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Abstract of the Dissertation

Accelerating Ultra-Short Electron/ Positron

Bunches in Field Ionization Produced Plasmas

by

MIAOMIAO ZHOU

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2008

Professor Warren B. Mori, Chair

The acceleration of ultra-short electron/positron bunches in field-ionization

produced plasmas is studied through particle-in-cell (PIC) simulations. The 3D

fully relativistic parallel PIC code QuickPIC[1] is able to model afterburner rele-

vant plasma wakefield acceleration (PWFA) parameters due to the implementa-

tion of the quasi-static approximation. Several new physics packages, including

field-ionization and radiation reaction, were added into QuickPIC so that it could

be used to simulate frontier PWFA experiments. The wakes created by a short

electron bunch in the blow-out regime when its self electric field ionizes a gas

to produce the plasma is studied by comparing them with wakes created in pre-

ionized plasmas. A criteria for the wake amplitude to scale similarly with drive

beam parameters is obtained. A detailed simulation study of the energy dou-

bling experiment at Stanford Linear Accelerator Center (SLAC) suggests that

the much faster beam head erosion process in a field-ionized plasma is what

causes the maximum energy gain to saturate as the plasma length is increased

(as published in [2]). Other observations from the simulation such as beam scal-

loping, loss of charge from the defocusing field, azimuthally asymmetric wakes

xx



due to emittance asymmetry are also discussed. A theoretical model that pro-

vides scalings for the head erosion rate in terms of beam/plasma parameters is

described. The predictions from the model are in good agreement with simula-

tion results. The first simulation study of a positron beam propagating in an

extended length of field-ionized plasma is presented. Beam head erosion as well

as the dynamic focusing followed by a stabilization of the beam envelope is ob-

served. This simulation, which has beam parameters in the same range as those

can be produced at SLAC, achieved multi-GeV energy gain for the tail of the

positron beam in tens of centimeters of a field-ionized plasma.
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CHAPTER 1

Introduction to Plasma Based Acceleration

The potential for ultra-high acceleration gradients has motivated exten-

sive research in plasma-based acceleration during the nearly three decades since

Tajama and Dawson[3] first proposed using an intense laser pulse to excite

plasma waves for electron acceleration. Plasma is an ideal medium for high-

gradient acceleration since it is already ionized and can support very large elec-

tric fields, on the order of the nonrelativistic wavebreaking limit E0 = mecωp/e '√
np(cm−3)V/cm[4], where ωp =

√
4πnpe2/me is the plasma frequency and np

is the plasma density. This limit for a typical plasma (e.g. np = 1018cm−3,

E0 ' 100GV/m) is several orders larger than the maximum electric field conven-

tional radio frequency linear accelerators can sustain, ∼ 20MV/m, partly due

to the breakdown of the material of the wall in the structure. The high accel-

erating gradient in plasmas offers the promise of reducing the length of a future

accelerator by at least three orders of magnitude, from kilometers to meters.

1.1 Basic concepts

In plasma based accelerators, a drive beam, either particle beam or laser

pulse(s), propagates through a plasma, generating a plasma wave wake. The

particle beam driven case is called Plasma Wakefield Accelerators(PWFA) and

it was first proposed by Chen et. al. [5] in 1985. The laser driven case falls
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into 3 categories depending on the normalized parameters of the laser. They are

the Laser Wakefield Accelerator(LWFA) where the driver is a single short laser

pulse, the Plasma Beat Wave Accelerator(PBWA) where the drivers are two

lasers whose frequency difference generates a beat at the plasma frequency, and

the Self Modulated Laser Wakefield Accelerator(SMLWFA) where a long laser

pulse evolves into a train of pulses due to Raman forward scattering. Fig. 1.1

from [1] is reproduced here to illustrate the concepts behind these schemes. There

are also studies of wakefields driven by multiple electron bunches or laser pulses,

Figure 1.1: Four basic plasma based acceleration schemes(reproduced from [3])
(Solid blue lines: longitudinal electric field)

where the wakefield amplitude can be enhanced[6].
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In the PWFA, wakefields are driven by forces associated with the space charge

electric field of the particle beam. For a relativistic beam, vb ≈ ẑc, the dominant

electric field is in the radial or transverse direction. This force can be expressed

as F = −mec
2∇⊥φ, where φ is the normalized scalar potential φ = eΦ/mec

2

and is determined by a 2D Poisson’s equation −∇2
⊥φ = 4πρb, where ρb is the

charge desnity of the beam[1]. For laser driven plasma accelerators, the origin

of the plasma wave is the ponderomotive force F = −mec
2∇(a2/2), where a is

the normalized vector potential a = eA/mec
2. This force comes from the second

order motion of an electron in a laser field. (The first order is the ”quiver motion”

due to the electric field only vq = ca)[7]. These driving forces displace the plasma

electrons and generate a plasma wave after the particle beam or laser pulse passes

by the plasma electrons and the more massive ions pull the electrons back.

1.2 Development of theories – from linear to nonliner,

fluid to kinetic

In order to understand the underlying physics of plasma-based accelerators,

numerous studies using theory, simulation and experiment have been carried out.

There are basically two types of models that can be used to describe the

waves in a plasma – the fluid model and the kinetic model. The fluid models are

effective as long as the plasma electron fluid velocity is less than the phase velocity

of the plasma wave[8] and or the trajectories of individual electrons do not cross.

In plasma-based accelerators, the plasma wave velocity equals the driver group

velocity which is near the speed of light. In a 1D cold plasma, the condition

that plasma particle trajectories cross each other is completely equivalent to the

plasma density becoming infinite and the particle velocity exceeding the phase
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velocity[9]. When narrow wakes are excited and multi-dimensional offsets are

important, then trajectory crossing occurs. When these conditions are violated,

a kinetic model must be used instead, where the evolution of the distribution

function itself rather than its moments must be studied.

Let’s begin by reviewing linear fluid theory. When the wakefields are weak

enough (e.g. nb
n0
� 1 or |a| � 1) so that the perturbed plasma density excited by

them are much smaller than the equilibrium plasma density (n1

n0
� 1), then the

wake is in the linear regime. In this regime, the fluid description is appropriate

and the linearized fluid equations are sufficient to describe the wake. In par-

ticular, the equation for the perturbed density can be obtained from linearized

fluid equations (Poisson’s equation, the continuity equation, and the momentum

equation) and can be written as[7]

(
∂2

∂t2
+ ω2

p)
δn

n0

= −ω2
p

nb
n0

+ c2∇2a
2

2
(1.1)

where a = 0 for PWFA and nb = 0 for laser-driven plasma accelerators. The

solution for δn
n0

can be obtained via Green’s function. The equation for the accel-

erating electric field Ez can be written as

∇2
⊥Ez +

ω2
p

c2
Ez = −∂ξ4πen0

δn

n0

(1.2)

where ξ = z − ct. (A similar equation exists for the radial electric field.) Based

on this, Ez in a PWFA is given by [10]

Ez(r, ξ) = −4π

∫ ∞
ξ

dξ′ρ‖(ξ
′) cos kp(ξ

′−ξ)×
k2
p

2π

∫ 2π

0

dθ′
∫ ∞

0

dr′r′ρ⊥(r′, θ′)K0(kp|r−r′|)

(1.3)

where ρ‖(ξ)ρ⊥(r, θ) = ρb(r, θ, ξ) is the beam charge density, and K0 is the zeroth-

order modified Bessel function of the second kind. Applying a bi-gaussian distri-

bution in both longitudinal and transverse directions for the beam density, the
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accelerating field on axis can be written as[11]

Ez(0, ξ) = [
√

2π(q/e)(mcωp/e)(nb/np)× (kpσze
k2
pσ

2
z/2)R(0)]cos(kpξ), (1.4)

where

R(0) = k2
p

∫ ∞
0

r′dr′ρ⊥(r′)K0(kpr
′) (1.5)

For laser driven accelerators, the electric field can be written as [7]

E(r, t) = −(mec
2ωp/e)

∫ t

0

dt′ sinωp(t− t′)∇a2(r, t′)/2 (1.6)

Although linear fluid theory can give useful expressions for quantities in

plasma-based accelerators and is able to explain some basic issues, it is not al-

ways an accurate description of the real physics because the condition n1

n0
� 1

is not always satisfied. Furthermore, the nonlinear multi-dimentional regime,

where n1

n0
' 1 or n1

n0
> 1, can be more favorable for accelerating electrons because

the accelerating field is larger, the focusing fields are ideal, more charge can be

accelerated, and a laser driver propagates more stably[12, 13].

Assuming the driver intensity is strong enough to excite a nonlinear plasma

wave yet not too strong to make the plasma electron trajectories cross, a fluid

model can still be used to describe the wake generation as long as we keep the

nonlinear terms. The equation for the scaler potential derived from 1-D nonlinear

fluid equations for beam drivers[12] and laser drivers[14] can be written together

as[7]

k−2
p

∂2φ

∂ξ2
=
nb
n0

+ γ2
p{βp[1−

1 + a2

γ2
p(1 + φ)2

]−1/2 − 1} (1.7)

where βp = vp
c

, γp = (1−β2
p)
−1/2 and vp is the phase velocity of the plasma wave.

In principle, the self-consistent electric field can be obtained from Eq.(1.7) for

any driver shape by differentiation. Compared with the 1-D results, the multi-

dimensional results are much more complicated. In order to solve the 2-D or
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3-D nonlinear fluid equations, numerical codes are usually needed, such as in [15]

(beam driver) and [16](laser driver). No field expressions in general can be given

explicitly. However, some common qualities, such as a highly peaked charge den-

sity, larger wake amplitude (may exceed E0), steepened wave form and sometimes

elongated wavelength (in highly nonlinear cases) were observed among different

studies. These properties qualitatively agree with the 1-D theory predictions([13]

Fig.1), and actually they qualitatively agree with PIC simulations which includes

all nonlinearities and kinetic effects. Fig. 1.2(b) shows these nonlinear effects by

comparing with the linear case(Fig. 1.2(a)). Both of them are produced by 3-D

PIC simulations(QuickPIC). Recently, Lu et. al.[17][23], presented a nonlinear

multi-dimensional theory for wakes excited by intense lasers and particle beams.

As the driver intensity further increases and the wake becomes nonlinear,

one fundamental question that naturally comes to mind is what precisely de-

termines the condition for the fluid model to break down and at what wave

amplitude (the ”wavebreaking” amplitude) does this occur. Studies have been

carried out on this topic since 1950s, starting with a cold nonrelativistic 1-D

plasma. The famous expression E0 = mecωp
e

was obtained by recognizing that

the maximum E field arises when simultaneously, sheet crossing, particle trap-

ping, and wave steeping occur[4]. Later, it was found that relativistic velocity

of the fluid elements will increase the wavebreaking amplitude[18] while a finite

plasma temperature can reduce it[19]. It was not until 1988 that both effects

were considered and the limit was obtained for a warm relativistic plasma as

Emax = mcωpe
−1β−1/4(ln 2γ

1/2
ph β

1/4)1/2[20], where β = 3Tth/mv
2
ph. All these 1-D

conclusions were re-derived in a unified treatment in [9], where the correct nonlin-

ear fluid equations (either in Eulerian coordinate or Lagrangian coordinate[21])

were derived for each case first, and then a correspondingly feasible form of the

wavebreaking condition was applied. In 2-D and 3-D, however, there is no sys-
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Figure 1.2: (a) Linear plasma wake (nb
np

= 0.079) and (b) nonlinear plasma wake

(nb
np

= 10). Both (a) and (b) have a bi-gaussian beam with σr = 10µm, σz = 20µm

at z = 0. Only difference is number of electrons in the beam.
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tematic wavebreaking study based on nonlinear fluid equations because the pre-

cise meaning of wavebreaking, particle trapping, and trajectory crossing becomes

blurred. Simulations are normally used to search for the maximum coherent

wave that the plasma is able to support, which remains a fundamental question

of interest in multi-dimensions.

In the multidimensional nonlinear regime, the fluid model breaks down, and a

kinetic model becomes necessary. Kinetic descriptions are usually achieved either

by solving the plasma kinetic equations numerically (e.g. Vlasov or Fokker-Plank

equations) or by particle simulation, which straightforwardly computes the mo-

tions of a collection of charged particles, self-consistently interacting with each

other and with externally applied fields. The later can be thought of as solving

the Klimontovich equation for finite size paricles. The first method has been

used successfully in some areas, such as laser plasma interactions and magnetic

fusion. However, because it treats phase space as a continuum, there has always

been difficulties in finding an accurate yet economical representation of veloc-

ity space in long-time simulations, especially for multidimensional problems[22].

This will be particularly an issue in plasma-based acceleration where the bulk

plasma is cold and the average momentum is large. On the other hand, par-

ticle simulation is more adaptable and has already played an important role in

this field for many years. It propelled this field in two basic ways. Firstly, it

helped to explore the essential physical processes involved in plasma-based accel-

eration, including nonlinear plasma wave excitation[23]; the self-consistent evo-

lution of drivers, such as the self-focusing of short laser pulses[24] and the hosing

instabilities[25] and head erosion[26] of the electron beam; as well as other impor-

tant mechanisms such as self-injection through particle trapping[27]. Secondly, it

has been used to model ongoing experiments to confirm and explain the experi-

mental observations[28][29][2] and to help choose optimal parameters for future
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experiments[30][31]. With the complexity in theories and considerable cost of

experiments, particle simulations has become an essential tool in plasma-based

acceleration study.

This dissertation will focus on the use of PIC simulation to study PWFA.

Chapter 2 will introduce the afterburner relevant PWFA experiments and sum-

marize their recent findings and current status. Chapter 3 will give an introduc-

tion to PIC codes in general and the quasi-static PIC code, QuickPIC, which is

the tool used for this dissertation. Several new models were added into Quick-

PIC in order to simulate the current experiments, and they will be explained in

Chapter 4. Chapter 5 to 7 will show results from simulations of electron beam

driven PWFAs and explain some important physics mechanisms involved. The

simulation findings of positron beam driven PWFAs will be discussed in chapter

8.

1.3 Experimental achievements

Before going into more detail of PWFA, which is the topic of the rest of this

dissertation work, we review the major experimental milestones in plasma-based

accelerator research using both particle beam and laser drivers.

Successful experiments before 1996 where electron acceleration was observed

were summarized in [7]. We can see the accelerating gradient was much larger

for laser drivers (up to 100GV/m) than beam drivers (up to 30MV/m). This

is basically because the laser drivers were much stronger than the beam drivers

for the state-of-the-art technology at that time. The laser intensities were up to

1019W/cm2, while the maximum beam intensities were only around 1012W/cm2.

However, since the relativistic beams were much ’stiffer’ than the laser pulses,
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they were able to propagate much longer in a plasma, resulting in a similar energy

gain(30MeV in ≈ 1 meter[32]) as compared to the laser driver case (44MeV in

≈ 0.44mm[33]). The ’stiffness’ of the drivers are represented by γ = 1√
1−(vb/c)2

for beam drivers and γeff = ω0

ωp
for laser drivers, where ω0 is the laser frequency.

For the two maximum energy gain experiments prior to 1996([32][33]), a 500MeV

electron beam with γ = 978 was used, and a laser pulse with λ = 1.05µm in np =

1019cm−3 plasma with γeff = 10 was used. Another big difference between these

two experiments (and most beam driven and laser driven experiments then) was

that the electrons being accelerated in the beam driven case were from the beam

tail while those in the laser driven case came from the background plasma. This is

actually a direct result of the larger gradient and relatively slower phase velocity

of the wake in laser driven experiments. In order for an initially stationary

background electron to catch up with the driver, it has to be accelerated in a

large enough gradient fast enough before it slips back into the decelerating region

of the wake.

Large progress in experiments has been made in the past ten years for both

types of drivers. For LWFA, higher power, short-pulse laser sources (40TW , 30fs)

have become available and technologies have been developed to guide intense

lasers (e.g. by a preformed plasma density channel[34] or self-guiding), resulting

in longer propagation distances. In 2004, three different groups reported pro-

duction of ∼ 100MeV self-injected electron beams with <≈ 10% energy spread

[35][36][37]. And recently, self-trapped electrons with energies near 1GeV were

observed[38]. For PWFA, the progress has been tremendous due to the access

to the worlds most intense electron beam at the Stanford Linear Acceleration

Center (SLAC). The maximum beam intensity at SLAC is currently 1021W/cm2

due to the ability to produce short beams (σz ∼ 10µm). Interestingly, this is

comparable to today’s most powerful lasers[39]. Recently, some electrons in the
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tail of the 42GeV SLAC beam were doubled in energy in only 85cm of a lithium

plasma[2]. This is a remarkable achievement when one realizes that it took ∼ 3

kilometers for the electrons to gain their initial 42GeV of energy. Although there

are still issues that need to be solved, these recent experimental results in both

LWFA and PWFA provide hope for the realization of practical plasma-based

accelerators.
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CHAPTER 2

Plasma Wakefield Accelerator Experiments

There has been a very close connection between the advances in particle-in-cell

methods and in experimental results for plasma-based accelerator research. This

has remained true during the SLAC/UCLA/USC E-164/167 collaboration. This

close connection is important because understanding the experimental realities

points the way towards adding the necessary realism into the models and the

simulations help to unravel the physical phenomena from the experimental data as

well as help design new experiments. In the past few years, this collaboration has

yielded a number of rich new beam and plasma physics results and demonstrated

key physics milestones for a beam-driven plasma afterburner. As part of the E164-

167 collaboration, the author participated in several experimental runs carried

out at Stanford Linear Accelerating Center (SLAC). In this chapter, the concept

of a plasma afterburner will be introduced, the experimental setup at SLAC will

be described, and the major experimental results will be summarized.

2.1 Original conceptual design of a plasma afterburner

The idea of a plasma afterburner or energy doubler dates back to the earliest

work on PWFA. However, until recently, the necessary physics understanding

was not mature enough to propose a realistic set of design and scaling laws.

During the SLAC/UCLA/USC collaboration, a more detailed description of the
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plasma afterburner was proposed[40]. The paper detailed how the energy of the

50GeV Stanford Linear Collider (SLC) electron and positron beams could be

doubled using several meter long plasma sections. One of the promises of this

specific design was possibly reaching the high energy frontier so that the SLC

facility could have been used to search for the Higgs boson, which according to

the standard model exists at energies above 100GeV. This energy was beyond

the reach of both SLC and Large Electron Positron Collider (LEP) at CERN.

Furthermore, the afterburner concept and design of [40] has been extended to

possible International Linear Collider (ILC) designs.

The conceptual design is illustrated in Fig. 2.1 (reproduced from [40]). The

electrons and positrons are accelerated to the collider’s nominal energy (∼ 50GeV

for SLC), overcompressed to form two microbunches each, and then the trailing

bunches are doubled in energy over a few meters in the plasma. To sustain the

luminosity at the interaction point (IP), a shorter section of high density plasma

can be used as a plasma lens to focus the trailing bunch.

Figure 2.1: Conceptual design of a plasma afterburner (reproduced from [40])

This design was made possible based on a finding (through simulations) that

a scaling based on linear theory [41] where the wakefield amplitude is inversely

proportional to the square of the bunch length (Eq.(2.1)) still approximately holds

even in the nonlinear regime[11]. This indicates the possibility of enhancing the
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accelerating gradient by further reducing the bunch length,

eE0 ≈ 240(MeV/m)(
N

4× 1010
)(

0.6mm

σz
)2ln(

√
1016cm−3

n

50µm

σr
). (2.1)

for narrow bunches[11].

