

tic effects) and highly non-lamina (trajectory crossing occurs) such that most
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well-developed mathematic methods ( e.g., PDEs and weakly nonlinear approxi-

mations) are not applicable to describe it. The motivation for this dissertation is

to change the above situation. We developed a nonlinear theoretical framework

that can address many important problems in the blowout regime. These include

how the wake is excited and how to parametrize the blowout regime, how to

optimize the wake fields for a given driver parameters and how to optimize the

driver shape to achieve higher transformer ratio, how to describe beam loading,

how to describe the electron hosing instability of short electron bunches, How to

explain self-injection occurring in a multi-dimensional wake and How to scale the

recent experimental results to higher energy and better beam quality. The major

results are the following:

1. A nonlinear non-fluid theory for the excitation of multidimensional plasma

wave wakes in the blowout regime is formulated. By using this theory one can

predict the wakefield amplitudes and blowout radius in terms of the electron beam

or laser beam parameters, as well as predict the nonlinear modifications to the

wakes wavelength and wave form. For electron beam driver, a single parameter

Λ, the normalized charge per unit length, is found to be able to characterize the

major features of the channel shape and the wakefield. Two distinct regimes are

identified, namely the non-relativistic blowout regime and the ultra-relativistic

blowout regime. For the non-relativistic blowout regime, when linear fluid theory

breaks down and how this leads to a saturation of the logarithmic divergence in

the linear Greens function are shown. For the ultra-relativistic blowout regime,

the requirements for forming a spherical wave form, i.e., bubble, are identified.

The key differences between laser driver and electron beam driver are also dis-

cussed.

2. The optimum plasma density to obtain the largest wakefield for given
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electron beam parameters is analyzed. It is shown that for recent and future

electron beam parameters, the optimum density can be ten times larger than the

prediction of linear theory. When the linear prediction is a good guide and when

the nonlinear analysis must be used are discussed.

3. The beam loading issue in the blowout regime is discussed. A simple

formula for the maximum number of particles that can be loaded in the wake is

given. It is shown that much more charge can be loaded in the blowout regime

than that the linear theory predicts.

4. The wake amplitude and transformer ratio for a linear ramped electron

driver are derived. It is shown that high transformer ratio can be achieved in the

blowout regime by using similar beam profile from linear theory.

5. The electron hosing instability in the blowout regime is analyzed by using

a linear perturbation on the plasma electron blowout trajectory. The growth

of the hosing instability is found to be affected by the plasma self-fields, the

relativistic mass, the axial motion of plasma electrons and the position-dependent

ion channel radius respectively. The new theory is fully relativistic and the growth

rate for a electron beam with a simple current profile can be solved numerically.

PIC simulations agree well with this new theory which predicts a smaller hosing

growth for a non-adiabatically formed ion channel as in current plasma wakefield

acceleration experiments than for a preformed ion channel case.

6. An extensive analysis of electron trapping and self-injection in arbitrary

electromagnetic fields with translation symmetry is given. The general trapping

condition and limit on energy gain are derived. Based on this analysis, the

physical meaning of wavebreaking limit derived from 1D fluid theory is discussed.

It is shown that the 1D wave breaking limits are not achievable in a system with

a driver because particle trapping and significant loading of the wake will occur
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far before the theoretical wave breaking limit is reached for both 1D and multi-

dimensional wakefields. This analysis clarifies a subtle point that has confounded

plasma physicists about the meaning of wave breaking for driven wakes for many

years .

7. what is the possible parameter regimes for LWFA that might be useable

in a real accelerator is discussed. Starting by considering requirements for any

high energy physics accelerator regarding the stability, the number of accelerated

electrons, their beam quality and the over all efficiency, the implications of the

weakly nonlinear wakefield regime are presented. This exercise illustrates that

the assumption of a weakly nonlinear wake is inconsistent with these require-

ments and that the blowout regime is the natural result. We then provide a

phenomenological theory for LWFA and use it to obtain expressions that can be

used to extrapolate this regime to higher energies, namely 1GeV -1Tev. We also

present 3D PIC simulation results that are in agreement with our theory.

6.2 Future Work

Despite the significant progress of experiment, theory and simulation achieved

recently in the research on plasma based acceleration, much remains to be done to

justify plasma based acceleration as a viable technology for building accelerators.

Regarding to the experimental technology, the improvement of the power and

quality of the drivers and the inventions of new diagnostic methods are definitely

among the most important thing to do. Regarding to the theory and simulation,

many important issues still lack satisfactory answers. It is impossible for me to

give a full review of these topics. Instead, I will just list a few topics that is

closely related to the work in this dissertation.
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First, systematic simulations for various laser-plasma and beam-plasma insta-

bilities that may occur in the blowout regime should be pursued. For example,

the electron hosing instability for asymmetric beam, the laser hosing, the laser

asymmetric self-focusing et al.. Although most of these instabilities do not show

significant effect in current simulations, they may play a role when 100GeV to

TeV stages are considered. Based on these simulations, simple theoretical models

may be constructed to identify key physical issues.

Second, it is very important to tailor the laser or electron beam parameters

and the plasma parameters to achieve the best possible results. This is a critical

step for building real machines. For example, relevant problems include how to

choose the laser intensity and frequency profile to reduce the laser distortion,

how to beam load the charged particle beam of sufficient charge at the right

phase to achieve very small energy spread, how to change the plasma density

profile (e.g., a density down ramp) to increase the energy gain from a LWFA

et al.. Clearly, to answer questions like these needs a close interaction between

theory and simulation and also a clear awareness of the feasibility of experimental

technology.

Third, for plasma based acceleration to be useful for high energy physics,

it is important to find out a way to efficiently accelerate positrons. It is clear

that the blowout regime can not be used because the defocusing field inside the

ion channel for positrons. A systematic research on what regime can be used

to accelerate positron (similar to our analysis of the blowout regime) should be

carried out.

Last, although it is shown in this dissertation that to efficiently accelerate

large number of electrons (∼ nC) needs LWFA to operate in the blowout regime,

the weakly nonlinear regime is still of interests when low charge (10s of pC) high
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rep rate (kHz) system is considered. A systematic research on how to improve

efficiency and stability for this kind of low charge system is definitely worth doing.
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