The viability of this idea was tested by looking at the wakefields excited by the

electron beams with the then nominal SLC beam parameters except with smaller

bunch lengths. For example, a beam with 3 × 1010 electrons in a bi-Gaussain

distribution of radius σr = 25µm and σz = 63µm (10 times shorter than the

original SLC beam but several times longer that what is currently available) can

excite a wake with both the useful accelerating field (Eacc) and the decelerating

field (Edec) around 10GV/m under the optimal plasma density (chosen to be

1.8 × 1016cm−3 according to kpσz ≈
√

2 from the linear theory[41]). In this

case, the transformer ratio (≡ Eacc/Edec) is approximately 1 and suggests the

stopping of the initial 50GeV driving bunch (pump depletion) in a few (∼ 5)

meters and the doubling the energy of the trailing bunch energy to ∼ 100GeV in

this distance.

The realization of the above promise is contingent upon a lot of physics and

technological issues being understood and overcome. Several of these were identi-

fied as being the most important. Among these are (i) beam loading and phasing,

where a trade-off between higher energy and smaller energy spread needs to be

optimized and understood; (ii) transverse beam dynamics, where the hosing in-

stability predicted by theory which may potentially breakup the beam should be

prevented; (iii) developing a plasma source, where producing a sufficiently long

and dense enough high-density plasma source remains a challenge for laser photo-

ionization technology; and (iv) positron acceleration, where the wake made by

positron beams is typically smaller than that from a corresponding electron beam

and where wake excitation behaves differently in the nonlinear regime.
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Based on this afterburner concept, a series of ”afterburner relevant” exper-

iments have been carried out at SLAC. Some of the critical issues mentioned

above have been resolved (e.g. long high-density plasma source), some have been

explored with much progress being made (e.g. positron acceleration, greatly re-

duced hosing growth) and some still needs to be further addressed (e.g. beam

loading). At the same time, as the experiments progressed, new issues arose (e.g.

higher optimal plasma density required, beam head erosion, trapped particles).

These new phenomena are physically interesting themselves and are also critical

in the realization of the afterburner. In the following sections, the experimental

setup and major results from the SLAC experiments will be summarized and an

update on the latest afterburner design for the ILC will be given.

2.2 Experimental setup at SLAC

The experimental setup at the Final Focus Test Beam (FFTB) at SLAC has

evolved and improved over the years. Fig. 2.2 shows the layout of the most recent

energy doubling experiment[2]. A 50 femtosecond long (σz ∼ 15µm) 42GeV

electron beam (propagating from left to right) containing 1.8 × 1010 particles is

focused to a spot size of ∼ 10µm at the entrance of a 85 cm long column of lithium

vapour (”plasma oven”) with a density of 2.7× 1017cm−3. The beam exiting the

plasma traverses a meter-long dipole magnet (”spectrometer magnet”), which

disperses the beam electrons according to their energy. In order to distinguish

the particles’ displacement due to their energy change (gain or loss) from their

possible vertical deflection while exiting the plasma, the spectra are measured

at two different locations (”e− spectrum” after the plasma). At each of the

locations, the particle distribution is measured by Cerenkov radiation emitted

as the electrons pass through a 15mm air gap established by two silicon wafers
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Figure 2.2: Schematic of the experimental layout [31]

(shown as one in Fig. 2.2), positioned at an angle of 45 degrees to the beam. The

second wafer acts as a mirror and deflects the Cerenkov light into a lens that

images the origin of the light onto a cooled charged coupled detector (CCD). The

reason for using the Cerenkov light instead of directly measuring the particle

distribution using phosphor is to prevent the interference from x-rays emitted

while the beam undergoes betatron oscillations inside the plasma. The electrons

pass the wafers almost unperturbed.

Many other diagnostics were developed to assist the beam tuning and bet-

ter understanding of the beam-plasma interactions. These include the incoming

beam energy spectrum measurement (”e− spectrum” before the plasma), where

the horizontally energy dispersed beam is sent to a vertical magnetic chicane, and

its synchrotron radiation is recorded on a phosphor screen; the Michelson autocor-

relator (”e− bunch length”), which can be used to measure the bunch length and

the average bunch profile using the coherent transition radiation (CTR) generated

when the beam passes a Ti foil; and the beam transverse profile measurement

16



(”e− spatial distribution”), where the beam’s transverse distribution is recorded

through an optical transition radiator (OTR) before and after (not shown) the

plasma oven. A ”Cerenkov cell” filled with one atmosphere of Helium gas was

used to study trapped particles by imaging the far field of the light (Cerenkov

ring). The ”spectrograph” records the spectrum of plasma light, including the

beating pattern which may infer the spacing between bunches of trapped par-

ticles. Before the incoming energy measurement, a notch collimator was also

developed to generate two bunches by making a cut in the longitudinal direction

of the beam (by making use of the energy-time correlation in a energy dispersed

region). The idea was to separate the accelerated particles from the rest of the

beam so that a mono energetic beam could be generated.

2.3 Major results from the SLAC experiments

Tremendous progress has been made during the past 7 years from the PWFA

experiments at SLAC. In these experiments, the acceleration distance was ex-

tended from mm scale to meter scales[42] and acceleration in a positron wake

was also observed for the first time[43]. The first acceleration of electrons by

more than one GeV was observed in a ∼ 10cm long plasma[44], and most re-

cently, the energy of some of the electrons in a 42GeV beam was doubled in

just 85 cm[2]! These experiments have demonstrated the dramatic increase in

accelerating gradients by reducing the bunch length, thereby validating the 1/σ2
z

scaling of the wake.

The highest energy achieved in these experiments are plotted together with

other plasma based acceleration results in Fig. 2.3 (from [31]). The progress

which is quantified in units of energy gain per year is in sharp contrast with the

leveling off of the Livingstone curve using conventional RF technologies [45].
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Figure 2.3: The maximum energy achieved by plasma based accelerator experi-
ments is plotted versus time [31]
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Not only did these experiments provide milestones in energy gain and acceler-

ation length, they provided key and fundamental results in intense beam-plasma

interactions. These results can be broken down into the following topics (i) elec-

tron transverse dynamics [46][42][47][26] (ii) positron acceleration and transverse

dynamics[43][48][49] (iii) synchrotron radiation from betatron oscillation[50][51]

(iv) field-ionization[53] and (v) electron trappping[54]. Each is briefly summa-

rized hereafter.

The electron beam transverse dynamics could be studied by measuring vari-

ation of the beam spot sizes at the plasma exit as a function of plasma length.

Alternatively it can be inferred by studying the variation of the exiting spot size

under different plasma densities. Oscillations were observed when the beam and

plasma are not matched (emittance spreading is not balanced by ion focusing)[46],

and the damping of the oscillation was observed when the matching condition

was approached[42]. Both of these observations agreed with envelope calculations

under a linear focusing force as long as the density is low enough so that the wake

is excited in the blow-out regime. The gradual formation of the ion channel from

complete blowout (zero focusing to uniform ion focusing) was also observed by

looking at different ’slices’ of the spot sizes near the beam head[47]. In the most

recent energy doubling experiment[2], a new phenomena – beam head erosion –

is suggested by simulations to be the limiting factor for further energy gain[26].

This longitudinal erosion of the beam is caused by the transverse spreading of

the beam head due to the lack of focusing and the resulting backward slippage

of the ionization front.

Acceleration and transverse dynamics of positron beams inside a plasma were

also explored in these experiments. The first positron acceleration was observed

at an average rate of ∼ 56MeV/m over a 1.4 meter long plasma[43]. A maximum
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demagnification of the transverse spot size by a factor of two was demonstrated

and the focusing force was observed to vary in a nonlinear fashion along the

full 12ps length of the beam[48]. The halo formation around a positron beam

core due to the slice emittance growth from the nonlinear focusing force was also

observed in the experiments[49].

The betatron oscillation of the ultra-relativistic beam particles inside the

plasma ion column generates synchrotron radiation strongly peaked in the for-

ward direction. Although incoherent and broadband, the peak brightness of

the x-ray beam is comparable to the undulator radiation at synchrotron light

sources[50]. The absolute photon yield, the angular spread and the density de-

pendence of the X-rays were measured[50]. These strong X-rays can be used to

generate positrons in the energy range of 3−30MeV by colliding with a tungsten

target[51].

The original idea of increasing the accelerating field by reducing the bunch

length according to Eq.(2.1) has led the experiments into a whole new regime.

When the bunch length of the electron beam at SLAC was reduced from a few

hundred microns to tens of microns, the space charge field of the beam becomes

large enough to field-ionize some of the neutral gases and produce the plasma

by itself[52]. This resolves the problem of producing high-density long plasma

sources using laser photo-ionization and is also free of timing and alignment issues.

Extensive experiments has been carried out to test the ionization onset under

different beam parameters using different types of gases[53]. Both the 3GeV

energy gain results[44] and the most recent energy doubling experiments[2] were

performed under this field-ionization regime.

A new phenomenon emerges when the gradients of the wakefields in these

experiments exceeds ∼ 10GV/m. An intense beam of self-trapped electrons is
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observed under this condition. On the one hand, these trapped electrons are

equivalent to the dark current of RF accelerators and can create unwanted, low

energy particles and may also potentially load the plasma wake and therefore

degrade the quality of the accelerated beam. However, on the other hand, these

trapped electrons themselves have interesting properties such as multi-GeV en-

ergies, lower emittance than the drive beam and bunch lengths of only 10’s of

femoseconds. The physics of particle trapping by electrons born within the wake-

field from field ionization in the 3D relativistic plasma waves is studied in [54],

where the measured threshold wakefield for trapping (∼ 30GV/m) is found signif-

icantly below the theoretical prediction from [18] (∼ 4TV/m). This discrepancy

was explained by the fact that the trapped electrons here come from the ionized

Helium buffer gas, which were born inside the wake where the initial potential was

low enough for trapping to happen significantly below the standard threshold.

2.4 Update on a future afterburner design

With the new knowledge and insights gained from the PWFA experiments, the

design of a future afterburner based on the original idea[40] has consistently been

reexamined and improved over the years. At the 2006 Advanced Accelerator

Concepts (AAC) workshop, the latest design was discussed[55] and the major

conclusions are listed below.

A multiple stage design was considered for an afterburner which accelerates

100 GeV particle beams to 500 GeV. In this design, a train of the drive bunches

each at 100 GeV will be separated to independently drive each stage of the plasma

accelerator. The witness beam will go through each stage gaining approximately

100 GeV in a few meters per stage. The ability to control head erosion and to

limit the hosing instability are among obvious advantages to this approach. An
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alternative approach that utilizes a single plasma accelerator stage with properly

shaped drive beams that permit a high transformer ratio was also proposed. Sim-

pler synchronization and transport lines were considered among the advantages

of this approach.

The viability of these designs depends on several critical issues. Ion collapse

is one of the concerns of the design for the International Linear Collider (ILC)

parameters. The witness beam is so intense so that on its own it will cause the

ions to collapse on the time scale of the beam passage[56]. This effect is also

an issue of LWFA. Therefore, a simple extension of the SLAC experiment is not

applicable. Using heavier ion species such as Argon[57], using hollow plasma

channels and using a nonlinear matching section have been suggested as possible

solutions. Ultimately, a combination of these ideas may be necessary. It was also

pointed out that using the dictated parameters from ILC may not be the optimal

linac-afterburner combination. A completely different set of consistent parameter

set may be needed to optimize the performance.

Other critical issues including beam head erosion, hosing instabilities, positron

acceleration, two bunch experiments (loading of the wake), etc. were identified

or discussed at and since the 2006 AAC workshop. Some of these issues in the

field-ionized regime will be addressed using simulations in the later chapters of

this dissertation.
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CHAPTER 3

Particle In Cell Codes for Modeling PWFA

In this chapter, the simulation tools for modeling PWFA will be introduced.

First, a brief introduction will be given to particle in cell (PIC) codes in gen-

eral. The properties of the most widely used fully explicit PIC codes will be

discussed. Next, a novel quasi-static PIC code – QuickPIC which can efficiently

model the afterburner stage of a PWFA will be introduced. Last, challenges and

improvement required in QuickPIC will be pointed out.

3.1 Paritcle In Cell (PIC) simulations

As described in Chapter 1, in the non-linear regime of a PWFA, the plasma

response to a particle/laser driver is nonlaminar and electron trajectory crossing

occurs. Therefore a fluid description is no longer suitable and a kinetic or particle

based model is needed. Moreover, in any plasma-based accelerator design, the

trailing beam spot sizes required for matched beams and for efficient beam loading

are extremely narrow, and the bulk plasma is ”cold” while the average momentum

is large. These facts make it difficult to directly solve the plasma kinetic equations

or fluid equations, where the phase space is treated as continuum. It therefore

seems naturally follows that a particle-based model is required.

The idea of studying plasma physics by using a computer to follow charged

particles starts in the late 50’s and early 60’s. The breakthrough was developing
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the concepts of finite size particles so that simulations using few numbers of sim-

ulation particles reproduced properties of real plasmas with orders of magnitude

more particles. Since even with the fastest computer available, it is impossible to

follow every real particle because of the huge number of them in typical problems,

super-particles (or macro-particles) are used. Each super-particle has the same

charge to mass ratio as a real particle while its mass (and charge) can be many

orders of magnitude larger, e.g. 104. The trajectories of the super-particles are

the same as those of the real particles because they depend on the charge to mass

ratio and not the mass nor the charge separately. This is the main reason why

super-particles can be used.

However, the justification of using fewer but more massive particles to model

a real plasma is not trivial. Actually, while some quantities, such as the plasma

frequency, remain the same, some other quantities, such as the collision frequency,

may change. This can be seen by writing out the ratio of these quantities between

super-particles and real electrons while ne
ns

= ms
me

= qs
qe

(’s’ stands for super-

particle). For example, the plasma frequency remains unchanged,

ωps
ωpe

=

√
nsq2

sme

neq2
ems

= 1 (3.1)

On the other hand, electron-ion collision frequency νei = lnΛ ·nq4/16πε20m
2v3[58]

scales roughly with the particle mass.

νies
νie

=
ns
ne

q4
s

q4
e

m2
e

m2
s

lnΛs

lnΛe

=
ms

me

lnΛs

lnΛe

' ms

me

, (3.2)

where Λ = λD/r0 and r0 = q2/4πε0mv
2. Note that ve = vs since the trajectories

are unchanged. Therefore, the collisional frequency is increased by using super

particles unless the interaction at close distances is modified. This effect can be

reduced by using finite size particles where the particles are described as clouds

instead of points[59]. In this way, the force between two particles goes to zero
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instead of infinity when the distance between them goes to zero, leading to less

collisional effects. If a particle size is roughly a Debye length, then much of the

kinetic behavior can be modeled using a smaller number of finite size particles.

More discussion of validity of using super-particles can be found in Chapter 1 of

[22]. ”The point is”, as stated in the book, ”within all three branches of plasma

study (experiment, theory, computation), practitioners must exercise a great deal

of care, enough to obtain the essence of the problem, but not so much as to inhibit

achieving any result. ”

Other important effects in PIC codes include the possible numerical instabil-

ities associated with the utilization of discrete spatial grids and finite time steps.

These phenomena are related to spatial aliasing and time aliasing, respectively[59].

For the case of a discrete spatial grid, since the coordinates of particles are given

exactly (have continuous values), their density has much shorter wavelength com-

ponents than those of the field quantities which are defined only on grids. The

spatial aliasing may cause these short wavelength density perturbations to res-

onate with longer wavelength higher phase velocity E field waves (both longitu-

dinal and transverse), leading to unphysical instability or damping. Besides the

use of finite size particles to avoid these effects, it is sometimes beneficial to use

higher order weighting schemes (fatter particles) and smoothing or filtering algo-

rithms. Similarly, the time aliasing can cause unphysical resonance by converting

high-frequency high phase velocity waves into low-frequency low phase velocity

ones due to undersampling. The way out of this problem is to choose time steps

shorter compared to the minimum period of oscillation supported by the system.

In full PIC code, this leads to the Courant condition.

Compared to other codes (e.g. Vlasov code and MHD code), PIC codes make

the fewest approximation. However, this means it is also most computationally
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intensive among these codes.

3.2 Full PIC codes

Depending on the field equations a PIC code is based on, it can be classified as a

fully explicit PIC code or a reduced PIC code. In a fully explicit PIC code, the full

set of Maxwell’s equations are solved with ’no’ approximation (other than the use

of a grid), therefore a full PIC code includes all possible electromagnetic modes.

If approximations are made to the Maxwell’s equations, it becomes a reduced PIC

code. Most commonly used reduced PIC codes include the electro-static codes

(∇ × E = 0 in Maxwell’s equations)[22], Darwin codes (∂Esol

∂t
= 0 in Maxwell’s

equations, where Esol is the divergence free part of the electric field)[22], and

the quasi-static codes (details will be discussed in the next section). For PWFA

research, electromagnetic full PIC codes were the most extensively used. Detailed

discussion of this full PIC algorithm can be found in [22]. Some properties of this

algorithm will be highlighted hereafter.

In a full PIC code, the field equations and particle push equations are dis-

cretized in a time centered manner, so that they can be advanced using the

leapfrog method. This time-centered property of the equations removes the re-

quirement of an iteration loop and yields minimal error. Here, ’the field equations’

refers to Faraday’s law and Ampere’s law from Maxwell’s equations because the

other two (Gauss’s law and ∇ · B = 0) are automatically satisfied as long as

they are true at the initial time step (which is straightforward to ensure) and

the continuity equation is rigorously satisfied at each time step (this is nontrivial

and needs careful consideration). The ’particle push equations’ here refers to

equations of motion dp
dt

= F and dr
dt

= v.
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In space, the field and density quantities are staggered on the so-called Yee

mesh so that centered spacial differencing can be used. In a warm plasma, the grid

size should be able to resolve the debye length so that the collective behavior of

the plasma can be preserved. However, when a plasma is cold (e.g. in the PWFA

case), only the plasma skin depth (c/ωp) is needed to be resolved.

In each computational cycle, the charge and current densities are deposited

at the grids; the electric and magnetic fields are then solved; these fields are

interpolated at the particles positions; and the particle positions and velocities

are updated based on these fields. This cycle then continues for the desired

number of time steps.

When space and time are discretized in the way described above, the resulting

numerical dispersion relation of an electromagnetic wave can differ from the con-

tinuous space and time result. In order to avoid unphysical damping or growth

from complex ω’s and to avoid numerical error from the dispersion relation, re-

strictions on ∆t/∆x are present for stability reasons (the Courant condition).

For example, ∆t/∆x < 1/c needs to be satisfied for a 1D electromagnetic wave

in vacuum. However, when the field equations are solved using finite difference

time domain rather than with FFT’s, all allowed choices of ∆t/∆x yield a slower

phase velocity of the electromagnetic wave from the true dispersion relation. As

an example, Fig. 3.1 shows the numerical dispersion relation of a 1D electromag-

netic wave in vacuum for different choices of ∆t/∆x while the real dispersion

relation is ω = kc. Similar restrictions (the Courant condition) also apply in a

plasma for 2D and 3D electromagnetic waves. .

The Courant condition has two important implications. First, it implies that

the maximum time step ∆t that can be chosen is restricted by the grid size ∆x,

which has to be small enough to resolve the smallest wavelength in a specific
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Figure 3.1: Numerical dispersion relation of a 1D electromagnetic wave in vacuum
for different choices of ∆t/∆x

problem. This sets up a lower limit to the number of time steps needed in

a simulation which models a fixed amount of physical time and therefore full

PIC codes are generally very computationally intensive. For example, to model

a 1GeV stage of a PWFA, 1013 pushes are required and that will take about

10,000 CPU hours on a typical CPU of today[60]. The second implication is

the spurious Cerenkov radiation. For choices of time step and grid sizes that

satisfy the Courant condition, the phase velocity of electromagnetic waves can

be numerically slowed down below c (speed of light in vacuum). Therefore when

there are relativistic particles present (which is the case in PWFA), they can travel

faster than this unphysically ”slow” light wave, thereby producing unphysical

Cerenkov radiation. Since the numerical speed of this light wave is slower for short

wavelengths, the radiation normally has high frequency. This high frequency

”noise” may couple back to the particles, interfering with real physics. In order
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to suppress the growth of this radiation, time or spacial filtering of the high

frequency or short wavelength components can be applied. However, caution

should be used since they may introduce new non-physical results.

In the next section, we will introduce a 3D electromagnetic PIC code – Quick-

PIC. It is a reduced PIC code based on the quasi-static approximation. QuickPIC

uses its own advancing scheme, therefore it is not subject to the Courant condi-

tion and the unphysical Cerenkov radiation as the full PIC codes. Of course, it

also has its own limitations.

3.3 The quasi-static PIC code – QuickPIC

QuickPIC is a highly efficient code capable of modeling the afterburner stages

of a PWFA based on the quasi-static approximation[24]. The physical picture of

this approximation is interpreted in section 3.2.1. Other properties of the code are

discussed in detail in [1], the essence of which will be summarized/reinterpreted

in the following sections.

3.3.1 Quasi-static approximation

In plasma based acceleration problems, the driver (particle beam or laser

pulse) travels at a speed near c. For quantities of interest, such as the electric

and magnetic fields around the beam, it is more convenient to use a new set of

coordinates (x, y, ξ, s) than the original set (x, y, z, t), where ξ = ct−z and s = z.

The relationship between these 2 coordinate sets is illustrated in Fig. 3.2. We can

see that s is basically the distance that the driver has traveled into the plasma

(since the field point that we are interested in is always near the beam) and ξ is a

measure of the longitudinal distance from this field point to the moving window
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center which travels at c and is near the beam center. It’s worth noting that this

coordinate transformation is merely a mathematical one, not one that changes

the physical frame, i.e., a Lorentz transformation.

The mathematical form of the quasi-static approximation is ∂
∂s
� ∂

∂ξ
. From

Fig. 3.2 we can see, this essentially means that the quantities at A are much

more similar to those at A′ than those at B, where A and A′ have the same

ξ but different s while A and B have the same s but different ξ. This is true

when the driver evolves over distances much longer than the bunch length or

the plasma wavelength. For a certain distance ∆s which could involve many

plasma oscillations, the beam may not evolve. So the fields around it will remain

the same during this ∆s. For this reason, the quasi-static approximation is also

called the ’frozen-field’ approximation. As stated in Chapter 1, since the driver in

plasma based accelerators are usually very ’stiff’ (γ for beam drivers up to 105),

and evolves at a much larger scale (∼ the betatron wavelength λβ = c√
2γωp

) than

the scale of variation of the fields around the beam (∼ the plasma wavelength

λp = 2π c
ωp

), the quasi-static approximation is a good description of the system.

The application of the quasi-static approximation leads to two major char-

acteristics of the algorithm. First, it simplifies the Maxwell’s equations so that

the fields can be solved locally in 2D. Second, it allows large time steps to be

taken when updating the beam. The former one gives time saving in the sense

that for a specific s where the beam has a certain shape, the fields around it are

solved much faster by solving 2d equations, while the latter one gives time saving

in the sense that for a certain distance ∆s, the number of time steps taken can

be minimized to resolve only the beam betatron oscillation instead of the plasma

oscillation.
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Figure 3.2: Schematic of the quasi-static approximation

3.3.2 Basic equations under the quasi-static approximation

In this section we will show how the full 3D Maxwell’s equations reduce to

2D equations under the quasi-static approximation for a specific choice of gauge.

Appropriate particle pusher equations are also obtained.

Maxwell’s equations in the Lorentz gauge are

(
1

c2

∂2

∂t2
−∇2)A =

4π

c
j (3.3)

(
1

c2

∂2

∂t2
−∇2)φ = 4πρ (3.4)

while the Lorentz gauge condition is

∇ ·A = −1

c

∂φ

∂t
(3.5)

The position and velocity of plasma electrons (and ions if necessary) are updated

by
dPe,i

dt
= qe,i(E +

1

c
ve,i ×B) (3.6)
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dXe,i

dt
= ve,i (3.7)

In most cases the ions are kept stationary as a uniform background. Beam par-

ticles are updated similarly by

dPb

dt
= qb(E +

1

c
vb ×B) (3.8)

dXb

dt
= vb (3.9)

Now, we approximate Maxwell’s equations (corresponding to (3.3) and (3.4))

under the quasi-static approximation. In order to do this, we change to the

(x, y, ξ, s) coordinates. For field quantities where ξ and s are separate parameters,

the partial derivatives in (x, y, z, t) and those in (x, y, ξ, s) are related by

∂

∂t
= c

∂

∂ξ
(3.10)

∂2

∂t2
= c2 ∂

2

∂ξ2
(3.11)

∂

∂z
= − ∂

∂ξ
+

∂

∂s
(3.12)

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∂2

∂x2
+

∂2

∂y2
+ (− ∂

∂ξ
+

∂

∂s
)2 (3.13)

Applying the quasi-static approximation ∂
∂s
� ∂

∂ξ
into (3.12) and (3.13), we have

∂

∂z
≈ − ∂

∂ξ
(3.14)

∇2 ≈ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂ξ2
(3.15)

Using (3.11) and (3.15) in (3.3) and (3.4), we obtain

−∇2
⊥A(x, y, ξ, s) ≈ 4π

c
j(x, y, ξ, s) (3.16)

−∇2
⊥φ(x, y, ξ, s) ≈ 4πρ(x, y, ξ, s) (3.17)
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Noticing that the second order time derivative, ∂2

∂t2
, and longitudinal derivative ∂2

∂z2

terms in (3.3) and (3.4) have been canceled due to the quasi-static approximation.

At the same time, by using (3.10) and (3.14), the gauge condition (3.5) be-

comes

∇⊥ ·A⊥ ≈ −
∂

∂ξ
(φ− Az) = − ∂

∂ξ
ψ (3.18)

where the pseudo-potential ψ is defined as

ψ ≡ φ− Az (3.19)

In order to derive the equations of motion which best exploit the quasi-static

equations, we must first choose a coordinate system. Usually, the trajectory of

a particle is described as a curve in a 3D space (x, y, z) with time used as the

parameterization of this curve, x(t), y(t), z(t). As described previously, the field

equations are simplified if we make a mathematical transformation to the set of

variables x, y, ξ ≡ ct− z, s ≡ z. The trajectory of a plasma particle is defined as

a curve in x, y, s space with ξ now playing the role of time. The time derivative

d
dt

is now (1− vz
c

) d
d(ξ/c)

since dξ = dct−dz = c(1− vz
c

)dt. The equations of motion

are now
dpe
d(ξ/c)

=
1

1− vez/c
F(x(ξ), y(ξ), s(ξ); ξ) (3.20)

where F = qe(E + 1
c
ve ×B)

dxe
d(ξ/c)

=
pex

mγ(1− vez/c)
(3.21)

dye
d(ξ/c)

=
pey

mγ(1− vez/c)
(3.22)

dse
d(ξ/c)

=
vez

1− vez/c
(3.23)

The quasi-static assumption implies that ∂F
∂s
≈ 0. Therefore, as we will discuss

shortly, it is not necessary to calculate the s(ξ) part of the trajectory. Note
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that s is different for each particle for a specific ξ, but under the quasi-static

approximation, the trajectories in x and y depend very weakly on s.

For a beam particle which is moving near the speed of light in the z direction,

we use the propagation distance of the moving window sw ≡ ct as the time like

variable. The equations of motion are changed little except now we need an

equation for ξ. The differential d
dt

is now d
d(sw/c)

, so

dpb
dsw

=
1

c
F(x(s), y(s), ξ(s); s) (3.24)

dxb
dsw

=
pbx
γmc

(3.25)

dyb
dsw

=
pby
γmc

(3.26)

dξb
dsw

= 1− pbz
γmc

(3.27)

To summarize, we have obtained a reduced set of Maxwell’s equations (3.16)

(3.17) and the correponding gauge condition (3.18) under the quasi-static ap-

proximation. The equations of motion for plasma electrons (3.20)–(3.23), and

for beam particles (3.24)–(3.27), are also obtained. The transverse derivative

operators in the reduced Maxwell’s equations (3.16) (3.17) indicate that these

equations can be solved locally in 2D, given the source term j or ρ as well as the

boundary condition on this 2D slice. The beam particles are updated in sw while

the plasma particles are updated with ξ acting as the time-like variable.

3.3.3 QuickPIC code structure

Based on the equations in last section and also within the spirit of the disparity

of the time-scale for he evolution between the beam and the plasma, QuickPIC

was designed with the unique structure shown in Fig. 3.3.

34



Figure 3.3: Schematic of QuickPIC code structure

At the beginning of the simulation, the 3D beam is initialized with particles

on a (x, y, ξ) grid with appropriate momenta at a fixed s. A ’fresh’ 2D slice

of plasma particles is then swept through the beam (by advancing in ξ) in the

moving window where the beam is kept stationary, and the value of s is assumed

to be the same for each plasma particle. This corresponds to the process of

the beam running into a ’fresh’ slice of plasma at a fixed s in a stationary frame.

Using a ’fresh’ plasma slice is justified by noticing that the beam moves at vbz ≈ c,

so any plasma in front of it is always unperturbed.

The flow chart of QuickPIC is shown in Fig. 3.4. It is a combination of a

parallelized 2D code (for the plasma particles) embedded in a parallelized 3D

code (for the beam particles). The 3D code contains the beam particles and uses

the 2D code as a transverse field solver at each slice. The 3D code passes the

beam density as the input to the 2D code and obtains the electric and magnetic

fields as the output from the 2D code. The 3D part is distributed to different

processors along ξ while the 2D part is distributed along y as shown in Fig. 3.3.
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Figure 3.4: QuickPIC flow chart

3.3.4 Implementation of the quasi-static equations in QuickPIC

The basic set of equations described in section 3.3.2 only gives the essential

physics of the quasi-static approximation. The practical implementation of this

approximation into a code involves many more detailed considerations. These

details are discussed in [1] and [60], the highlights of which will be summarized

in this section. We have separated these considerations into six topics: (i) The

continuity equation, (ii) Charge and current deposition, (iii) Particle push, (iv)

Predictor-corrector loop, (v) Diffusion coefficient, and (vi) Boundary conditions.

(i) Continuity equation: Similar to full PIC codes, the continuity equation

needs to be satisfied in order to guarantee the self-consistency of the code. Using

(3.16) – (3.19), the continuity equation under the quasi-static approximation

takes the form
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∂(cρ− jz)
∂ξ

+∇⊥ · j⊥ = 0 (3.28)

This needs to be satisfied by the charge and current densities from both the

plasma and beam particles. Note that if one integrates over all space in a 2D

slice,
∫
dx⊥(cρ − jz) is conserved. Therefore, the total charge,

∫
dx⊥ρ is not

conserved. Physically, this is due to the fact that particles can move between

slices if they have a finite axial velocity. If the number of PIC particles remains

fixed within the 2D slice, then charge will be conserved unless the charge per

particle varies. In what immediately follows, we describe how to deposit the

charge and current such that
∫
dx⊥(cρ− jz) is conserved.

(ii) Charge and current deposition: The charge density from the beam particle

is deposited in the same way as the normal deposition in a full PIC code. However,

in order to satisfy (3.28), the current density from the beam is deposited according

to jbz ≈ cρb and jb⊥ ≈ 0. When depositing plasma particles, the time that a

particle stays inside a certain slice of ξ needs to be taken into account. This time

contribution can be measured by

dsw
dξe

=
1

1− vez/c
(3.29)

Therefore the charge and current density contribution from plasma particles can

be written as

ρe =
1

V olume

∑
i

qei
1− veiz/c

(3.30)

je =
1

V olume

∑
i

qeivei
1− veiz/c

. (3.31)

This deposition scheme for the plasma particles also satisfies the continuity equa-

tion (3.28).

(iii) Particle push: Because it is challenging to advance a beam particle using

(3.24) directly, simplified forms are used by assuming vb ≈ cẑ. Essentially, this is
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reasonable if the self-forces of the beam, which scale as 1
γ2
b
, can be neglected. Un-

der this assumption, the electric fields can be expressed using the psedo-potential

ψ.
dpb⊥

dsw
=
qb
c

Efocusing ≈ −
qb
c
∇⊥ψ (3.32)

dpbz
dsw
≈ qb

c
Ez ≈

qb
c

∂ψ

∂ξ
(3.33)

These are used together with (3.25) – (3.27) to advance the beam particles.

When advancing the plasma particles, the transverse coordinates and transverse

momenta can be updated in ξ using (3.21), (3.22) and the transverse component

of (3.20). In reality, in order to simplify the calculation, these fully relativistic

equations are cast into the form of a non-relativistic Boris pusher with a modified

electric field and an effective charge

dup⊥
dξ

=
qeff
m

[γE⊥ + (
up
c
×B)⊥] (3.34)

dxp⊥
dξ

=
up⊥

1− qeψ/mc2
(3.35)

where the effective charge is defined as

qeff ≡
qe

1− qeψ/mc2
(3.36)

and u = γv is the proper velocity. For the longitudinal part, since we are not

interested in se as a function of ξ, we do not keep track of se. Moreover, the

longitudinal velocity vz(ξ) is not updated directly. Instead, it is calculated based

on the transverse momentum and the pseudo-potential using

p̃z ≈
1 + p̃2

⊥ − (1 + ψ̃)2

2(1 + ψ̃)
(3.37)

γ ≈ 1 + p̃2
⊥ + (1 + ψ̃)2

2(1 + ψ̃)
. (3.38)
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where p̃ = p
mc

and ψ̃ = ψ
mc2/e

are normalized momentum and normalized pseudo-

potential, respectively. (3.37) and (3.38) are obtained through a quantity, γ −

p̃z − ψ̃ ≈ 1, that is conserved under the quasi-static approximation[24].(For the

reader’s convenience, the derivation of this conserved quantity as well as 3.37 and

3.38 are reproduced from [61] in appendix A.)

(iv) Predictor-corrector loop: In the 2D part of QuickPIC, the velocity and

positions of the plasma particles need to be advanced in ξ according to (3.34)

and (3.35). However, due to the instantaneous nature (i.e. the lack of ∂
∂ξ

term)

of the field equations (3.16) and (3.17), it is not possible to advance this system

using the explicit leap-frog scheme. Instead, an implicit predictor-corrector loop

is used. How the quantities are predicted and corrected during the iteration

is explained in [1] in detail, and the basic idea is given hereafter. Assume the

velocity is known at the integer step m of ξ and the position is known at the half

integer step (m+ 1/2). In order to advance the velocity to the next integer step

(m+ 1), the fields need to be known at (m+ 1/2). The fields are related to the

scalar and vector potentials through

E⊥ = −∇⊥φ−A⊥ξ, (3.39)

Ez =
∂

∂ξ
ψ, (3.40)

B⊥ = (A⊥ξ +∇⊥Az)× ẑ, (3.41)

Bz = ∇⊥ · (A⊥ × ẑ), (3.42)

while φ and A can be obtained from charge and current densities instantaneously

through (3.16) and (3.17). Therefore, if predictions are made for ρ, j⊥ as well as

j⊥ξ at (m + 1/2), the fields will be known at (m + 1/2), which can be used to

calculate the velocity at (m + 1). This calculated velocity is then used to make

a correction to the predicted ρ, j⊥ and j⊥ξ values at (m + 1/2). A new value of
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the velocity at (m + 1) will then be calculated based on these new predictions.

This predictor-corrector process can be iterated to minimize the errors. After an

accurate enough velocity is obtained at (m + 1), the position at (m + 1/2) can

be advanced to the next step at (m+ 3/2). This iterative process completes one

cycle in the 2D advancing scheme.

(v) Diffusion coefficient: The predictor-corrector loop described above suf-

fers from one kind of numerical instability similar to one that occurs in Darwin

codes. The low k⊥ modes of A⊥ξ are the most unstable, they grow rapidly and

soon dominate the fields and forces in a few iterations. This is due to the instan-

taneous nature of the elliptical equations (3.16) and (3.17). In order to avoid this

instability in QuickPIC, these poisson like equations are modified into parabolic

diffusion equations which have a finite response time,

D−1
j

∂

∂T
A⊥ξ = ∇2

⊥A⊥ξ +
4π

c
j⊥ξ (3.43)

D−1
ρ

∂

∂T
φ = ∇2

⊥φ+ 4πρ (3.44)

Here the diffusion terms act as high-pass filters in the k space of the poten-

tials and damp out the unstable low k modes[62]. The proper choice of the

diffusion coefficient and the number of iterations influence the accuracy and ef-

ficiency of this algorithm. Through experimentation, it has been found that

Dj = Dρ = (c/ωp)
2[63] and 2 iteration steps gives rapid convergence to accurate

enough results (compared to full PIC code) in a large parameter range. QuickPIC

solves for these diffusion equations (3.43) and (3.44) in Fourier space using the

FFT routines. These routines involve transposing large amounts of data and are

currently the most time-consuming part in QuickPIC.

(vi) Boundary conditions: When solving for fields using (3.43) and (3.44)

(in Fourier space), the code supports both periodic and conducting boundary
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conditions. All simulations presented in this dissertation were performed using

the conducting boundary condition.The simulation box is a square for the 2D

slice. The actual plasma is not contained in a square conductor. However, if

the boundaries are far away compared to the blowout radius then the conducting

boundaries are very appropriate since the E and B fields will be shielded away

beyond a few plasma skin depth c/ωp of the blowout radius. In these simulations,

the beam particles have an open boundary condition where the ones going out of

the simulation box transversely will be eliminated. The plasma particles have a

reflecting boundary condition in the transverse direction although in most cases,

the simulation window is chosen to be wide enough so that there are minimal

numbers of reflected plasma electrons and their influence is therefore negligible.

3.3.5 QuickPIC framework and parallelization

QuickPIC is built from the UCLA Parallel Particle-in-Cell (UPIC) Framework

[64]. This Framework provides trusted components for the rapid construction of

new, parallel PIC codes, using object-oriented ideas. It is designed in layers. Each

layer contains several types of classes and several operations (subroutines) on the

objects of these classes. The bottom layer consists of general supporting classes

such as the error class, the parallel class etc., which are written in Fortran77

and are highly optimized. Normally, classes in this layer do not need to be

changed. The upper layer consists of high level physical classes such as the

’species2d’ class, which describes a group of 2d particles of the same species (e.g.

the plasma electrons in the 2d slice in QuickPIC). The operations on these class

objects normally include generating and deleting an object and other typical

manipulations (e.g. deposition and particle push for ’species2d’ objects). The

middle layer provides helper classes for the upper layer objects, for example, the

41



middle level class ’part2d’ describes the properties of a specific particle species

(e.g. charge, mass, etc.) and is a component of the ’species2d’ class. Both upper

and middle layers are written in Fortran95 and may need modifications to meet

the requirement of a specific problem.

As has been mentioned in the previous section, QuickPIC currently decom-

poses the 3D domain in the longitudinal direction and the 2D domain in the

y direction. Most parallel operations are processed in the bottom layer of the

Framework and are normally hidden from the upper layer. However, some con-

cepts, for example guard cells (which deal with processor boundaries) and the

particle manager (which moves particle to the correct domain), have to be under-

stood in order to safely modify the upper level codes. When a code is parallelized,

the ideal time saving scales with the number of decomposition domains. How-

ever, in reality the network communication overhead limits this savings. During

much of this research period, it has been found [60] that QuickPIC scales up to

32 processors on ’Seaborg’ (a 6,656 processor IBM SP cluster at the National

Energy Research Scientific Computer Center) and up to 16 processors on ’Daw-

son’ (a 512 processor Mac G5 cluster at UCLA). All simulations presented in

this dissertation are performed on these two clusters using these optimal num-

ber of processors. Recently, significant improvements have been made such that

QuickPIC now scales to over 1000 processors.

In the previous sections, properties of the full PIC codes and the quasi-static

QuickPIC were discussed. By utilizing the quasi-static approximation, QuickPIC

can lead to time savings of 100 ∼ 1000 times compared to full PIC codes when

modeling afterburner relevant PWFAs[60]. However, as described in chapter 2,

new physics (such as field-ionization) arise and they are not included in the orig-

inal QuickPIC model. In the next chapter, we will describe the implementation
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of several of these models into QuickPIC, and some of their applications will be

shown in the later chapters.
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CHAPTER 4

Adding Realism into QuickPIC

In order to model the afterburner relevant experiments, several improvements

were made to QuickPIC. These include the addition of a field-ionization package,

modeling the radiation reaction force, and implementing realistic beam/plasma

parameters. They will be described in detail in this chapter. A preliminary model

that attempts to handle self-trapped particles, as well as its implementation in

QuickPIC will be described at the end of this chapter.

4.1 Modeling field-ionization

In this section, the field ionization package will be described. First, the

theoretical field ionization model – the ADK model[65] will be introduced. Then

the modifications to QuickPIC will be described, followed by the benchmark of

the wake fields against those from full PIC simulations with an ADK model.

4.1.1 Ionization rate and the ADK model

When neutral atoms or ions are exposed to an external electric field, their

valence electrons may escape if the field is strong enough. Ionization can happen

in either the multi-photon ionization regime or the tunneling ionization regime

depending on the frequency and strength of the external electric field. The tran-
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sition between these two regimes is determined by the Keldysh parameter[66]

γ = ( |ε0|
2Up

)1/2, where ε0 is the ionization energy and Up = E2/(4ω2) is the pon-

deramotive potential, and ω is the frequency of the electric field. Multi-photon

ionization happens when γ � 1 (high frequency electric field), while tunneling

ionization happens when γ � 1 (low frequency electric field). Tunneling ioniza-

tion got its name because of the electron’s ability to tunnel through the potential

barrier due to quantum effects. When the frequency is low, the electron can tun-

nel through the modified potential barrier within a single laser cycle. In PWFA,

the external electric field is mainly from the space charge field of the particle

beam which changes on a time scale of the σz/c where σz is the bunch length.

Furthermore, the electric field does not oscillate, therefore, in the beam driven

PWFA case, ionization does not occur in the multi-photon like regime.

Up till now, we have used the term ’tunneling ionization’ in its generalized

sense, referring to all ionization happening when γ � 1. In fact, when the low fre-

quency external electric field is stronger than a critical value Ecrit = (
√

2−1)ε
3/2
0 ,

the barrier in the potential disappears and the electrons can escape ”classically”.

This regime is called the Barrier Suppression Ionization (BSI) regime[66]. Values

of Ecrit for several types of gases from [67] are reproduced in Fig. 4.1. Since the

beam space charge field can exceed 100GV/m ∼ 1TV/m if its spot size is small

enough (see next section), it is possible to access the BSI regime for several types

of potential gases in PWFA experiments such as Li, Cs and H.

When ionization happens, the generated plasma density np(t) is determined

by
dnp(t)

dt
= w(t)(n0 − np(t)) (4.1)

where w(t) is the ionization rate and n0 is the initial neutral density.

From the above discussion, in order to properly model field ionization in
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Figure 4.1: Critical Electric field of several types of gases [67]

PWFA, we need an ionization rate formula suitable for the tunneling regime (and

the BSI regime too if possible). Reference [67] has concluded that the ionization

rate from the ADK model[65] is the best choice here for two reasons. First,

among the different theoretical models, it agrees best with numerical solutions

of time dependent Schrondinger equation (TDSE) for the hydrogen atom in the

tunneling and BSI regimes[66]. Second, it agrees best with experimental results

in [68].

The ionization rate given by the ADK model can be rewritten in convenient

units as [67]

w(s−1) ≈ 1.52× 1015 4n
∗
ξi(eV )

n∗Γ(2n∗)
(20.5

ξ
3/2
i (eV )

E(GV/m)
)2n∗−1 × exp(−6.83

ξ
3/2
i (eV )

E(GV/m)
),

(4.2)

where ξi is the ionization energy and n∗ ≈ 3.69Z/ξ
1/2
i (eV ) is the effective principal

quantum number. For a specific type of gas, this rate is only a function of the

external electric field. For example, for Li → Li+, ξi = 5.39eV , the ionization

rate is

wLi(s
−1) ≈ 3.51× 1021

E2.18(GV/m)
exp(

−85.5

E(GV/m)
). (4.3)
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The probability of ionization or the fraction of ionized atoms/ions can be

obtained by integrating this rate over time, p =
∫
w(t)dt. Fig. 4.2 shows the

ionized fraction calculated from the ADK formula versus the electric field during

∆t = 200fs for different types of gases. This ∆t is roughly the transit time of a

short beam driver in PWFA experiments (∆t = 6σz/c, σz ≈ 10µm).

From Fig. 4.2 we can see that the ionization rates are similar to step functions

in E. The ionized fraction is not very sensitive to the ionization time but very

sensitive to the electric field. Therefore, for each type of gas, there is roughly

a threshold electric field for full ionization. For example, for Li → Li+, Eth ≈

5GV/m.

In order to estimate the extent of ionization, a simple calculation of the electric

field from a relativistic bi-gaussian beam is done. Since the beam velocity is near

c, its electric field is dominantly in the transverse direction (Er � E||). Using

Guass’s law, we can get the expression of Er as a function of r and ξ (see Fig. 4.3)

Er(r, ξ) =
eN

ε0(2π)3/2σz
e
− ξ2

2σ2
z

1− e−
r2

2σ2
r

r

= 22960(
N

2× 1010
)

1

σz(µm)r(µm)
e
− ξ2

2σ2
z (1− e−

r2

2σ2
r )(GV/m) (4.4)

As shown in Fig. 4.4(a), Er is still a gaussian distribution in the longitudinal

direction and has the same σz as the beam profile. While in the radial direction,

as shown in Fig. 4.4(b), it is zero for both r = 0 and r → ∞ and reaches a

maximum value at r = 1.585σr for any specific ξ. The overall maximum of Er is

at ξ = 0 and r = 1.585σr

Er−max(ξ = 0, r = 1.585σr) = 10360(
N

2× 1010
)

1

σz(µm)σr(µm)
(GV/m) (4.5)

It is proportional to the number of electrons in the beam and inversely propor-

tional to σr and σz.
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Figure 4.2: Threshold electric fields of full ionization for different types of
atoms/ions
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Figure 4.3: Electric field of a relativistic bi-gaussian beam

Figure 4.4: Electric field of a relativistic bi-gaussian beam in the (a) longitudinal
and (b) transverse directions

49



Figure 4.5: Fully ionized region of a short beam

For example, for a beam with N = 2 × 1010, σr = 10µm and σz = 10µm,

Er−max is 103.6GV/m. If we use E > 5GV/m as a rough criteria for full ioniza-

tion, then for this beam, as shown in Fig. 4.5, the full ionization region at ξ = 0

extends from r = 0.43µm to 459µm, and that at ξ = 2σz extends from r = 3.3µm

to 62µm.

It is important to know the extent of full ionization because if full ionization is

not reached for most of the cross sectional area near the beam, the plasma wake

generated will degrade compared with a pre-ionized one as has been observed in

some full PIC simulations[67].

4.1.2 The ionization package in QuickPIC

While adding ionization into QuickPIC, there are several complications due

to either different physics for ionized electrons or the code structure.

The first concern was the normalization. In QuickPIC, at the beginning of

each simulation, the code reads the input parameters in physical units and con-
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verts them into normalized units based on the actual plasma density . For exam-

ple, from cm−3 to np and from µm to c
ωp

. Then, separate input files are written

for the 3D part and the 2D part of the code, using these normalized parameters.

(The 3D and 2D parts used to be two separate codes and can be run indepen-

dently.) Using normalized parameters means that both the 3D and the 2D parts

lose information of the absolute value of quantities and only have the knowledge

of their ratios to the common basis (the normalizing quantities). However, they

still yield meaningful results because the 3D and the 2D parts are correctly scaled.

In this sense, each simulation actually represents a series of physical processes

which have different set of physical parameters but a common set of normalized

parameters.

This normalization scheme needs to be reconsidered when ionization is added.

First, we can no longer choose the actual plasma density as the normalizing

density (as is typically done in the code). Instead, we arbitrarily choose one

value and normalize other quantities (including the actual plasma density and

neutral density) in terms of it. Second, since the ionization rate needs quantities

in physical units (e.g. electric field in GV/m, ∆t in second), extra information

in physical units (e.g. nnormalizing in cm−3, simulation box length in µm) needs

to be written in the 2D input file. This information is used to convert quantities

back into physical units before calculating the ionization probability. This leads

to one important property of this type of simulation, that is, each simulation only

represents one actual physical gas density and beam density because ionization

is a process involving ’absolute values’ and can not be scaled.

Besides the reconsideration of the normalization, there are two other major

concerns, which are associated with QuickPIC’s specific algorithms.

First, we need to rethink the calculation of p|| and γ of the ionized electrons
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based on the conserved quantity as mentioned in Chapter 2. From appendix A

we know, for all plasma electrons

d(γ − p̃z + q̃eψ̃)

dt
=
q̃ee

mc

∂

∂s
(φ− β ·A) (4.6)

Based on the spirit of quasi-static approximation ( ∂
∂s
≈ 0), we know

γ − p̃z + q̃eψ̃ ≈ const. (4.7)

i.e., γ−p̃z+q̃eψ̃ is a time conserved quantity. For electrons in pre-ionized plasmas,

there is always a moment in each electron’s history for which it is stationary at

far ahead of the beam. In this case, the constant can be evaluated that its γ = 1,

pz = 0 and the potentials are A = 0, φ = 0 before the drive beam reaches the

particle. (We choose A = 0, φ = 0 for unperturbed regions ahead of the beam

where j = 0 and ρ = 0). Therefore, this constant for pre-ionized electrons is

always 1 is assumed. However, if the electrons are born inside the perturbed

region (such as the ionized electrons born near the beam), their initial A and φ

are normally non-zero and this needs to be taken into account. In this case, the

constant should be written as

γ − p̃z + q̃eψ̃ ≈ 1 + q̃eψ̃0 (4.8)

where ψ̃0 = φ̃0 − ãz0 is the initial normalized pseudo-potential at the initial

position where it is assumed the electron is born at rest. Based on (4.8), the

calculation of γ and pz are changed accordingly from (3.37) and (3.38) to

p̃z ≈
1 + p̃2

⊥ − (1 + ψ̃ − ψ̃0)2

2(1 + ψ̃ − ψ̃0)
(4.9)

γ ≈ 1 + p̃2
⊥ + (1 + ψ̃ − ψ̃0)2

2(1 + ψ̃ − ψ̃0)
. (4.10)

Another concern comes from the choice of the ’diffusion coefficient’ when

solving for the fields. As has been described in chapter 3, the ’diffusion coefficient’
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depends on the plasma density in a pre-ionized case. During the first stage of

the ionization package, we chose this ’diffusion coefficient’ based on the neutral

density accordingly. It appears that this simple choice gives accurate enough

wakes even when the beam’s electric field is just above ionization threshold (see

benchmark in next section). In the future, improvement can be made by setting

this diffusion coefficient according to the local ionized plasma density which varies

with each 2d step. This should hopefully require fewer iterations in order to get

agreement with full PIC codes.

Adding the ionization package was done by generating a new field-ionized

electrons species. This species is deposited in the same way as the pre-ionized

electrons and is pushed in the same way too except for the calculation of γ and

p||. Although most parallel operations are hidden inside the lower layer of the

Framework, caution still needed to be taken at several places, such as generating

particles near the processor boundaries, using guard cells when depositing ion-

ized electrons, and broadcasting parameter namelists during initialization. Other

details include determining the particle positions inside the cell (i.e. quiet start –

which has an effect on the hosing instability), method of integrating the ionization

rate, and converting units between the 3D part and 2D part of the code.

4.1.3 Benchmark of field-ionized wakes

We compared the field-ionized longitudinal wake from QuickPIC with those

from OSIRIS[69, 70]. Fig. 4.6(a) is a case where the space charge fields near the

beam are considerably above lithium’s ionization threshold (Ermax = 26GV/m),

while (b) is a case where they are near the threshold (Ermax = 11.7GV/m). In

Fig. 4.6(a), a parameter scan is presented in order to check the influence of the

simulation parameters, such as the number of particles per cell and resolution in
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the z direction. We can see that for all these simulation parameters with ≥ 4

particles per cell and ≤ 0.15 c
ωp

per grid (i.e. ≥ 42 grids per plasma wavelength),

the results change little. In fact, the QuickPIC results might be more correct

because of subtle issues regarding initializing the drive beam (see discussion later).

The OSIRIS result in (a) is from a 3D simulation while that of (b) is from a 2D

(r-z) simulation. In the past we have shown that for short propagation distances

the differences between 2D and 3D OSIRIS are negligible.

In both cases, QuickPIC and OSIRIS agree very well. The only slight differ-

ences are in the magnitude of: (1) The first decelerating fields (slightly smaller in

QuickPIC); (2) The value of the very spike of the first accelerating peak; and (3)

In some cases, the second and later accelerating and decelerating peaks. Among

these, (2) and (3) have little effect for problems we are interested in. In fact,

given that the first accelerating peaks almost overlap, the value of the spike will

not influence the energy gain much since number of particles residing inside this

spike is very small. Moreover, since in most cases only the first accelerating peak

is used for beamloading and it is not influenced by any physical process that’s

behind it (v ∼ c), the differences in the second and later peaks have little rele-

vance. One effect for (1), is that an error in the decelerating field means an error

in the transformer ratio, which may become relevant if pump depletion becomes

a critical issue.

Very recently, we identified the reason for the discrepancy. In these bench-

marks, the diffusion coefficient is chosen for the fully ionized density. However,

before ionization, there is no plasma. Therefore, the diffusion coefficient effec-

tively shields out the vacuum fields of the beam for k′s < ωp/c. Since the domi-

nant wavenumber for the self-fields is k ∼ 1/σr, then if kpσr << 1, this will have

little effect. This issue was resolved by not iterating the solution for the self-fields
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Figure 4.6: Benchmark of self-ionized plasma wake versus OSIRIS results.
(a) High above threshold (Nb = 2 × 1010, σr = 20µm, σz = 20µm,
np = 1.25 × 1017cm−3) (b) Just above threshold (Nb = 2 × 1010, σr = 14.1µm,
σz = 63µm, np = 4.2× 1016cm−3)
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of the beam and improving the predictor. When this was done, there was excel-

lent agreement between QuickPIC and OSIRIS. However, at the moment, there

are subtle effects at the conducting boundary. We have found that the numerics

issue just described does not effect the physics studied in this dissertation. As a

result, the numerical choices used throughout for the predictor-corrector repre-

sent the best compromise for speed versus accuracy. Improving the numerics of

the self-ionization routine is an area for future work.

Another related issue for QuickPIC is the choice of the ’diffusion coefficient’

when the plasma volume is only partially ionized. As stated above, the diffusion

coefficient is chosen based on the neutral density instead of the real plasma density

by assuming that the iteration converges to the same value fast enough despite

differences in this coefficient. However, this may cause error when the plasma

density is not constant when the plasma is not fully ionized. In the future, it

might be necessary to use a diffusion coefficient which varies with the local plasma

density in each 2D step.

Given the overall good agreement with OSIRIS and bearing in mind the issues

discussed above, we can explore some problems in the self-ionized PWFA research

using QuickPIC with at least a factor of ∼ 100 times improvement in computing

speed.

4.2 Radiation reaction

As we know, an accelerating charged particle will radiate through electromag-

netic fields (or photons) and this radiation carries energy and momentum. In

order to satisfy energy and momentum conservation, the charged particle must

experience a recoil at the time of emission, i.e. the radiation must exert an addi-
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tional force (self-force) on the charged particle. The equation of motion will then

have the form
dp

dt
= Fext + Frad (4.11)

where Fext is the external force and Frad is the radiation reaction force.

The classical aspects of the radiation reaction is discussed in chapter 16 of

[71] and Frad is known as the Abraham-Lorentz force in the nonrelativistic limit

and the Lorentz-Dirac force in the relativistic limit. One alternative form of the

relativistic Lorentz-Dirac force in terms of external force and particle velocity is

derived in [73] and summarized in [71] as

Frad = τe[γ
dF

dt
− γ3

c2

dv

dt
× (v × F)] (4.12)

where τe = 2
3
e2

mc3
= 6.26× 10−24s is the characteristic time for electron and F is

the external force. (All Fs hereafter will be referring to external forces). Note

that v · Frad = Ploss.

In most applications, Frad is much smaller than the external force. Therefore

most PIC codes do not include the Frad term inside the equation of motion.

However, in the application of PWFA, the cumulative effects from Frad is no

longer negligible. In fact, the energy loss due to radiation can be on the same

order as the energy gain from the wakefield (e.g. as in the SLAC multi-GeV

energy gain experiment [44]). Correctly modeling this effect will influence many

important aspects of the system, such as the pump depletion distance, the highest

energy gain, etc .

To estimate the importance of Frad for current and future plasma or laser

wakefield accelerators (in this case, the trailing beam will radiate), we start from

the relativistic Larmor formula:

Ploss = −2

3

e2

c
γ6[(~̇β)2 − (~β × ~̇β)2] (4.13)
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or equivalently

Ploss = −2

3
e2m2c3(

dpµ
dτ

dpµ

dτ
) (4.14)

where pµ are the components of the energy momentum 4-vector and τ is the

proper time.

For an electron executing a betatron oscillation in asymmetric ion channel,

~β ≈ cẑ and ~̇β ≈ x̂
ωβ
γ
x0cos(ωβt + φx) + ŷ

ωβ
γ
y0cos(ωβt + φy), where ωβ = ωp√

2γ
and

x0 and y0 are the maximum offsets for the particle in the x and y directions.

Substituting these trajectories into (4.13) and assuming x0 = y0 = r0 gives

Ploss = −1

3

e2

c3
ω4
pγ

2r2
0. (4.15)

If we use this to define a decelerating electric field Ploss = eEradc, then the ratio

of decelerating field to the accelerating wakefield can be written as

Erad
Eacc

≈ 1
eEacc
mcωp

1.5× 10−5(
γmc2

50GeV
)2(

n

1016cm−3
)

3
2 (

r0

1µm
)2 (4.16)

Furthermore, if we assume that the beam’s spot size σr ≈ r0 is chosen such that

the beam is matched, β∗ = ωβ/c, then for a matched beam

Erad
Eacc

≈ 1
eEacc
mcωp

3.75× 10−3(
γmc2

250GeV
)

3
2 (

n

1016cm−3
)(

εn
10−6m

), (4.17)

where εn is the normalized emittance. For example, in the E-167 experiment

where γmc2 = 42.5GeV , n ≈ 2.7 × 1017cm−3, r0 ∼ 10µm, then Erad
Eacc
∼ 0.15 for

eEacc
mcωp

∼ 1. For a future collider with εn ∼ 10−6m, n ∼ 1017cm−3 and γmc2 ∼

500GeV , then Erad
Eacc
∼ 0.1 for eEacc

mcωp
∼ 1.

Applying (4.12) in the equation of motion in the code directly would retain

most accuracy. However, since there is a term which includes the time derivative

of the force, the implementation is not trivial. In the next 3 subsections, we will

demonstrate that for our applications, a simple method using an effective electric
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field in the longitudinal direction, Frad = ẑPrad/ec, models the radiation drag

accurately enough. In the last subsection, test results using this effective fields

in QuickPIC will be shown.

4.2.1 Simplified form of the relativistic Larmor formula

In this section, we provide more detail in obtaining (4.15). We start from

(4.14). Writing out these components explicitly gives

Pt = −2

3

e2γ2

c
[(
dγ

dt
)2 − (

dp̄⊥
dt

)2 − (
¯dpz
dt

)2]

=
2

3

e2γ2

c
[(
dp̄⊥
dt

)2 + (
¯dpz
dt

)2 − p̄2

1 + p̄2
(
dp̄

dt
)2]

=
2

3

e2γ2

c
[(
dp̄⊥
dt

)2︸ ︷︷ ︸
[1]

+ (
¯dpz
dt

)2︸ ︷︷ ︸
[2]

− 1

1 + p̄2
(p̄⊥

dp̄⊥
dt

+ p̄z
dp̄z
dt

)2︸ ︷︷ ︸
[3]

] (4.18)

where p̄ = p
mc

is the normalized momentum and the relation γ =
√

1 + p̄2 as well

as p̄ =
√
p̄2
⊥ + p̄2

z have been used. We will show shortly that for beam particles

in our PWFA applications, [2]− [3] << [1], therefore only [1] contributes.

In order to make estimates of these 3 terms in a PWFA application, the

following assumptions are made. Firstly, for all beam particles, p̄z
p̄⊥

>> 1 and

p̄ ≈ p̄z >> 1, which are well satisfied in relevant PWFA parameters. Therefore

dp̄z
dt
≈ −eEz, (4.19)

i.e., the magnetic force along ẑ is negligible. Secondly, the beam particles of

interest reside within the ion channel. Without loss of generality, we consider

an electron oscillating in one plane, e.g., the x-z plane. In what follows, let r

represent x.
dp̄⊥
dt
∝ Ermax · cosωβt, (4.20)
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where Ermax = 2πe2n0rmax is the maximum transverse focusing field, which is

proportional to the maximum oscillation radius rmax, and ωβ = ωp√
2γ

is the beta-

tron frequency. Using (4.19) and (4.20), (4.18) becomes

[1] + [2]− [3] ∝ (Ermax · cosωβt)2 + E2
z −

1

1 + p̄2
(p̄⊥Ermax · cosωβt+ p̄zEz)

2

∝ α2 · cos2ωβt︸ ︷︷ ︸
[1]′

+ 1︸︷︷︸
[2]′

− 1

1 + p̄2
(p̄⊥α · cosωβt+ p̄z)

2︸ ︷︷ ︸
[3]′

(4.21)

where α ≡ Ermax
Ez

.

Because Ermax is proportional to rmax and Ez depends on the z location of

the beam particle as shown in Fig. 4.7 line Ez, α is a function of the location

(rmax, z). Depending on the value of α, the beam can be divided into 3 regions

as shown in Fig. 4.7 – (a) α < 1 (b)1 < α << p̄z
p̄⊥

(c) α >∼ p̄z
p̄⊥

. (Note: the

particles in the beam head, where neither Ez nor Er is established, are not of

interest because they have minimal radiation).

In regions (b) and (c), it is straightforward to show that [1]′ >> [2]′ − [3]′

through
[1]′

[2]′ − [3]′
=

α2 · cos2ωβt

1− 1
1+p̄2

(p̄⊥ · αcosωβt+ p̄z)2
, (4.22)

(
[1]′

[2]′ − [3]′
)b ≈

α2 · cos2ωβt

1− 1
1+p̄2

p̄2
z

>> 1, (4.23)

(
[1]′

[2]′ − [3]′
)c ≈

α2 · cos2ωβt

1− 1
1+p̄2

(∼ p̄⊥ · αcosωβt)2
=

cos2ωβt
1
α2 − 1

1+p̄2
(∼ p̄⊥ · cosωβt)2

>> 1.

(4.24)

Here, the overall effect averaged over one betatron oscillation is considered (i.e.

〈cos2ωβt〉 ∼ 1). However, since there are particles very close to the axis in region

(a), more careful treatment needs to be used. For these particles (α → 0), we
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Figure 4.7: Three regions of the beam particles according to the value of
α = Ermax

Ez
(a)α < 1 (blue) (b)1 < α << p̄z

p̄⊥
(yellow) and (c) α >∼ p̄z

p̄⊥
(green)
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have

lim
α→0
| [1]′

[2]′ − [3]′
|a = lim

α→0
| α2 · cos2ωβt

1− 1
1+p̄2

(p̄⊥ · αcosωβt+ p̄z)2
|

= lim
α→0

2α · cos2ωβt
2

1+p̄2
(p̄⊥ · αcosωβt+ p̄z) · p̄⊥ · cosωβt

= lim
α→0

2cos2ωβt
2(p̄⊥·cosωβt)

1+p̄2
p̄⊥ · cosωβt

=
1 + p̄2

p̄2
⊥

>> 1 (4.25)

which means that even for particles very close to the axis, the inequality [1]′ >>

[2]′ − [3]′ still holds.

The previous paragraph shows that for all beam particles of interest in a

PWFA application, (4.18) can reduce to the following simplified form with very

good accuracy.

Pt =
2

3

e2γ2

c
(
dp̄⊥
dt

)2 (4.26)

This is in agreement with the argument used in sec. 4.2.

4.2.2 Direction of the radiation reaction force

In reference [72], it was shown that for a partice executing a zeroth order

betatron oscillation in one plane (x-z) without any axial accelerating field, Fz = 0,

then the radiation reaction force can be written as,

Fradx = −c3τeK
2γmvx(1 +K2γx2) (4.27)

Fradz = −mc3τeγ
2K4x2 (4.28)

where K2 = k2
p/2. The ratio of Fradx/Fradz can be written as

Fradx
Fradz

=
vx
c

1 +K2γx2

K2γx2
. (4.29)

62



The quantity vx
c
≈ θ where θ is the instantaneous angle of the particle’s trajectory

in the x-z plane. Therefore if K2γx2 >> 1, the radiation reaction force is parallel

to v. This can be rewritten as k2
pσ

2
rγ/2 >> 1 which is easily satisfied in the SLAC

experiments. For matched beams where β∗ ≈ 1
kβ

, then k2
pσ

2
mγ/2 = kpεn

√
2γ. In

a future collider at the TeV energy range kpεn ∼ 1/50 and
√

2γ ∼ 103, so it is

still >> 1.

In this section, we estimate how the relative direction of Frad might change

when Fz and dFz
dt
6= 0.

In order to compare the parallel and perpendicular components of Frad for

Fz,
dFz
dt
6= 0, we once again assume that the beam particle oscillates in the x-z

plane (y = vy = 0)under a linear focusing force Fx = −kx, where k = 2πnpe
2 ≡

K2 (See Fig. 4.8). The perpendicular and parallel components of Frad then can be

written out as, (note that // and ⊥ are not defined with respect to the particle’s

instantaneous trajectory, but are defined with respect to the ion column, i.e.

/̂/ ≡ ẑ).

Fradx = τe{γ
dFx
dt
− γ3

c2
[
dvz
dt

(vxFz − vzFx)]}, (4.30)

Fradz = τe{γ
dFz
dt
− γ3

c2
[
dvx
dt

(−vxFz + vzFx)]}. (4.31)

Before proceeding, we note that if one starts from (4.30) and (4.31), it is very

straightforward to show that if Fz = 0 then Fradx
Fradz

= vx
vz

1+γK2x2

γK2x2 , recovering the

results from [72].

Next, we estimate the importance of the Fz by considering at the two locations

– oscillation peak, point A, where x = a, px = vx = 0; and where the particle

crosses the axis, point B, where x = 0, Fx = dpx
dt

= 0 and vx = vxmax = aωβ =

2πac
λβ

, where λβ =
√

2πγmc2

npe2
.
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Figure 4.8: Direction of the radiation reaction force for a particle oscillating in
the x-z plane

Before we proceed, we write out several terms in (4.30) and (4.31).

dFx
dt

= −K2vx (4.32)

dFz
dt
≈ −edEz

dt
(4.33)

where vz >> v⊥ is assumed in (4.33). Using p = γmv, we have

dvx,z
dt

=
1

γm

dpx,z
dt
− vx,z

γ

dγ

dt
. (4.34)

Since γ =
√

1 + p2x
m2c2

+ p2z
m2c2

, dγ
dt

= 1
γm2c2

(px
dpx
dt

+ pz
dpz
dt

). At both A (px = 0) and

B(dpx
dt

= 0), (dγ
dt

)A,B = pz
γm2c2

dpz
dt

. Therefore,

(
dvz
dt

)A,B =
1

γm
(1− v2

z

c2
)
dpz
dt
≈ 1

mγ3

dpz
dt

= − 1

mγ3
eEz (4.35)

(
dvx
dt

)A =
1

γm

dpx
dt

=
1

γm
Fx = − 1

γm
ka ≡ − 1

γm
eErmax (4.36)

(
dvx
dt

)B = −vxmax
γ

dγ

dt
(4.37)

The key assumption for (4.35) is that vz >> vx at point B.
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Since vx = 0 at A, Frad at A can be written out as

FradxA = τe(���
�:0−γkvx +

γ3

c2

dvz
dt
vzFx︸ ︷︷ ︸

[a]

) (4.38)

FradzA = τe(− γe
dEz
dt︸ ︷︷ ︸

[b]

− γ
3

c2

dvx
dt
vzFx︸ ︷︷ ︸

[c]

) (4.39)

Using (4.35) and (4.36)

[a]

[c]
=

dvz
dt
dvx
dt

≈ 1

γ2

dpz
dt
dpx
dt

=
1

γ2

Ez
Ermax

=
1

γ2α
(4.40)

As discussed in the previous section, it is obvious that for almost all particles in

the beam, α >> 1
γ2 (except those traveling exactly on axis which has a negligibly

small number). Therefore [a] << [c].

In order to compare [b] and [c], we rewrite [c] using (4.36)

[c] =
γ2

mc2
vzF

2
x ≈

γ2k2a2

mc
. (4.41)

Here vz ≈ c is assumed. Because Ez barely changes during the a betatron oscil-

lation (i.e. there is little phase slippage), it is reasonable to assume that dEz
dt

is

negligibly small and this can be confirmed quantitatively as described later. In

order for [b] << [c] to be true, dEz
dt

needs to satisfy the following relation.

dEz
dt

<<
γk2a2

emc
(4.42)

This means, the change of Ez due to phase slippage within one betatron oscillation

needs to satisfy

(∆Ez)1βtron <<
γk2a2

emc

λβ
c

= (2π)
5
2 (npγ)

3
2
e2

√
mc

a2. (4.43)

For typical afterburner or PWFA parameters, e.g. np = 3 × 1017cm−3 and γ =

6×104, (4.43) gives (∆Ez)1βtron << 1.8×107a2(µm)GV/m. This is well satisfied

for typical beams with σr ∼ 1− 10µm.
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To summarize, at the point A, [b] << [c], and [c] can be written as in (4.41).

The ratio of the perpendicular and longitudinal components of Frad is

F⊥A
F//A

=
[a]

[c]
=

1

γ2α
<< 1. (4.44)

Note that it is not exactly zero. However, Frad is dominantly in the ẑ direction

at A.

Since Fx = 0 at point B, Frad can be written out as

FradxB = τe(− γkvx︸︷︷︸
[a′]

− γ
3

c2

dvz
dt
vxFz︸ ︷︷ ︸

[b’]

) (4.45)

FradzB = τe(− γe
dEz
dt︸ ︷︷ ︸

[c’]

+
γ3

c2

dvx
dt
vxFz︸ ︷︷ ︸

[d’]

), (4.46)

and using (4.35), we can get

| [b
′]

[a′]
| = e2E2

z

mc2γk
=

E2
z

2πnpmc2γ
(4.47)

For np = 3×1017cm−3 and γ = 6×104, this gives | [b
′]

[a′]
| = 1.2×E2

z (GV/m)×10−8,

which is << 1 for a typical PWFA case where Ezmax ∼ 10GV/m. Using vxB =

vxmax = 2πac
λβ

, [a’] can be rewritten as

[a′] = γk
2πac

λβ
(4.48)

Using (4.37),vxmax = 2πac
λβ

and dγ
dt
≈ eEz

mc
. [d’] can be rewritten as

[d′] =
4πγ2a2e2E2

z

mcλ2
β

(4.49)

and the ratio between [c’] and [d’] is then

[c′]

[d′]
=

mcλ2
β
dEz
dt

4π2a2eγE2
z

(4.50)
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A similar analysis can be carried out to compare [c’] and [d’] as was done to

compare [b] and [c] at point A. Here, in order for [c′] << [d′], (∆Ez)1βtron needs

to satisfy

(∆Ez)1βtron <<
4π2a2E2

zeγ

mc2λβ
= (2π)

3
2 (npγ)

1
2 (eaEz)

2(mc2)−
3
2 (4.51)

For np = 3 × 1017cm−3 and γ = 6 × 104, this gives (∆Ez)1βtron(GV/m) <<

0.22a2(µm)E2
z (GV/m), which is satisfied by most beam particles in typical PW-

FAs with σr ∼ 1 − 10µm and Ezmax ∼ 10GV/m, except those that travel right

on the axis or where Ez = 0, which have a negligibly small number.

To summarize, at B, [a′] >> [b′] and [d′] >> [c′]. [a’] and [d’] can be written

as in (4.48) and (4.49) respectively. Therefore the ratio of the perpendicular and

parallel components at B is

F⊥B
F//B

=
[a′]

[d′]
=

kmc2λβ
2πγae2E2

z

=
(mc2)

3
2

eaE2
z

√
2πnp
γ

(4.52)

For np = 3 × 1017cm−3 and γ = 6 × 104, this gives F⊥B
F//B

= 78
a(µm)E2

z (GV/m)
which

could be on the order of 1 for σr ∼ 1− 10µm and Ez ∼ 10GV/m. However this

relatively large angle of the radiation reaction force only occurs when the particle

is crossing the axis (at point B), and does not change the fact that during most

of the betatron oscillation period, the force remains mostly in the longitudinal

direction. This can be seen by comparing F⊥B and F//B with F//A.

F//B
F//A

=
4π2e2E2

z

k2λ2
β

=
E2
z

2πmc2γnp
(4.53)

F⊥B
F//A

=
2πmc2

γkaλβ
=

1

ea

√
mc2

2πγ3np
(4.54)

With np = 3×1017cm−3 and γ = 6×104, these give
F//B
F//A

= 1.2×10−8E2
z (GV/m) <<

1 and F⊥B
F//A

= 9.3×10−7

a(µm)
<< 1 for typical a and Ez values.
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Together with the fact that F⊥A << F//A (from (4.44)),we can argue that

for parameters of interest for the PWFA application, the radiation reaction force

Frad is mostly in the longitudinal direction during the betatron oscillation.

The question remains, in what direction should one apply the radiation reac-

tion force, ẑ, v
|v| , or in another direction. We can get a hint by considering the

Fz(Ez) = 0 case. So long as K2γx2 >> 1, then the force is along v
|v| . However,

from (4.29), it is clear that as the particle approaches the x = 0 axis, the force

is no longer along v
|v| . In addition, as shown above, this comparison is further

complicated by the effects of the Fz. For current experiments at SLAC, radia-

tion reaction only effects the energy spread and not the emittance. Therefore,

we add the radiation reaction force along ẑ. We have placed it along v
|v| and

seen no difference. However, for conditions expected in a future TeV collider, the

direction of Frad wil matter. In [72], the coupling between the motion in the x-z

and y-z planes (e.g. the angular momentum in the rz plane) was neglected. An

area for future work is to include the coupling between the two planes, and the

corrections due to Fz.

In the next section, we examine the energy spread caused by radiation reaction

for SLAC parameters by simply applying Frad along ẑ.

4.2.3 Effective electric field

From the previous two sections we found that for PWFA applications, the

total radiated power can be expressed using (4.26) and the radiation reactive

force is dominantly in the longitudinal direction. Therefore, it will be accurate

enough to model the radiation reaction effect using an effective electric field in
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the longitudinal direction which satisfies the following relation

Eeff = − Pt
qvz

ẑ ≈ −Pt
qc

ẑ (4.55)

where the particle velocity is assumed to be +cẑ. Under this assumption, (4.26)

can be rewritten as

Pt =
2

3

e2γ2

c

F2
⊥

m2c2
≈ 2

3

e2γ2q2

m2c3
[(Ex −By)

2 + (Ey +Bx)
2] (4.56)

Therefore the effective electric field is

Eeff = −2

3

e2γ2q

m2c4
[(Ex −By)

2 + (Ey +Bx)
2]ẑ. (4.57)

In QuickPIC, this effective electric field is calculated for each beam particle at

every 3D update, and added to the total electric field inside a particle pusher

(total electric fields outside the particle pusher remain unchanged).

It is worth noting that using the above method requires the consistency of

the radiation reaction force formula (4.12) and the relativistic Larmor formula.

As noted earlier, this has been confirmed by checking Frad · v = −Pt[74].

4.2.4 Energy spectrum broadening – code test

The major effect of the radiation reaction in current PWFA experiments is the

broadening of the energy spectrum due to the energy loss of particles undergoing

betatron oscillation at large radii. Fig. 4.9 compares the pz − z phase space of

a beam with and without the radiation reaction. The parameters used here are

Nb = 1.87×1010, σr = 10µm, σz = 32µm, εNx = 50mm·mrad, εNy = 5mm·mrad,

γ0 = 55800, np = 2.8 × 1017cm−3 and the beam has been propagating in the

plasma for s ≈ 55cm. It’s worth noting here that these plots use a log scale and

the number of particles at the lowest energy are actually very few. From this
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Figure 4.9: Beam density in phase space pz-z at s=55cm (a) with radiation
reaction turned off (b) with radiation reaction turned on.

Figure 4.10: Beam density in configuration space x-z at s=55cm with radiation
reaction turned on.
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plot, the energy broadening is around, ∆E = 8GeV , in this case. This is ∼ 50%

of the energy gain/loss of these electrons.

To check the plausibility of this value of broadening, we estimate the energy

radiated by the particles at the largest radius (r ≈ 20µm as shown in Fig. 4.10)

using the formula derived in [75] appendix B (where P = 2e2γ4

3c3
v̇2, i.e. v ⊥ v̇ is

assumed).

∆Erad = N

∫
Pdt =

s

λβ
7.08×10−42×γ2.5×n1.5

p (cm−3)×a2(µm)(GeV ) = 7.6GeV

(4.58)

where λβ = 2.11cm and a = 20µm are used. One could also use (4.16) by

rewriting it as

∆Erad
GeV

≈ 1.5× 10−6(
γmc2

50GeV
)2(

n

1016cm−3
)2(

r

1µm
)2 ×∆s(cm). (4.59)

For ∆s = 55cm, r = 20µm, n = 2.8× 1017cm−3 and γmc2 = 28.5GeV , this gives

∆E = 8.4GeV . These values agree with the simulation observation.

4.3 Realistic beam/plasma parameters

Modeling afterburner relevant experiments requires some realistic beam/plasma

parameters that was not already built in the code. Several changes were made

to meet these requirements.

4.3.1 Twiss-initialized beams

Since the beams are normally focused several centimeters into the plasma oven

(instead of at the entrance), they need to be initialized using twiss parameters

in the transverse direction. The phase space coordinates are generated using the

Monte Carlo method based on the action-angle variables[76]. Another equivalent
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method and one that is used in OSIRIS is to initialize them at the focus and then

free stream them to the desired entrance point. This can be done independently

for each plane. In order to minimize noise (quiet-start), particles are generated in

pairs that are symmetric about (0,0) in phase space. Fig. 4.11 shows an example

of a twiss-initialized beam propagating in vacuum. The parameters used here are

γ = 82192, εx = 124, εy = 13, σrx0 = σry0 = 10µm (σrx0, σry0 are beam spot

sizes at waist). Therefore at 15cm before the waist, the twiss parameters are,

αx = 2.26, αy = 0.237, βx = 40.6cm, βy = 66.8cm. The beam has a current

profile as shown.

With the ability of twiss-initializing the beam, the effect of the beam waist

location was studied. It was found that focusing the beam closer to the plasma

oven entrance results in further propagation distance into the plasma before head

erosion (see Chapter 7) disintegrates the beam and higher energy gain can be

obtained at the beam tail[77].

4.3.2 Loading phase space data

For even more realistic beam parameters, 6D phase space data from a beam

transport code (e.g. Elegant) can be loaded and redistributed to initialize the

beam. Fig. 4.12 is an example for the future FACET (Facilities for Accelerator

Science and Experimental Test Beams) beam parameters at SLAC. Here, the

distribution function in each dimension is generated from the Elegant data and

redistributed to appropriate number of simulation particles using the rejection-

acceptance method [78]. It is assumed that there are no correlation between the

6D coordinates.
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Figure 4.11: Vacuum propagation of a twiss-initialized beam
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Figure 4.12: Initial beam phase space density in QuickPIC for FACET beam
parameters by loading and redistributing data from Elegant
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4.3.3 Plasma densities

As has been mentioned in the section 4.1, the code was changed so that

the normalizing density can be arbitrarily chosen instead of being fixed to the

pre-ionized plasma density. Moreover, multiple species of both neutral gases and

pre-ionized plasmas (needed when modeling large contrast densities in different

regions to maintain number of particles per cell) are implemented. These actual

densities can be set independently. Each of these densities can vary as a function

of propagation distance (which is the case in the experiment) and can have differ-

ent transverse profiles, such as uniform, hollow channel, round column, half-space

(plasma-vacuum boundary).

In the case of multiple neutral species, since the degree of ionization can be

different for each type of gas, a power of contribution to the numerical diffusion

coefficient can be assigned for each species. For example, in the transition region

of the plasma oven where buffer gas helium confines the lithium vapor in the E167

experiments, the major contribution of wake formation is from lithium (helium is

only ionized near the end of the wake bucket where the electric fields are largely

enhanced due to the wake). In this case, since the actual plasma density is closer

to the lithium density, the coefficient of the numerical diffusion coefficient of

lithium can be set as 1 while that for helium can be set as 0. This indicates some

pre-knowledge of ionization degree for each species which needs to be obtained

from theoretical estimates or a few test runs.

4.4 Trapped particles

Due to the implementation of the quasi-static approximation, QuickPIC is

not able to correctly model the trapped particles as ’plasma particles’ since they
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no longer satisfy ∂
∂s
<< ∂

∂ξ
. One idea to remedy this is to ’promote’ a plasma

particle to a beam particle once it obtains a large enough velocity. However,

how this promotion criteria is chosen (i.e. how large this ’large enough velocity’

should be) requires careful consideration. Here we describe a simple criteria

of promotion as a first attempt to implement this idea. Although the results

are not satisfactory in terms of the accuracy of the wake, the code construction

(which involves numerous additions and modifications) was completed. When

the promotion criteria is refined and improved in the future, they can easily be

implemented.

It is worth noting that the criteria of promoting a plasma particle to a

beam particle (promotion criteria) is different from that of whether this par-

ticle is trapped (trapping condition). The trapping condition can be described

by v// ≥ vφ, where v// is the axial velocity of the plasma particle and vφ is

the phase velocity of the wake. In order for a plasma particle to be accelerated

from stationary to this trapped velocity, the propagation distance Ltrap needed

can be determined by Ez · Ltrap = (γφ − 1)mc2, where γφ ≡ 1√
1−v2φ/c2

and Ez

is the accelerating wakefield (assumed to be constant, i.e. zero phase slippage).

For a typical afterburner relevant experiment, Ez ≈ 50GV/m and γφ ≈ 60, 000,

this gives Ltrap ≈ 60cm. For comparison, the typical betatron wavelengths in

these experiments are ∼ 2cm, and the 3d time step (beam update) is typically

∼ 1mm. This suggests that in order to model these trapped particles, they need

to be tracked long before their velocity reaches vφ. The most straightforward way

to determine whether a plasma particles should be tracked (promoted) is whether

it will stay in the moving simulation window in the next 3d time step accord-

ing to its velocity. From Fig. 4.13, the promotion criteria can be expressded as

zn+1 = zn + (c− v//) ·∆t3d < zmax.
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Figure 4.13: Criteria of ’promoting’ a plasma particle to a beam particle.

The flowchart with this promoting algorithm is shown in Fig. 4.14. It should

be noted here that the deposition of the ’trapped’ particles from the previous 2d

time step uses a similar method as depositing beam particles (direct deposition

using area weighting) which is different from normal plasma species deposition

(with the 1
1−vz/c correcting term).

Due to the fact that the 2D and 3D part of the code are mixed together in this

promoting algorithm, a significant number of changes in the code structure was

involved. Some parameter sharing is required between the 2 parts of the code,

e.g. the 3D part needs to know which of the plasma species include a ’promoting’

algorithm so it can assign the correct number of ’beam’ species; and the 2D part

needs to know how large a 3D time step is in order to calculate the promotion

criteria. Therefore, the method of preprocessing the input parameters (including

broadcasting parameters between processors) needed to be changed. Another

example of the complexity is that the plasma particles need to be moved to the
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correct processor when being promoted to a beam particle because the 3D part is

decomposed in the longitudinal direction (z) while the 2D part is 1D decomposed

in one of the transverse directions (y) as shown in Fig. 4.13.

Figure 4.14: QuickPIC flowchart with added promoting algorithm (shown in blue)

Using the algorithm described above, several test runs were performed. The

preliminary results were not satisfactory enough in terms of the accuracy of the

wake structure. Those plasma electrons which are being promoted to beam elec-

trons no longer come back to axis and the high density peak near the end of the

bucket is absent in these simulations. This suggests that the promotion criteria

is not selective enough (i.e. promoting these electrons too early). In the future
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an improved criteria will be needed in order to better model trapped electrons.
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CHAPTER 5

Electron Beam Wake Exciation in Field-ionized

Plasmas

With the ability to model field-ionization using QuickPIC, we first explore

the properties of the field-ionized wakes by comparing them with the pre-ionized

ones. In this chapter, we examine the optimal densities in both cases and then

find the criteria for a field-ionized wake to be similar to that of a pre-ionized one.

5.1 Optimal plasma/neutral density for wake excitation

To study the wakefield excitation in both pre-ionized and field-ionized regimes,

the optimal plasma or neutral gas density that generates the largest wake is a

fundamental and practical question of interest. Linear fluid theory in the wide

beam limit gives the largest wake when kpσz =
√

2. In non-linear regimes, this

is not necessarily true even for pre-ionized wakes.

Here we examine this optimal density for a typical SLAC beam (Nb = 1.87×

1010, σr = 10µm, σz = 31µm). Fig. 5.1 shows the peak accelerating field versus

the plasma density (pre-ionized case) or the neutral lithium density (field-ionized

case). In this plot, in order to avoid the arbitratriness when choosing the value

of the useful field at the first accelerating peak, the spike values are plotted.

Although this can be much larger than the useful field, the optimal density ob-
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tained should be similar. We can see from the plot that for this beam, the optimal

densities are larger than the linear theory prediction (5.82 × 1016cm−3) in both

pre-ionized and field-ionized cases. It is ∼ 4× 1017cm−3 for the pre-ionized wake

and ∼ 3× 1017cm−3 for field-ionized wake. The later result agrees very well with

the E164X experiment where the largest acceleration was observed.

Figure 5.1: Peak accelerating field under different plasma/neutral densities for
an electron beam with Nb = 1.87× 1010, σr = 10µm, σz = 31µm.

5.2 Pre-ionized wakes versus field-ionized wakes

When considering the differences between field-ionized wakes and pre-ionized

wakes, we first examine the beam space charge field Ermax. If this value is not

significantly above the ionization threshold Eth, the neutrals will not be fully

ionized around the beam and it is not surprising that the wake will degrade
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compared with a pre-ionized one (as has been observed in some simulations[67]).

However, Ermax � Eth still does not guarantee a wake similar to a pre-ionized

one. This can be seen from Fig. 5.1. For this beam, with Ermax = 31GV/m �

Eth ≈ 5GV/m, the field-ionized wakes are much smaller than the pre-ionized ones

for the low densities while they are similar to the pre-ionized ones for the higher

densities.

Wakes in field-ionized and pre-ionized plasmas can be similar or different for

the same beam depending on the relative size of the blow out radius Rblowout com-

pared to the ionized plasma column radius Rionize (represented by the density of

the immobile ions). For a given beam, the ionized plasma shape is always similar

near the beam head although it can widen later at different positions due to the

enhanced electric fields of the plasma wakes (as schematically shown in Fig. 5.2).

However, the blow-out radius varies a lot with the plasma density. The lower the

plasma density, the higher the nonlinearity, thus the larger the blow-out radius.

Figure. 5.3 plots both the pre-ionized and field-ionized plasma electron densities

on top of the ionized column (from the field-ionized case) for density 1×1016cm−3

and 2.8 × 1017cm−3, respectively. In the low density case (Fig. 5.3(a)(b)), the

blow-out radius exceeds the plasma column, preventing the blown-out electrons

from forming a narrow sheath as in the pre-ionized case. Their different tra-

jectories and resulting trajectory crossing leads to a much smaller density con-

centration when they come back to axis. Therefore, the wake is much smaller

than for a pre-ionized case as shown in Fig. 5.4(a). In the higher density case

(Fig. 5.3(c)(d)), since the blow-out radius is smaller than the ionized plasma col-

umn, the field-ionized wake is very similar to the pre-ionized one as shown in

Fig. 5.4(b).

Figure. 5.5 compares the Rblowout in the pre-ionized wakes and Rionize at the
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Figure 5.2: Schematic of widening of ion column due to wakefield

Figure 5.3: Plasma electron density and ionized column (a) low density, pre-ion-
ized; (b) low density, field-ionized; (c) high density, pre-ionized; (d) high density,
field-ionized
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Figure 5.4: Comparison of pre-ionized and field-ionized wakes under (a) low
plasma/neutral densitiy and (b) high plasma/neutral density

Figure 5.5: Ion column radius (red), pre-ionized blow-out radius (green) and
pre-ionized peak wake amplitude (blue) for the E167 simulation beam
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maximum blow-out position for different densities. As discussed above, Rionize is a

weaker function of the density (should be independent of the density if ionization

due to the wake is ignored) while Rblowout decreases rapidly with the density.

When Rionize exceeds Rblowout by a certain amount (safety factor), the field-ionized

wake should be similar to the pre-ionized one. Therefore, for a certain beam, there

is a threshold density for similar pre-ionized and field-ionized wakes. Comparing

Fig. 5.5 with Fig. 5.1, we can see the threshold density for this beam is around

1× 1017cm−3. Since this density is smaller than the optimal density for the pre-

ionized wake excitation (4×1017cm−3), it is possible for this beam to achieve the

maximum wake possible in pre-ionized cases through field-ionization.

In summary, in order to excite a field-ionized wake similar to a pre-ionized one,

the ionized column needs to be not only larger than the beam size (i.e. Ermax �

Eth), but also the blow-out radius. For a certain beam with Ermax � Eth, there

is a threshold density nth where this can be satisfied. If this nth is smaller than

the optimal density for pre-ionized wake excitation, then it is possible for this

beam to achieve the largest pre-ionized wake through field-ionization.
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CHAPTER 6

Modeling Afterburner Relevant Experiments

With field-ionization and radiation reaction modeled, as well as the ability

to apply realistic beam/plasma parameters, QuickPIC is able to model the af-

terburner relevant experiments at SLAC. These simulations provide quantitative

comparisons as well as important physical insights into the experiment. In this

chapter, we will describe the details of the simulations that modeled the energy

doubling experiment which was published in [2].

6.1 Experimental observations compared with simulation

results

In this energy doubling experiment, the nominally 50-femtosecond-long electron

beam containing 1.8× 1010 particles is focused to a spot size of 10µm at the en-

trance of an 85-cm-long column of lithium vapour with a density of 2.7×1017cm−3.

The nominally 42 GeV beam has a correlated energy spread of approximately

1.5GeV , with electrons in the front of the beam at higher energies than those

at the back. The beam energy exiting the plasma are measured as described in

chapter 2. Fig. 6.1 shows one example of the electron energy distribution between

35 and 100GeV after traversing the plasma. The exiting angle at the plasma exit

for this particular event was calculated to be smaller than 100µrad, which is neg-

ligible; therefore energy relates directly to position. The highest electron energy
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Figure 6.1: (a) Energy spectrum of the electrons in the 35 ∼ 100 GeV range as
observed in the experiment. The dispersion (shown on the top axis) is inversely
proportional to the particle energy (shown on the bottom axis). The head of
the pulse, which is unaffected by the plasma, is at 43 GeV. The core of the
pulse, which has lost energy driving the plasma wake, is dispersed partly out
of the field of view of the camera. Particles in the back of the bunch, which
have reached energies up to 85 GeV, are visible to the right. The pulse envelope
exits the plasma with an energy-dependent betatron phase advance, which is
consistent with the observed scalloping of the dispersed beam. (b) Projection
of the image in (a), shown in blue. The simulated energy spectrum is shown in
red. The differences between the measured and the simulated spectrum near 42
GeV are due to an initial correlated energy spread of 1.5 GeV not included in
the simulations. The horizontal error bar is due to the uncertainty in estimating
the deflection angle and the spot size of the beam.
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is 85± 7GeV (as shown in Fig. 6.2), indicating that some electrons in the tail of

the beam with an initial energy of 41GeV have more than doubled their initial

energy. The implied peak accelerating field of 52GV/m is consistent with the

fields previously measured in a 10-cm-long plasma[44], indicating that the en-

ergy gain is scalable by extending the length of the plasma at least up to 85cm.

With this plasma length, in a series of 800 events, 30% showed an energy gain

of more than 30GeV . Variations in the measured energy gain were correlated to

fluctuations in the peak current of the incoming electron beam.

Figure 6.2: The maximum observed energy in the experiment (blue squares)
for two different plasma lengths is compared to the energy of the particle bin
containing 3× 106 electrons per GeV (approximately the experimental detection
threshold) in simulations (red dots) as a function of distance in the laboratory
frame. Also shown is the lithium density profile used for the simulations (dashed
line). Vertical error bars are due to the uncertainty in estimating the deflection
angle and the spot size of the beam.

When the length of the lithium vapour column was extended from 85cm to
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113cm, the maximum energy in an event with a similar incoming current profile

was measured to be 71±11GeV (as shown in Fig. 6.2). Less than 3% of a sample

of 800 consecutive events showed an energy gain of more than 30GeV.

QuickPIC simulations were performed to model this experiment. The beam

is initialized so that in vacuum, it would focus 15 cm beyond the start of the

lithium vapour with a σr = 10µm spot size (Fig. 6.3(a)). The longitudinal current

profile is extracted from the LiTrack simulation that matches the experimentally

measured beam spectrum produced by the SLAC accelerator. The resulting

current profile approximates a gaussian (σz ≈ 15µm) with a small tail (as shown

in Fig. 6.3(b)). The computational grid forms a box xyz (240µm × 240µm ×

260µm) in size. The number of grid points is 256× 256× 512, respectively. We

use 8.4 million particles for the beam and 2.6 × 105 particles for each ’slice’ of

lithium (i.e. 4 particles per cell). The beam electrons are advanced every 1.0mm,

which is 1/26th of a betatron wavelength for 42 GeV electrons in the flat density

region.

Fig. 6.1(b) shows a comparison of the experimentally measured energy spec-

trum with one derived from the simulation. The quantitative agreement between

the two spectra is good. In the simulation spectrum of Fig. 6.1(b), electrons are

accelerated beyond 95GeV. In the experiment, the maximum detectable energy

is determined by the spot size at the detection plane, and the highest detected

energy is 85GeV. For the present case, this corresponds to a detection threshold

of 3 × 106 electrons per GeV. The mean electron energy of the highest energy

bin containing 3 × 106 electrons per GeV in the simulation is shown as a func-

tion of position along the plasma in Fig. 6.2. Also shown are maximum energies

measured in the experiment at 85 and 113cm for similar electron current profiles.

In the following sections, we will discuss the details of modeling this experi-
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Figure 6.3: (a). Lithium density profile, beam waist at s = 15cm, (b). Beam
current profile

ment, including the beam scalloping, beam head erosion, energy saturation, par-

ticle deflection, asymmetric emittance and the beam/plasma energy transfer.

6.2 Beam scalloping

In the Cerenkov image as shown in Fig. 6.1(a), scalloping of the beam body

was observed. This is due to the different betatron phase advance for different

longitudinal slices of the beam because their different energies. This feature has

been predicted and explained by previous simulations but was clearly observed

in the experiment for the first time due to the unprecedented energy gain. In this

section, we will use a simple model to quantify the number of scalloping features

observed.

As shown in Fig. 6.4, we assume at s = L, particles at z = z0, z1, z2, ...,

zn are the adjacent locations that have the same betatron phase, and they have

reached energis γ0, γ1, γ2, ... γn, respectively. The shape of γ along z resembles

the opposite of the wake Ez. Location z0 is where Ez = 0 and γ0 is the initial

beam energy and keeps constant; other γns are functions of propagation distance,
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Figure 6.4: Schematic for beam scalloping due to different betatron advance.

i.e. γn(s). Since the betatron wavenumber is related to γ through, kβ ∝ 1√
γ
, then

kβn = kβ0

√
γ0

γn(s)
= kβ0

√
γ0

γ0 + αn · s
, (6.1)

where αn = γn−γ0
L

is the rate of γ increase at zn and is assumed to be independent

of s. Then, the number of envelope oscillations at z0 is

N =
1

2π

∫ L

0

kβ0ds · 2 =
kβ0L

π
(6.2)

and that at zn is

N − n =
1

2π

∫ L

0

kβn(s)ds · 2 =
1

π
kβ0
√
γ0

2

αn
[
√
γn −

√
γ0] =

2
√
γ0N√

γn +
√
γ0

(6.3)

Therefore, γn is related to γ0 through

γn = (
N + n

N − n
)2γ0, (6.4)

where N = kβ0L/π. From this, we know that the spacing between adjacent

’scallop’s is

γn − γn−1 = [(
N + n

N − n
)2 − (

N + (n− 1)

N − (n− 1)
)2]γ0, (6.5)
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and this increases with n.

For the energy doubling experiment, at s = 85cm, N is around 30 (for np =

2.7 × 1017cm−3 and γ0 = 82192, λβ0 is 2.6cm. An equivalent s is chosen to be

80 cm to take into account of the 10 cm density ramp). According to Eq.(6.4),

the energy at the 5th scallop above γ0 should be γ5 = 1.96γ0, which agrees well

with the Fig. 6.1(a) observation. This agreement confirms that the scalloping

features observed are in fact due to the different betatron advance at different

longitudinal slices.

6.3 Head erosion and energy gain saturation

The energy gain saturation observed in the experiment as shown in Fig. 6.2 can

have several possible reasons, such as pump depletion or the hosing instability.

However, the observed lowest energy of 5 ∼ 7GeV and the absence of hosing from

the Cerenkov image eliminates these possibilities. The simulation suggests that

a new phenomena in the field-ionized plasma – ionization induced head erosion

– is the limiting factor for this energy gain saturation.

Fig. 6.5(a) and (b) shows the simulation output at two different positions in

the plasma. At a distance of 12.3 cm, the wake produced by the motion of the

plasma electrons resembles that produced in a preformed plasma, because the

ionization occurs near the very head of the beam. After 81.9 cm one can see the

effect of beam head erosion is that the ionization front now occurs further back

along the pulse. The reason for this ionization front recession is that the head of

the beam expands because there is an insufficient focusing force, and as a result,

the self-field of the beam drops below the ionization threshold at this location.

It is worth noting that even though the wake is formed further back, the peak
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accelerating field still occurs at approximately the same position along the pulse.

The transverse size of the pulse ahead of the ionization front is so large that the

local beam density has dropped below the useful range in the color table.

Fig. 6.6 shows the evolution of the plasma density and the longitudinal wake

at several different distances. We can see that due to head erosion, there is no

significant wake left after 102 cm when the whole beam is eroded away and no

filed-ionization happens any more.

The beam energy spectra binned to number of electrons per GeV are plotted in

Fig. 6.7 at different propagation distances. The experimental detection threshold

of 3 × 106 electrons per GeV (shown in black line) was used to determine the

highest detectable energy plotted in Fig. 6.2. It can be seen that the highest

energy was achieved between 82 to 92 cm. The energy loss stopped beyond

102 cm, agreeing with the disappearance of the wake. However, the number of

particles continued to drop due to particles leaving the simulation window (see

next section).

An identical simulation except with a pre-ionized plasma was performed to

check the effect of beam head erosion. Fig. 6.8 compares the beam/wake evolution

of these two cases. We can see that these two simulations share some common

features such as similar blowout structure and wakes (Fig. 6.9). However, beam

head erosion is absent in the pre-ionized plasma in this case. Fig. 6.10 shows

the energy measured at the detection threshold for both cases. The overall lower

value in the field-ionized case is due to the slightly narrower accelerating field at

the very peak. It is obvious that beam head erosion in the field-ionized plasma

is the limiting factor for further energy gain from the wake.
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Figure 6.5: The density of the electron pulse (brown) and the plasma electrons
(blue) at the distance the beam pulse has propagated s = 12.3 cm (a) and 81.9
cm (b) into the plasma on a plane (y = 0) through the center of the simulation
box. The pulse travels from left to right. Recession of the ionization front is
observed in (b).
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Figure 6.6: Plasma densities near the end of the lithium-vapour column. Col-
or-scale images of the electron density in unit of the background plasma density
(np = 2.7 × 1017cm−3) on the y=0 plane (center of the moving, 3D simulation
box) at distances towards the end of the lithium vapour column: (a) s = 61.4 cm;
(b) 81.9 cm; (c) s = 90.1 cm; and (d) 94.2.9 cm. (e) Evolution of the longitudinal
wakefield on axis.
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Figure 6.7: Beam energy spectrum at different propagation distances. 3 × 106

electrons per GeV (the rough experimental detection threshold) is shown in the
black line.

6.4 Deflection of particles

From the previous section, we noticed the drop of the integrated number of

particles in the energy spectra. The total number of electrons inside the simu-

lation window is plotted in Fig. 6.11. The initial drop within the first 20cm is

due to the deflection of electrons in the defocusing region, which moves forward

behind the beam when the plasma density gradually increases. After the con-

stant plasma density is reached (at s = 15cm), the total number keeps relatively

constant. The drop starting around s = 60cm is mainly due to the electrons

at beam head diffracting and leaving the simulation window. This s distance

roughly agrees with the beam β∗x = 8.2cm (< β∗y = 41cm) and the box size in the

x direction, i.e. σx0

√
1 + s2

β∗2x
≈ Lx.

It is worth noting that the electrons immediately in front of the density peak at
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Figure 6.8: Beam and plasma density comparison for fied-ionized plasma (a) and
pre-ionized plasma (b) for the energy doubling simulation.

Figure 6.9: Comparison of longitudinal wakes on axis from pre-ionized and field-
-ionized plasmas before head erosion plays an important role.
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Figure 6.10: Comparison of energy gain (measured at 3× 106 electrons per GeV)
between pre and field ionized plasmas.

the end of the first bucket can be deflected after a certain distance of propagation

and leave the simulation box too. Fig. 6.12 shows the beam density at s = 81.9cm

as an example (color in log scale). This deflection is due to the phase mixing

of electrons resulting from the modified ionization front after the head erosion

occurs.

Fig. 6.13 shows the details of this deflecting effect. Fig. 6.13(a) and Fig. 6.13(b)

are the plasma densities at s = 12.3cm and 81.9cm, respectively. We can see

that at 81.9cm, the modified ionization front that resulted from head erosion

has caused phase-mixing of electrons to occur. Quantities measured at the lo-

cations indicated by the colored lines are plotted in Fig. 6.13(c) to Fig. 6.13(f)

in corresponding colors. The blue and red lines are at the same location which

is right in front of the density peak; the purple and green lines are also at the

same location and is about 1 micron away from the axis. Fig. 6.13(c) shows that
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at 81.9cm, a density peak from the phase-mixing electron is about 2× 1018cm−3

(compared to the 2.7 × 1017cm−3 background plasma density) while at 12.8cm,

the density is zero indicating they are still inside an ion channel. Fig. 6.13(d)

shows the defocusing field due to the phase-mixed electrons at 81.9cm and the

linear focusing field at 12.3cm at these locations. Fig. 6.13(e) and (f) shows the

effect of a small region which contains the highest energy particles transiting from

the focusing region to the defocusing region after the phase-mixing of electrons

occurs. (The spike of the purple line is due to the asymmetric blow-out channel,

see next section).

Although the number of these deflected electrons is small, it is still an effect

from the head erosion worth noting because these are the electrons that have

been accelerated to the highest energies in the wake.

Figure 6.11: Evolution of the total number of electrons inside the simulation
window.
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Figure 6.12: Beam density in x-z plane at y=0 slice (color in log scale) at
s=81.9cm.

6.5 Influence of the asymmetric emittance

According to the nonlinear blow-out theory[23], the blow-out radius for a

narrow beam (kpσr << 1) is determined by the normalized charge per unit length

of the beam. Therefore, asymmetric beam spot size does not necessarily lead to

an asymmetric channel. However, when the beam spot size is not narrow enough,

the channel can become asymmetric. Fig. 6.14 shows an example of such a wide

beam. In this case, the plane with a wider spot size, σx = 20µm(left column), has

a larger blow-out radius and the focusing field is smaller (< 0.5mcωp
e

) compared

to that in the other plane (> 0.5mcωp
e

) with a smaller spot size of σy = 5µm.

There is a spike in the focusing field at the focusing-defocusing transition region

for the wider spot size plane and smooth transition angle for the narrower spot

size plane (circled in Fig. 6.14(d) and (f)). As a comparison, for a same beam

but with symmetric spot sizes (σx = σy = 10µm), the focusing field is symmetric

(∼ 0.5mcωp
e

) and the transition region has an right angle (not shown).
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Figure 6.13: Beam density in x-z plane at y=0 slice (color in log scale) at
s=81.9cm.
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Figure 6.14: Example of asymmetric focusing beam σx = 20µm, σy = 5µm (a)
Beam density; (b) Plasma density; (c) Focusing field (Er − Bθ); (d) Lineout of
focusing field at position shown in (c). The left column is the x-z plane and the
right column is the y-z plane.
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The spike in Fig. 6.13(e) suggests that there is an asymmetry in the blow-

out channel for the energy doubling experiment simulation. This is due to the

different emittances in x and y (εnx = 100mm · mrad, εny = 20mm · mrad).

Although the spot size at the beam waist is symmetric (σx0 = σy0 = 10µm),

beam spot size in the x direction is in general larger due to the larger emittance.

Fig. 6.15 compares the evolution of the r.m.s value of x and y for the beam center

slice (i.e. z=0 in Fig. 6.13(a)(b)). Due to the focusing from the plasma ramp, the

beam spot sizes pinch down to about 7µm and 3µm in x and y respectively. These

spot sizes are small compared to the blow-out radius, therefore they only result in

slight asymmetry of the ion channel. Fig. 6.16 shows the slightly larger channel

radius in x direction at two different distances (s = 12.3cm and s = 81.9cm). The

focusing fields in the X-Z and Y-Z planes at s = 12.3cm are shown in Fig. 6.17.

The features are in agreement with the discussion from the previous paragraph.

Although there is only slight asymmetry in the focusing field, the effect does

accumulate and show up over time. Fig. 6.18 compares the beam density (x− z,

y − z) and phase space density (x− pz, y − pz) at s = 41cm. It can be seen that

at this distance, more scalloping features due to the slightly larger focusing field

in the y plane is already observable.

6.6 Beam plasma energy transfer

In this section, we discuss the energy transfer between the plasma and the

beam in this simulation. Fig. 6.19 plots the percentage of total energy the beam

lost as a function of the propation distance. We can see that at s = 85cm, the

loss is about 50% of the initial beam energy (42GeV times 1.7× 1010 electrons).

This 50% can be attributed to two aspects, the beam synchrotron radiation and

pump depletion into the plasma wake. The synchrotron radiation should not
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Figure 6.15: Evolution of beam spot size (r.m.s. value) in (a) x and (b) y direction
at the beam center slice (z=0 in Fig. 6.12).

Figure 6.16: Plasma density in center X-Z plane and center Y-Z plane at (a)
s=12.3 cm; (b) s=81.9cm.

104



Figure 6.17: Lineout of focusing field Er − Bθ at 4.7 micron away from axis in
center X-Z plane and center Y-Z plane at s=12.3cm.

exceed 1 ∼ 2GeV if averaged over all beam particles. (For a 42GeV electrons

oscillating at 10 micron radius under 2.7× 1017cm−3 density, radiated energy in

85cm is around 6GeV ). Therefore, synchrotron radiation loss is about 2 ∼ 4% of

the initial total energy. The rest of the energy has been converted into the plasma

wave. From energy conservation, this part of the energy should be ∼ 40 + % of

the initial energy.

main
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Figure 6.18: (a) Beam density at center X-Z plane and (b) beam phase space
density in pz v.s x plane. Both at s = 41cm.
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Figure 6.19: Percentage of total energy the beam lost as a function of the propa-
tion distance.
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CHAPTER 7

Electron Beam Head Erosion in Field-ionized

Plasmas

From the previous chapter, beam head erosion in the field-ionized plasma has

been suggested by simulation to be the factor that limits further energy gain in

the wakefield acceleration experiment. In this chapter, we will further study the

mechanism and rate of this erosion through a theoretical model and simulations.

7.1 Beam head erosion study in literatures

Beam head erosion under different circumstances has been described in the

literature. There are three categories for the erosion mechanism. They are the

emittance driven erosion[79][80][81][82] due to the finite beam emittance; the

ohmic dissipation erosion (or inductive erosion)[79][80][83] due to the beam en-

ergy loss in the wake; and the magnetic induced erosion [83] due to an external

magnetic field. In some cases, more than one of these mechanisms occurs simul-

taneously. Under the conditions relevant to plasma wakefield acceleration where

short and narrow bunches are used (the blow-out regime), the decelerating wake-

field is not established yet at where the beam head expands, therefore, there is no

inductive erosion. In current experimental conditions where there is no external

magnetic field, the magnetic induced erosion is not of concern either. Therefore,
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the only relevant mechanism of interest is the emittance driven erosion.

All the above mentioned work ([79] to [82]) are studied in pre-ionized plasmas.

As we have seen, the erosion is exacerbated in field-ionized plasmas, and the rate

is different. Reference [84] studies the inductive erosion and emittance driven

erosion in an un-ionized or weakly ionized gas. However, in the study of ref. [84],

even the beam body is under the charge neutralization regime (nb < np), which is

not the case of interest here and the conclusion that the emittance driven erosion

slows down as the head radius becomes large under this condition is not true in

the blow-out regime (see section 7.3). For the above reasons, it is necessary to

establish a model and understand the emittance driven head erosion in a field-

ionized plasma in the blow-out regime.

In the following sections, we will first examine the numerical parameters nec-

essary for the erosion rate to converge. Then we will introduce a theoretical

model, which is useful in estimating the erosion rate. Last, the estimates from

this model will be compared with simulation results.

7.2 Head erosion simulation convergence test

A convergence test was performed to check the requirement of time reso-

lution, ∆s, in order to correctly model the erosion process. Fig. 7.1 plots the

plasma density evolution under different time resolutions. The result suggests

that resolving the betatron oscillation is necessary. In this test, updating the

electron beam in a distance so that there are 10 steps per betatron oscillation

for particles inside the ion channel gives almost identical erosion rate to that of

40 steps per oscillation. While under-resolving the betatron oscillation (e.g. 2.5

steps per oscillation) gives spuriously higher erosion rates. This is a reasonable
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result since the erosion process involves the transition region where the focusing

field increases from zero to ion channel focusing, which corresponds to the char-

acteristic evolution distance from β∗ (large) to λβ (small). In all the simulations

presented hereafter, the beams are updated at least 12 steps per λβ.

Figure 7.1: Plasma density evolution using different 3D update frequency in
QuickPIC (λβ is the betatron wavelength and ∆T is the 3D time step).
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7.3 Erosion rate – the theoretical model

In this section, we will establish the physical picture of beam head erosion in

field-ionized plasmas, derive a formula for the erosion rate which depends on the

beam/plasma parameters and compare it with simulation results.

Figure 7.2: Schematic of the ionization front recession.

Fig. 7.2 shows the schematic of the beam head evolution. At s = 0, the

ionization front is at A and the ion channel is completely formed at the ”pinch

point” B. (For a bi-gaussian beam, the ionization front has a ”W” shape due to

the field structure around it (4.4)). If the beam has a finite emittance, the part

before A will undergo vacuum expansion, while that between A and B will expand

at a lower rate due to the partially formed ion channel. This spot-size increase

between A and B will lead to the position of the ionization slipping backward to

a location A’ at a later time s + ∆s. We call the distance between A and B the
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”blowout time” ∆. Next, we calculate the head erosion rate, which is defined as

the rate of the moving ionization front A, [ξ(A)− ξ(A′)]/∆s.

First, we determine the condition for a certain beam slice to become the

ionization front. At the ionization front, the maximum beam space charge field

equals the ionization threshold (i.e. Ermax = Eth). By writing out Ermax using

the beam parameters, we obtain a beam spot size. This spot size is the maximum

possible value for a certain beam slice ξ to ionize the neutral gas, which we call

the ”ionization spot size” σri. It can be written out as follows for flat-top beam

and bi-gaussian beams respectively,

σri−flat = 26010×
N

2×1010

Lz(µm) · Eth(GV/m)
(µm) (7.1)

σri−gaussian(ξ) = 10360×
N

2×1010

σz(µm) · Eth(GV/m)
× e−

ξ2

2σ2
z (µm) (7.2)

In order to calculate the erosion rate, we make the following two assumptions:

(1) The ”pinch point” spot size σrp is always equal to the initial beam spot size

σr0. (This is later verified in series of simulations). (2) The spot size increase

between the ionization front A and ”pinch point” B satisfies a vacuum expansion

slowed down by a factor of α (0 < α < 1).

Therefore, σri can now be written as

σri = σrp

√
1 + (

α · ∆
Vetch

β∗
)2 ≈ σr0

√
1 + (

α · ∆
Vetch

β∗
)2, (7.3)

where Vetch is the erosion rate and α · ∆
Vetch

is the effective distance for a ”pinch

point” slice to expand till it becomes the ionization front. From this, the erosion

rate can be written out as

Vetch =
α ·∆

β∗
√

(σri/σr0)2 − 1
=

α ·∆ · εn
γσ2

r0

√
(σri/σr0)2 − 1

. (7.4)
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7.3.1 Erosion of flat-top beams

For a flat-top beam, both ∆ and σri remain relatively constant as the beam

head erodes (i.e. not a function of ξ). Therefore, the erosion rate, Vetch, should

also be a constant. A series of simulations were carried out to test the scaling

with different parameters based on (7.4). The ”base” simulation parameters

chosen are: N = 1.8 × 1010, σr0 = 10µm, Lz = 50µm, γ = 82192(42GeV),

εn = 410.96mm · mrad and nlithium = 2.7 × 1017cm−3. The beam charge N ,

energy γ, normalized emittance εn and lithium density nlithium are varied from

1/4 to 4 times the ”base” value respectively, and the initial spot size, σr0, is

varied from 1/2 to 2 times its ”base” value.

Fig.7.3 shows the ionization front location as a function of the propagation

distance for different emittances and different energies. Fig.7.4 shows that the

erosion rate derived from Fig.7.3 has the correct scaling with the emittance and

energy (i.e. Vetch ∝ εn and Vetch ∝ 1
γ
) as predicted by (7.4). In fact, the

coefficient in front of the scaling was verified too. For example, in the series

where emittance is varied, if we use α ≈ 1/2 and ∆ = 30µm(as was observed

in simulations), (7.4) gives Vetch(µm per cm)≈ 0.00275εn(mm · mrad). This

agrees with the simulation results, where Fig.7.4(a)’s linear fit gives Vetch(µm per

cm)≈ 0.00265εn(mm ·mrad)). Simulations (Fig.7.5 ) also verified the decrease of

Vetch with an increasing N , as well as Vetch’s weak dependence on both σr0 (when

σri >> σr0) and nlithium.

Last, it is worth noting that for a flat-top beam, the blow-out time can be

estimated using ∆ ∼ 4 c
ωpbpeak

according to these simulations.
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Figure 7.3: Time evolution of the location of the ionization front for (a) different
emittances and (b) different beam energies, for flat-top beams
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Figure 7.4: Erosion rate scaling with (a) beam emittance (b) beam energy. Dots:
data obtained from Fig.7.3 (Points with minimal erosion excluded).Dashed lines
(a) linear fit (b) power fit of the data.
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Figure 7.5: Time evolution of the location of the ionization front for different (a)
beam charge, (b) initial spot sizes, and (c) lithium densities for flat-top beams.
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7.3.2 Erosion of gaussian beams

For bi-gaussian beams, both ∆ and σri change along the beam (i.e. are

functions of ξ). In order to make an estimate of the average Vetch (from the beam

head to the beam center), we use the ∆ and σri values at one σz ahead of the beam

center. (i.e. σri ∼ σri(ξ = −σz) = 0.607σri(ξ = 0), ∆ ∼ 4 c
ωpb(ξ=−σz)

= 5.1 c
ωpbpeak

).

For example, for a beam similar to the one used in Chapter 6 (except symmetric

with the larger emittance), i.e. N = 1.7 × 1010, σr0 = 10µm, σz ≈ 15µm,

β∗ = 8.2cm, the above estimate gives Vetch ∼ 0.4µm per cm (assuming α = 1/2

and Eth = 7GV/m). This value is in surprisingly good agreement with the

simulation observation of the ionization front recession of ∼ 26µm in 70 cm

(s=10 to s=80 cm).

For a certain propagation distance s, in order for the head erosion not to

become detrimental, the eroded part should be less than a fraction of the beam

length (e.g. 1σz). Therefore, Vetch · s < σz needs to be satisfied. Using (7.4), this

can be written as

α · ∆

σz
· σr0
σri
· s
β∗

< 1, (7.5)

where σri >> σr0 was assumed. If we further assume α = 1/2 and use the

ξ = −σz as location for determining ∆ and σri, this condition becomes

1

2466

c

ωpbpeak
(µm)

σr0(µm)Eth(GV/m)
N

2×1010

s

β∗
< 1. (7.6)

This is a useful tool in estimating the influence of head erosion for certain

beam/plasma parameters. For example, for the E167 SLAC experiment param-

eters, i.e. N = 1.7 × 1010, σr0 = 10µm, σz = 15µm in lithium (Eth ≈ 7GV/m),

this gives s < 4.8β∗ ∼ 50cm (use the larger emittance in x direction εn ∼

100mm · mrad). In this case, the pump depletion length is ∼ 1m (42.5GeV,

Edec ∼ 50GV/m). Therefore, for this 42.5GeV stage, beam head erosion is im-
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portant since the characteristic erosion distance is similar to the pump depletion

length. On the other hand, for a 250GeV stage for future collider parameters,

i.e. N = 4 × 1010, σr0 = 3µm, σz = 15µm, εn ∼ 1mm · mrad in lithium

(Eth ≈ 7GV/m), this gives s < 190β∗ ∼ 800m. This characteristic erosion dis-

tance is much larger than the dump depletion distance of ∼ 5m(Edec ∼ 50GV/m).

Therefore, at this stage, the effects from head erosion may not be a major concern.
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CHAPTER 8

Accelerating Ultra-Short Positron Bunches

For the collider application of PWFA, it is also desirable to accelerate positrons

in the plasma. In principle, a positron beam may be accelerated in the wakes

driven by a positron beam, an electron beam, or a laser beam. Due to the

inavailability of intense positron beams (such beams can only be studied at

SLAC), their interaction with plasmas has received very little attention com-

pared to that for electron beams. Some work have been done to study the

wakes and beam dynamics using a positron driver through simulations[85][86]

and experiments[87][48][43][49]. A recent paper also explored the possibility of

accelerating positrons in the electron wake[88].

In this chapter, we will first review the properties of the non-linear wakefield

produced by a bi-gaussian positron beam, and show the effect of enhancing the

transformer ratio by using a hollow channel plasma. Then two simulations (one

pre-ionized and one field-ionized) will be used to show the properties of positron

beam evolution for an extended propagation length, where a stabilization of the

beam envelope is observed. This long propagation of a positron beam in a field-

ionized plasma is the first such PIC simulation. At the end, the wakes for the

upcoming FACET positron beam parameters will be discussed.
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8.1 Wakes of a bi-gaussian positron beam

In the linear regime where the beam density is much smaller than the plasma

density, there is no difference in principle between the wakes produced by electron

or positron beams. There is just a change in sign (a phase shift). However,

for high drive beam densities, the plasma response is nonlinear, and there is

no symmetry between an electron driver and a positron driver. The reason is

that the wake is also excited due to the motion of the plasma electrons. For

electron beams, the plasma electrons are evacuated from the beam location and

an ion channel with uniform density is formed (the ”blow-out” regime). While

for positron beams, the plasma electrons are attracted to the beam location, and

overshoot (the ”suck-in” regime). For such cases, the plasma density can have

complicated structures as shown in Fig. 8.1.

Figure 8.1: Beam density (left) and plasma density (right) for the (a) ”blow-out”
regime of an electron driver and (b) ”suck-in” regime of a positron driver.
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It has been found that for similar electron and positron drivers, the nonlinear

positron wakes are in general smaller and less ideal than nonlinear electron wakes.

This is due to the phase mixing effect[85] in the ”suck-in” regime, where plasma

electrons from different radii flow in and reach the axis at different locations,

resulting in a smaller density concentration as compared to the high density peak

at the end of the electron wake bucket. Sometimes, this phase mixing effect also

results in an accelerating peak that is off the axis[85].

Besides the smaller amplitude of the wake, the transverse focusing fields are

also very different for a positron beam. As shown in Fig. 8.2 (left), in the electron

wake, the focusing field (Er−Bθ) is uniform along z (the beam propagation direc-

tion) and linear with r (transverse direction), while in the positron wake(right),

it is neither uniform along z, nor linear with r.

It has been suggested that using a plasma in the shape of a hollow cylinder may

reduce the phase mixing effect and therefore increase the accelerating wake for a

positron driver[85]. QuickPIC simulations were performed to reexamine this idea,

and it was found that a more pronounced effect from the hollow channel plasma

was the greatly enhanced transformer ratio. Fig. 8.3 compares the wake from a

uniform plasma and that from a plasma with a hollow channel of radius c/ωp. The

parameters used here are the same as in [85], i.e. Nb = 2.0 × 1010,σr = 75µm,

σz = 45µm, and np = 4.3 × 1014cm−3. It is obvious that the hollow channel

reduces the phase mixing effect and plasma electrons do concentrate to a smaller

spot size on axis. The channel radius is varied to search for the optimal wake, and

Fig. 8.4 plots the maximum accelerating peak and the transformer ratio versus

the channel radius. Although the accelerating peak does increase as expected at

some radius (e.g. r = 0.5c/ωp in Fig. 8.4(a)), the factor is small. The increase

of transformer ratio at some radius is much more obvious, e.g. when the channel
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Figure 8.2: (a) Electron or positron beam density (beam propagating down); (b)
Focusing field lineout at different z locations as shown in (a); (c) Focusing field
lineout at different r locations as shown in (a). On the left are plots from an
electron wake while on the right are plots from a positron wake.
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radius is c/ωp, the transformer ratio increased to 1.75 as compared to 1.2 in a

uniform plasma. From Fig. 8.3 we can see, this can be mainly attributed to the

reduction of the decelerating peak.

Figure 8.3: Plasma density and longitudinal wakefield lineout on axis of a uniform
plasma (a and b) and a hollow channel plasma, with a radius c/ωp (c and d).
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Figure 8.4: (a) Magnitude of maximum accelerating peak, and (b) Transformer
ratio, of the positron wake as a function of the hollow channel radius.
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8.2 Positron beam evolution in an extended plasma length

The previous section discussed the wakes from a bi-gaussian beam but has not

considered how the beam evolves under its own wakefield. Experiments have been

carried out to measure the beam acceleration[43], as well as the beam focusing,

e.g. [87] in a short plasma (∼ 3mm) and [48],[49] in an extended-length(1.4m).

However, how the beam and wake evolves inside the plasma is not fully under-

stood. In this section, two simulations will be shown where the stabilization of

the positron beam envelope during propagation is observed. Although a field-

ionized positron wake has been simulated using a PIC code before[86], it is the

first simulation that evolved the beam in an extended length in a field-ionized

plasma.

Fig. 8.5 shows the beam density evolution in a pre-ionized plasma. The param-

eters used here are a 28.5GeV beam with Nb = 2×1010, σr = 11µm, σz = 58.7µm,

εnx = 50mm ·mrad, εny = 5mm ·mrad and the plasma density is 2× 1016cm−3.

It is obvious that the beam focuses to a much smaller spot size and modulates

drastically during the first 15cm of propagation. After this, the beam envelope in

the configuration space stabilizes, and keeps almost unchanged up to at least 100

centimeters. The initial longitudinal wakefield when the beam is still bi-gaussian

and the stablized longitudinal wakefield when the beam has reached the ”stable

envelope” are plotted in Fig. 8.6. The stable wakefield is similar but slightly

larger than the initial wake. The corresponding plasma densities are plotted in

Fig. 8.7. We believe the physical mechanism that leads to the nonlinear equi-

librium is related to nonlinear matching in accelerators and the nonlinear BGK

modes in plasmas. The basic idea is that for any nonlinear focusing force, there

is some transverse profile of the beam for which the beam is in equilibrium. In

this case, the focusing force is a function of the beam’s radial profile. Therefore,
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the force also changes as the beam evolves. It seems that over the time this

self-consistent equilibrium is reached. This is analogous to the formation of BGK

waves in plasma waves where the plasma must find the equilibrium distribution

function (a balance of trapped and untrapped particles for a given potential).

Figure 8.5: Positron beam density evolution in a pre-ionized plasma.

Figure 8.6: Initial and stable longitudinal wakefield of a positron beam in a
pre-ionized plasma (beam propagating to the left).

Fig. 8.8 shows the beam density evolution in a field-ionized plasma. The
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Figure 8.7: Initial (s ∼ 0cm) and stable (s ∼ 68cm) plasma densities in the wake
of a positron beam in a pre-ionized plasma.

parameters used here are 28.5GeV beam with Nb = 8.8 × 109, σr = 11µm,

σz = 19.6µm, εnx = 50mm ·mrad, εny = 5mm ·mrad and the plasma density is

1.8 × 1017cm−3. These parameters are similar to the SLAC experiments except

with about half the beam charge. Similar to the pre-ionized case, the beam

also focuses and modulates drastically during the earlier part of its propagation

(∼ 6.7cm), and it eventually reaches a ”stable envelope”. The only difference here

is the head erosion occurs and shortens the beam. Similarly to that for an electron

beam, the head erosion of a positron beam in field-ionized plasma is also due to

the lack of focusing at the beam head and the resulting slippage of the ionization

front, except that the focusing is from the plasma electrons that flow in to the axis.

The initial and eventual stable longitudinal wake and the corresponding plasma

densities are also plotted in Fig. 8.9 and Fig. 8.10 respectively. Interestingly,

the erosion of the beam head before the ionization front leads to a flatter radial

profile. This provides a force on the plasma electrons that is linear in r, causing

the plasma electrons that originate within the beam to arrive on axis at the same

time. The resulting tight density spot is seen in Fig. 8.10 s ∼ 14cm. This high
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density spot causes a spike in the decelerating field as shown in Fig. 8.9.

In order to understand the transverse behavior of the beam, we examine the

focusing field near the beam. Fig. 8.11(a) shows that at the initial location

when the beam is still gaussian, the focusing field is not linear across the beam

as expected. While after the beam obtains the ”stable envelope” as shown in

Fig. 8.11(b), the focusing field is pretty linear which made conservation of the

envelope shape possible. (Note: although the beam has focused to a very tight

spot size, the transverse resolution was enough to resolve the linear focusing as

shown in Fig. 8.11(b)(iv)).

In this simulation where the synchrotron radiation reaction force was turned

on, 5.7GeV energy gain was observed for the rear part of the beam in 39cm of

propagation distance as shown in Fig. 8.12. By comparing this simulation with an

identical one without the radiation reaction force (not shown), we can conclude

that the radiation effects here are negligibly small. This is likely to be true for

most positron wakefield cases due to the tight spot sizes the beams develop under

the strong focusing.

Figure 8.8: Positron beam density evolution in a field-ionized plasma.

Since the characteristic betatron frequency of the initial phase of the beam

evolution is not known initially, we did a convergence test on the time step for

resolving the evolution of the beam. This is shown in Fig. 8.13. The results
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Figure 8.9: Initial and stable longitudinal wakefield of a positron beam in a
self-ionized plasma (beam propagating to the left).

Figure 8.10: Initial (s ∼ 0cm) and stable (s ∼ 14cm) plasma densities in the
wake of a positron beam in a self-ionized plasma.
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Figure 8.11: (a) Initial (s ∼ 0cm) and (b) stable (s ∼ 14cm) focusing fields in
a field-ionized plasma wake (i) beam density (ii) focusing field Er − Bθ (iii)-(v)
lineout of the foucsing field as shown in (ii).
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Figure 8.12: Phase space pz vs. z density of a positron beam after propagation
of 39cm in a self-ionized plasma.

suggest that resolving the betatron frequency of a corresponding electron beam

in the ion channel (i.e. 20 ∼ 30 updates per betatron wavelength) is sufficient.

The behavior of the initial modulation are similar to those with time steps small

enough to resolve the plasma frequency. A convergence test on the transverse

resolution was also performed as shown in Fig. 8.14. The results suggest that

although the beam focuses to a tight spot size, the transverse resolution was

sufficient to retain the major characteristics of the beam envelope.

8.3 Positron wakes for FACET relevant parameters

In order to obtain the optimal wake, a plasma density scan was done for the

future FACET electron and positron beam parameters as shown in Fig. 8.15. As

the first step, only the wake of the initial gaussian beam was examined and the

beam parameters are Nb = 2 × 1010, σr = 5.3µm and σz = 26µm. For electron

beams, it is straightforward to pick the optimal density based on the largest
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Figure 8.13: Convergence test of different beam updating frequencies.
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Figure 8.14: Convergence test of different transverse resolution.
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wake and optimal peak location since the wake barely changes afterward. For a

positron wake, longer simulations will be needed since the stable wake may differ

from the initial wake.

Another complication of the positron wake is the high frequency part of the

wake near the beam as shown in Fig. 8.15(b). This high frequency component is

due to the local plasma frequency which is dominated by the beam when nb > np.

In this case, nbpeak = 1.7 × 1018cm−3 and this corresponds to a wavelength of

2πc/ωpbpeak = 24µm, which agrees with the wavelength at the beam peak. The

higher the plasma density (as long as np < nb), the more this high frequency

manifests itself because more plasma electrons are oscillating around the positron

beam. Behind the beam, the real plasma frequency dominates.

Based on observations discussed in the previous section, the amplitude of the

stable accelerating field is likely to be similar to that of the initial wake. Although

further simulations need to be done, it is likely that the FACET positron beams

will be able to achieve accelerating field on the order of 10GV/m.
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Figure 8.15: Longitudinal wakefields under different densities using FACET beam
parameters for (a) electron driver and (b) positron driver.
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CHAPTER 9

Summary

This dissertation has studied the acceleration of ultra-short electron/positron

bunches in field-ionization produced plasmas using the parallel quasi-static PIC

code QuickPIC. In order to model the afterburner relevant PWFA experiments at

SLAC, where new physics emerged recently, several models were added into the

code. These models include a field-ionization package based on the ADK model,

where wake benchmark shows very good to excellent agreement with the results

from full PIC code OSIRIS; a radiation reaction model, where an equivalent

field is proved to be accurate enough to model the drag force; as well as the

ability to initialize more realistic beam/plasma parameters. The implementation

of a preliminary model that handles the trapped particles by ”promoting” plasma

particles into beam particles was also described. Improvement in the ”promoting”

criteria will be needed to get more accurate wakes.

Field-ionized wakes excited by an electron beam in the blow-out regime were

studied by comparing them with the pre-ionized wakes. It was found that in order

to achieve similar wakes as in pre-ionized plasmas, the ionization region needs to

exceed the blow-out radius which is a plasma density dependent quantity. Based

on this, the optimal plasma/neutral densities for wake excitation was discussed.

Detailed modeling of the recent energy doubling experiment at SLAC ex-

plained some of the experimental observations (such as beam scalloping) and

helped to understand some aspects of the underlying physics (such as particle

136



deflection, influence of the emittance asymmetry, beam/plasma energy transfer).

One major finding from the simulations was that the much faster beam head ero-

sion rate in the field-ionized plasma is what limited further energy gain. There

was quantitative agreement between QuickPIC results and the experimental ob-

servations for the saturated energies and the plasma lenth for which it saturated.

The head erosion rate in field-ionized plasmas for an electron beam was studied

through theory and simulations. A theoretical model for the erosion rate was

described and its estimates agreed with simulation observations. Convergence

test was performed to make sure essential physics were resolved in the simulations.

The wakes producded by ultra-short positron beams was studied using Quick-

PIC simulations. In pre-ionized plasmas, an enhancement in transformer ratio

was observed using a hollow channel plasma. The first simulation that models

the propagation of a positron beam in a field-ionized plasma over many betatron

oscillations was presented. Beam head erosion as well as the dynamic focusing

followed by a stabilization of the beam envelope was observed. In this simula-

tion, which has beam parameters in the same range as those can be produced at

SLAC, part of the beam achieved multi-GeV energy gain in tens of centimeters.

Positron wakes in field-ionized plasmas for future FACET parameters was also

discussed and multi-GV/m accelerating gradients are likely to be achieved.
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APPENDIX A

Conserved Quantity of Particle Motion

(reproduced from [61])

In this appendix we will derive the conserved quantity of plasma electron’s

motion,
d

dt

[
γe − p̃z − (1− q̃eψ̃)

]
= 0 (A.1)

where p̃z = pz/mc = γβz, q̃e = qe/e and ψ̃ = ψe/(mc2) are the normalized parallel

momentum, normalized charge and normalized ”pinch potential” respectively.

The dimensionless velocity becomes ~β = ~v/c.

We start from the momentum equation,

dp̃z
dt

=
q̃ee

mc

[
−∂φ
∂z
− ∂Az

c∂t
+ βx × (

∂Ax
∂z
− ∂Az

∂x
) + βy × (

∂Ay
∂z
− ∂Az

∂y
)

]
(A.2)

and energy equation,

dγ

dt
=

qe
mc2

~v · ~E =
q̃ee

mc

[
−~β · ∇φ− ~β · ∂

~A

c∂t

]
(A.3)

Subtracting Eq.(A.2) from Eq.(A.3), we get,

d(γ − p̃z)
dt

=
q̃ee

mc

[
−(

∂

c∂t
+ ~β · ∇)(φ− Az) + (

∂

c∂t
+

∂

∂z
)(φ− ~β · ~A)

]
(A.4)

The first term on the right hand side can be rewritten as

− q̃ee
mc

(
∂

c∂t
+ ~β · ∇)(φ− Az) = − d

dt
(q̃eψ̃) (A.5)
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The second term can be rewritten in terms of the ξ = ct−z and s = z coordinates

as
q̃ee

mc
(
∂

c∂t
+

∂

∂z
)(φ− ~β · ~A) =

q̃ee

mc

∂

∂s
(φ− ~β · ~A) (A.6)

Therefore,
d(γ − p̃z + q̃eψ̃)

dt
=
q̃ee

mc

∂

∂s
(φ− ~β · ~A) (A.7)

and in the spirit of the quasi-static approximation ∂/∂s ≈ 0, this becomes,

d(γ − p̃z + q̃eψ̃)

dt
= 0 (A.8)

If we assume that the plasma is at rest in front of the beam then,

γ − p̃z + q̃eψ̃ = (γ − p̃z + q̃eψ̃)|t=−∞ = 1. (A.9)

From Eq.(A.9) one can obtain a relationship between p̃z and p̃⊥. In particular,

squaring both sides of the relationship

γ = 1 + p̃z − q̃eψ̃. (A.10)

leads to

p̃z =
1 + p̃2

⊥ − (1− q̃eψ̃)2

2(1− q̃eψ̃)
. (A.11)

And similarly,

γ =
1 + p̃2

⊥ + (1− q̃eψ̃)2

2(1− q̃eψ̃)
. (A.12)
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